
3 Probabilism

3.1 Justifying the probability axioms

The hypothesis that rational degrees of belief satisfy the mathematical conditions
on a probability measure is known as probabilism. In this chapter, we will look
at some arguments for probabilism. We do so not because the hypothesis is espe-
cially controversial (by philosophy standards, it is not), but because it is instructive
to reflect on how one could argue for an assumption like this, and also because the
task will bring us back to a more fundamental question: what it means to say that an
agent has such-and-such degrees of belief in the first place.

We will assume without argument that rational degrees of belief satisfy the Boo-
leanism condition from p.24. The remaining question is whether they should satisfy
Kolmogorov’s axioms (i)–(iii):

(i) For any proposition 𝐴, 0 ≤ Cr(𝐴) ≤ 1.

(ii) If 𝐴 is logically necessary, then Cr(𝐴) = 1.

(iii) If 𝐴 and 𝐵 are logically incompatible, then Cr(𝐴 ∨ 𝐵) = Cr(𝐴) + Cr(𝐵).

Consider axiom (i). Why should rational degrees of belief always fall in the range
between 0 and 1? Why would it be irrational to believe some proposition to degree
7? The question is hard to answer unless we have some idea of what it would mean
to believe a proposition to degree 7.

A natural thought is that axiom (i) does not express a substantive norm of ratio-
nality, but a convention of representation. We have decided to represent strength of
belief by numbers between 0 and 1, where 1 means absolute certainty. We could just
as well have decided to use numbers between 0 and 100, or between -100 and +100.
Having agreed to put the upper limit at 1, it doesn’t make sense to assume that an
agent believes something to degree 7.
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3 Probabilism

Axioms (ii) and (iii) look more substantive. It seems that we can at least imagine
an agent who assigns degree of belief less than 1 to a logically necessary proposition,
or whose credence in a disjunction of incompatible propositions is not the sum of
her credence in the disjuncts. Still, we need to clarify what exactly it is that we’re
imagining if we want to discuss whether the imagined states are rational or irrational.

For example, suppose we understand strength of belief as a certain introspectible
quantity: a special feeling of conviction people have when entertaining propositions.
On this approach, axiom (ii) says that when agents entertain logically necessary
propositions, they ought to experience the relevant sensation with maximal inten-
sity. It is hard to see why this should be norm of rationality. It is also hard to see
why the sensation should guide an agent’s choices in line with the MEU Principle, or
why it should be sensitive to the agent’s evidence. In short, if we understand degrees
of belief as measuring the intensity of a certain feeling, then the norms of Bayesian
decision theory and Bayesian epistemology become implausible and inexplicable.

A more promising line of thought assumes that strength of belief is defined, per-
haps in part, by the MEU Principle. On this approach, what we mean when we say
that an agent has such-and-such degrees of belief is (in part) that she is (or ought
to be) disposed to make certain choices. We can then assess the rationality of the
agent’s beliefs by looking at the corresponding choice dispositions.

Of course, beliefs alone do not settle choices. The agent’s desires or goals also
play a role. The argument we are going to look at next therefore fixes an agent’s
goals, by assuming that utility equals monetary payoff. Afterwards we will consider
how this assumption could be relaxed.

3.2 The betting interpretation

It is instructive to compare degrees of belief with numerical quantities in other parts
of science. Take mass. What do we mean when we say that an object – a chunk of
iron perhaps – has a mass of 2 kg? There are no little numbers written in chunks of
iron, just as there are no little numbers written in the head. As with degrees of belief,
there is an element of conventionality in the way we represent masses by numbers:
instead of representing the chunk’s mass by the number 2, we could just as well have
used a different scale on which the mass would be 2000 or 4.40925. (Appending ‘kg’
to the number, as opposed to ‘g’ or ‘lb’, clarifies which convention we’re using.)

40



3 Probabilism

I am not suggesting that mass itself is conventional. Whether a chunk of iron has a
mass of 2 kg is, I believe, a completely objective, mind-independent matter. If there
were no humans, the chunk would still have the same mass. What’s conventional is
only the representation of masses (which are not intrinsically numerical) by numbers.

The reason why we can measure mass in numbers – and the reason why we know
anything at all about mass – is that things tend to behave differently depending on
their mass. The greater an object’s mass, the harder the object is to lift up or acceler-
ate. Numerical measures of mass reflect these dispositions, and can be standardized
by reference to particular manifestations. For example, if we put two objects on
opposite ends of a balance, the object with greater mass will go down. We could
now choose a random chunk of iron, call it the “standard kilogram”, and stipulate
that something has a mass of 𝑛 kg just in case it balances against 𝑛 copies of the
standard kilogram (or against 𝑛 objects each of which balances against the standard
kilogram).

Can we take a similar approach to degrees of belief? The idea would be to find a
characteristic way in which degrees of belief manifest themselves in behaviour and
use that to define a numerical scale for degrees of belief.

So how do you measure someone’s degrees of belief? The classical answer is: by
offering them a bet. Consider a bet that pays £1 if it will rain at noon tomorrow, and
nothing if it won’t rain. How much would you be willing to pay for this bet?

We can calculate the expected payoff – the average of the possible payoffs, weighted
by their subjective probability. Let 𝑥 be your degree of belief that it will rain tomor-
row, and 1−𝑥 your degree of belief that it won’t rain. The bet gives you £1 with prob-
ability 𝑥 and £0 with probability 1−𝑥. The expected payoff is 𝑥 ⋅£1+(1−𝑥) ⋅£0 = £𝑥.
This suggests that the bet is worth £𝑥, that £𝑥 is the most you should pay for the bet.

Exercise 3.1 †
Suppose your degree of belief in rain is 0.8 (and your degree of belief in not-
rain 0.2). For a price of £0.70 you can buy a bet that pays £1 if it rains and £0 if
it doesn’t rain. Draw a decision matrix for your decision problem and compute
the expected utility of the acts, assuming your subjective utilities equal the net
amount of money you have gained in the end.

If we’re looking for a way to measure your degrees of belief, we can turn this line
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of reasoning around: if £𝑥 is the most you’re willing to pay for the bet, then 𝑥 is
your degree of belief in the proposition that it will rain. This leads to the following
suggestion.

The betting interpretation
An agent believes a proposition 𝐴 to degree 𝑥 just in case she would pay up to
£𝑥 for a bet that pays £1 if 𝐴 is true and £0 otherwise.

The betting interpretation is meant to have the same status as the above (hypothet-
ical) stipulation that an object has a mass of 𝑛 kg just in case it balances against 𝑛
copies of the standard kilogram. On the betting interpretation, offering people bets
is like putting objects on a balance scale. For some prices, the test person will prefer
to buy the bet, for others she will prefer to sell the bet; in between there is a point
at which the price of the bet is in balance with the expected payoff, so the test per-
son will be indifferent between buying, selling, and doing neither. The price at the
point of balance reveals the subject’s degree of belief. The stake of £1 is a unit of
measurement, much like the standard kilogram in the measurement of mass.

The betting interpretation gives us a clear grip on what it means to believe a propo-
sition to a particular degree. It also points towards an argument for probabilism. For
we can show that if an agent’s degrees of belief do not satisfy the probability axioms
(for short, if her beliefs are not probabilistic) then she is disposed to enter bets that
amount to a guaranteed loss.

3.3 The Dutch Book theorem

In betting jargon, a combination of bets is called a ‘book’. A combination of bets
that amounts to a guaranteed loss is called a ‘Dutch book’ (no-one knows why).
We are going to show that if an agent’s degrees of belief violate one or more of the
Kolmogorov axioms, and she values bets in accordance with their expected payoff,
then she will be prepared to accept a Dutch book.

The argument is a little easier to state if we look not only at bets the agent is
prepared to buy, but also at bets she is prepared to sell. Selling a bet means offering
it to somebody else, in exchange for a fixed amount of money. We are going to
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assume that if an agent’s credence in a proposition 𝐴 is 𝑥, then she is prepared to sell
a “unit bet on 𝐴” – a bet that pays £1 in case of 𝐴 and £0 otherwise – at a price of £𝑥
or more.

Exercise 3.2 ††
Show that selling a unit bet on 𝐴 for £𝑥 is equivalent to buying a unit bet on ¬𝐴
for £(1 − 𝑥), in the sense that the two transactions have the same net effect on
the decision-maker’s wealth, whether or not 𝐴 is true. (This means that when-
ever we talk about selling a unit bet in what follows, we could equivalently
have talked about buying a (different, but related) unit bet.)

Now, suppose an agent’s degrees of belief violate Kolmogorov’s axiom (i). Con-
cretely, suppose her credence in some proposition 𝐴 is 2. By the betting interpre-
tation, she is willing to pay up to £2 for a deal that pays her back either £0 or £1,
depending on whether 𝐴 is true. She is guaranteed to lose at least £1. More gener-
ally, if an agent’s degree of belief in 𝐴 is greater than 1, then she will be prepared to
buy a unit bet on 𝐴 for more than £1, which leads to a guaranteed loss.

Similarly, suppose an agent’s credence in 𝐴 is below 0. Let’s say it is -1. The agent
will then be prepared to sell a unit bet on 𝐴 for any price above £-1. What does it
mean to sell a bet for £-1? It means to pay someone £1 to take the bet. So the agent
would pay up to £1 for us to take the bet. Having sold the bet, she will have to pay
us an additional £1 if 𝐴 is true. Her net loss is either £2 or £1, and guaranteed be at
least £1. Again, the argument generalizes to any degree of belief below 0.

I leave the case of axiom (ii) as an exercise.

Exercise 3.3 ††
Show that if an agent’s degrees of belief violate Kolmogorov’s axiom (ii) then
(assuming the betting interpretation) they are prepared to buy or sell bets that
amount to a guaranteed loss.

Turning to axiom (iii), suppose an agent’s credence in the disjunction 𝐴 ∨ 𝐵 of
two logically incompatible propositions 𝐴 and 𝐵 is not the sum of her credence in
the individual propositions. For concreteness, suppose Cr(𝐴) = 0.4, Cr(𝐵) = 0.2,
and Cr(𝐴 ∨𝐵) = 0.5. By the betting interpretation, the agent is willing to sell a unit
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bet on 𝐴 ∨ 𝐵 for at least £0.50. She is also willing to buy a unit bet on 𝐴 for up to
£0.40, and she is willing to buy a unit bet on 𝐵 for up to £0.20. Notice that if she
buys both of these latter bets then she has in effect bought a unit bet on 𝐴 ∨ 𝐵, for
she will get £1 if either 𝐴 or 𝐵 is true, and £0 otherwise. So the agent is, in effect,
willing to buy this bet for £0.60 and sell it for £0.50. You can check that no matter
whether 𝐴 or 𝐵 or neither of them is true, the agent is guaranteed to lose £0.10.

The reasoning generalizes to any other case where Cr(𝐴 ∨ 𝐵) is less than Cr(𝐴) +
Cr(𝐵). For cases where Cr(𝐴 ∨ 𝐵) is greater than Cr(𝐴) + Cr(𝐵), simply swap all
occurrences of ‘buy’ and ‘sell’ in the previous paragraph.

We have proved the Dutch Book Theorem.

Dutch Book Theorem
Assuming the betting interpretation, any agent whose degrees of belief don’t
conform to the Kolmogorov axioms is prepared to buy bets whose net effect
is a guaranteed loss.

One can also show the converse, that any agent who is prepared to accept a (certain
kind of) Dutch book has non-probabilistic beliefs. In other words, agents whose
beliefs conform to the rules of probability are not prepared to accept (certain kinds
of) bets that amount to a guaranteed loss. This result is known as a Converse Dutch
Book Theorem.

To prove an interesting Converse Dutch Book result, we should extend the betting
interpretation so that it doesn’t just cover unit bets. (We don’t just want to show
that an agent with probabilistic beliefs is not prepared to accept a Dutch Book made
entirely of unit bets.) Let’s assume that agents generally value bets by their expected
monetary payoff, so that they pay up to £𝑥 for a bet with expected payoff £𝑥, where
the expected payoff is computed with the agent’s credence function. We’re now
interested in cases where this credence function is a genuine probability measure,
so that the expected payoff is a genuine “expectation”, in the mathematical sense: a
probability-weighted average.

Now consider an agent with probabilistic beliefs. If the agent pays some amount
£𝑥 for a bet with expected payoff £𝑦, then the entire transaction (including the pur-
chase price) has expected payoff £(𝑦−𝑥). By our extended betting interpretation, the
agent makes the transaction only if 𝑥 ≤ 𝑦, in which case £(𝑦−𝑥) ≥ £0. In other words,
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the agent makes the transaction only if the transaction has a non-negative expected
payoff. Evidently, a transaction can’t have a non-negative expected payoff unless
there is at least some possibility for it to have a non-negative payoff. This shows
that an agent with probabilist credences can’t be “Dutch booked” with a single bet.
What about combinations of bets? Suppose our agent buys a number of bets. We
know that each of these transactions on its own has a non-negative expected payoff.
We also know that the total payoff from all transactions together is the sum of the
payoffs of the individual transactions. Now here is a useful fact about mathematical
expectation: the expectation of a sum (of some quantities) is the sum of the expecta-
tions (of the quantities). Since the sum of non-negative values can’t be negative, this
tells us that the expected total payoff from our agent’s transactions isn’t negative. As
before, we can infer that the combined transactions are not guaranteed to generate a
loss.

Exercise 3.4 ††
Here I have twice appealed to the fact that if a transaction or combination
of transactions has non-negative expected payoff, then there must be at least
a possibility of an actual non-negative payoff. Can you explain why this is
the case? Does it depend on whether the expected payoff is computed with a
genuine probability function?

Exercise 3.5 ††
Suppose I believe that it is raining to degree 0.6 and that it is not raining also
to degree 0.6. Describe a Dutch book you could make against me, assuming
the betting interpretation.

3.4 Problems with the betting interpretation

The Dutch Book Theorem is a mathematical result. It does not show that rational de-
grees of belief satisfy the probability axioms. To reach that conclusion, and thereby
an argument for probabilism, we need to add some philosophical premises about
rational belief.

A flat-footed “Dutch book argument” might go as follows. If your beliefs violate
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the probability axioms, then a cunning Dutchman might come along and trick you
out of money. If your beliefs are probabilistic, he can’t do that. To be safe against
the Dutchman, it is better to have probabilistic beliefs.

Is this a good argument for probabilism? Two problems stand out.
First, why should the possibility of financial loss be a sign of irrational beliefs?

True, there might be a Dutchman going around exploiting people with non-proba-
bilistic beliefs. But there might also be someone (a Frenchman, say) going around
richly rewarding people with non-probabilistic beliefs. We don’t think the latter
possibility shows that people ought to have non-probabilistic beliefs. If there is such
a Frenchman, we can at most conclude that it would be practically useful to have
non-probabilistic beliefs. But those beliefs would still be epistemically irrational.
(Compare: if someone offers you a million pounds if you believe that the moon
is made of cheese, then that belief would be practically useful, but it would not
be epistemically rational.) Why should we think differently about the hypothetical
Dutchman?

Second, the threat of financial exploitation only awaits non-probabilistic agents
who value bets by their expected monetary payoff, as implied by the betting inter-
pretation. Real people don’t actually do this.

Consider the following gamble.

Example 3.1 (The St. Petersburg Paradox)
I am going to toss a fair coin until it lands tails. If I get tails on the first toss,
I’ll give you £2. If I get heads on the first toss and tails on the second, I’ll give
you £4. If I get heads on the first two tosses and tails on the third, I’ll give you
£8. In general, if the coin first lands tails on the 𝑛th toss, I’ll give you £2𝑛.

How much would you pay for this gamble?
We can compute the expected payoff. With probability 1/2 you’ll get £2; with

probability 1/4 you get £4; with probability 1/8 you get £8; and so on. The expected
payoff is

1/2 ⋅ £2 + 1/4 ⋅ £4 + 1/8 ⋅ £8 +… = £1 + £1 + £1 +… .
The sum of this series is infinite. If you value bets by their expected monetary payoff,
you should sacrifice everything you have for an opportunity to play the gamble. In
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reality, few people would do that, seeing as the payoff is almost certain to be quite
low.

Exercise 3.6 †
What is the probability that you will get £16 or less when playing the St. Pe-
tersburg gamble?

The St. Petersburg Paradox was first described by the Swiss mathematician Nico-
las Bernoulli in 1713. It prompted his cousin Daniel Bernoulli to introduce the the-
oretical concept of utility as distinct from monetary payoff. As (Daniel) Bernoulli
realised, “a gain of one thousand ducats is more significant to the pauper than to a
rich man though both gain the same amount”. In other words, most people don’t
regard having two million pounds as twice as good as having one million pounds:
the first million would make a much greater difference to our lives than the second.

In economics terminology, what Bernoulli realised is that money has declining
marginal utility. The ‘marginal utility’ of a good for an agent measures how much
the agent desires a small extra amount of the good. That the marginal utility of money
is declining means that the more money you have, the less you value an additional
pound (or dollar or ducat).

Bernoulli had a more concrete proposal. He suggested that 𝑛 units of money pro-
vide not 𝑛 but log(𝑛) units of utility. This implies that doubling your wealth always
provides the same boost in utility, whether it leads from £1000 to £2000 or from
£1 million to £2 million, even though the second change is much larger in absolute
terms. On Bernoulli’s model, the expected utility of the St. Petersburg gamble for a
person with a wealth of £1000 is equivalent to the utility of getting £10.95. That’s
the most the agent should be willing to pay for the gamble.

Exercise 3.7 †
Suppose Bernoulli is right that owning £𝑛 has a utility of log(𝑛). You currently
have £1. For a price of £0.40 you are offered a bet that pays £1 if it will
rain tomorrow (and £0 otherwise). Your degree of belief in rain tomorrow is
1/2. Should you accept the bet? Draw the decision matrix and compute the
expected utilities. (You need to know that log(1) = 0, log(1.6) ≈ 0.47, and
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log(0.6) ≈ −0.51. Apart from that you don’t need to know what ‘log’ means.)

Exercise 3.8 ††
As Bernoulli noticed, the declining marginal utility of money can explain the
usefulness of insurance. Suppose your net worth is £100 000, and there’s a
5% chance of a catastrophic event that would leave you with only £10 000.
For a fee of £10 000, a bank offers you an insurance against the catastrophic
event that pays £80 000 if the event occurs (and nothing otherwise). Explain
(informally, if you want) why this might be a good deal both for you and for
the bank.

Exercise 3.9 †
Bernoulli’s logarithmic model is obviously a simplification. Suppose you
want to take a bus home. The fare is £1.70 but you only have £1.50. If you
can’t take the bus, you’ll have to walk for 50 minutes through the rain. A
stranger at the bus stop offers you a deal: if you give her your £1.50, she will
toss a coin and pay you back £1.70 on heads or £0 on tails. Explain (briefly
and informally) why it would be rational for you to accept the offer.

There’s a second reason why rational agents wouldn’t always value bets by their
expected payoff even if their subjective utility were adequately measured by mone-
tary payoff. The reason is that buying or selling bets can alter the relevant beliefs.

For example, I am quite confident I will not buy any bets today. Should I therefore
be prepared to pay close to £1 for a unit bet that I don’t buy any bets today? Clearly
not. By buying the bet, I would render the proposition false. Given my current state
of belief, the (imaginary) bet has an expected payoff close to £1, but it would be
irrational for me to buy it even for £0.10.

In sum, we can’t assume that rational agents always value bets by their expected
payoff. The betting interpretation is indefensible.

This is a setback on two fronts. One, we have lost an attractive answer to how
degrees of belief are measured or defined. If an agent’s degrees of belief aren’t
defined by their betting behaviour, then how are they defined? Second, and relatedly,
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we have lost what looked like an attractive argument for probabilism. If agents don’t
value bets by their monetary payoff, we can’t show that non-probabilistic agents will
be prepared to buy bets that amount to a sure loss.

We will look at alternative approaches to measuring belief in sections 3.6 and 6.5.
First, let me explain how we might rescue an argument for probabilism from the
wreckage of the betting interpretation.

3.5 A Dutch book argument

We want to show that non-probabilistic beliefs are irrational. Let 𝛼 be an arbitrary
agent with non-probabilistic beliefs. We can’t assume that 𝛼 values bets by their
expected monetary payoff. But let’s imagine a counterpart 𝛽 of 𝛼 who has the exact
same beliefs as 𝛼 but possibly different, and somewhat peculiar desires. 𝛽’s only
goal is to increase her wealth. Money does not have declining marginal utility for 𝛽.
She would give all she has for an opportunity to play the St. Petersburg gamble. 𝛽
might also differ from 𝛼 in another respect: whenever she faces a choice, 𝛽 chooses
an option that maximizes expected utility.

I’m going to need a number of philosophical assumptions. Here is the first: if 𝛼’s
belief state is epistemically rational, then so is 𝛽’s. The idea is that if you want to
know if someone’s beliefs are epistemically rational (rather than, say, practically use-
ful), then you need to know what her beliefs are and maybe how she acquired those
beliefs, but you don’t need to know what she desires or how she chooses between
available acts.

As we saw at the end of the previous section, we can’t assume that 𝛽 will always
pay up to £Cr(𝐴) for a unit bet on 𝐴 (where Cr is her credence function), since her
credence in 𝐴 may be affected by the transaction. But this problem only seems to
arise for a small and special class of propositions. Let’s call a proposition stable if it
is probabilistically independent, in 𝛽’s credence function, of the assumption that she
buys or sells any particular bets. The probability axioms are supposed to be general
consistency requirements on rational belief. Such requirements should plausibly be
“topic-neutral”: they should hold for beliefs or every kind, not just for beliefs about
a special subject matter. In particular, there aren’t special consistency requirements
that only pertain to stable beliefs. If an agent’s credences over stable propositions
should be probabilistic, then her entire credence function should be probabilistic.
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This is my second assumption. It implies that in order to show that non-probabilistic
beliefs are irrational, it suffices to show that non-probabilistic beliefs towards stable
propositions are irrational. So we can assume without loss of generality that 𝛼’s
(and therefore 𝛽’s) beliefs towards stable propositions are non-probabilistic.

We know that if a proposition𝐴 is stable, then𝛽 is prepared to pay up to £Cr(𝐴) for
a unit bet on 𝐴. That’s because 𝛽’s utility function simply measures monetary payoff
and because she obeys the MEU Principle. The betting interpretation is correct for
𝛽, as long as we stick with stable propositions.

We also know that 𝛽’s credences towards stable propositions violate the probabil-
ity axioms. It follows by the Dutch Book Theorem that she is prepared to buy bets
whose net effect is a guaranteed loss. My next assumption states that it would be
irrational for 𝛽 to make these transactions: it is irrational for an agent whose sole
aim is to increase her wealth to (deliberately and avoidably) make choices whose
net effect is a guaranteed loss.

This was my third assumption. My fourth assumption is that irrational choices
always arise from either irrational beliefs or from irrational desires or from an irra-
tional way of linking up one’s beliefs and desires to one’s actions. I also assume
that the right way of linking up beliefs and desires to actions is given by the MEU
Principle. Thus: if an agent is disposed to make irrational choices, then she is either
epistemically irrational, or her desires are irrational, or her acts don’t maximize
expected utility.

In the case of 𝛽, we can rule out the third possibility. Her choices do maximize
expected utility. I also claim (assumption 5) that 𝛽’s desires are not irrational. Ad-
mittedly, her desires are odd. We might call them unreasonable, or even “irrational”
in a substantive sense. But they aren’t inconsistent. They represent a coherent eval-
uative perspective.

Since 𝛽 is disposed to make irrational choices, we can infer that she is epistemi-
cally irrational. By the very first assumption, it follows that 𝛼 is epistemically irra-
tional. And 𝛼 was an arbitrary agent whose credences violate the rules of probability.
We’ve shown that (epistemically) rational beliefs are probabilistic.

My argument relies on a lot of assumptions. Many of them could be challenged.
Can you think of a better argument?
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3.6 Comparative credence

We have seen that the betting interpretation is untenable. Many philosophers hold
that degrees of belief cannot be defined in terms of an agent’s behaviour, but should
rather be treated as theoretical primitives. Even on that view, however, more must
be said about the numerical representation of credence. That we represent degrees
of belief by numbers between 0 and 1 is clearly a matter of convention. We need to
explain how this convention of assigning numbers to propositions works.

One approach towards such an explanation, which does not turn on an agent’s be-
haviour, was outlined by the Italian mathematician and philosopher Bruno de Finetti
(who, incidentally, also published the first proof of the Dutch Book Theorem). De
Finetti suggested that degrees of belief might be defined in terms of the comparative
attitude of being more confident in one proposition than in another. While any nu-
merical representation of beliefs is partly conventional, this comparative attitude is
plausibly objective and might be taken as primitive.

Let ‘𝐴 ≻ 𝐵’ express that a particular (not further specified) agent is more confident
in 𝐴 than in 𝐵. For example, if you are more confident that it is sunny than that it is
raining, then we have Sunny ≻ Rainy. Let ‘𝐴 ∼ 𝐵’ mean that the agent is equally
confident in 𝐴 and in 𝐵. From these, we can define a third relation ‘≿’ by stipulating
that 𝐴 ≿ 𝐵 iff 𝐴 ≻ 𝐵 or 𝐴 ∼ 𝐵.

We now make some assumptions about the formal structure of these relations. To
begin, if you are more confident in 𝐴 than in 𝐵, then you can’t also be more confident
in 𝐵 than in 𝐴, or equally confident in the two. We also assume that if you’re neither
more confident in 𝐴 than in 𝐵, nor in 𝐵 than in 𝐴, then you’re equally confident in
𝐴 and 𝐵. Your comparative credence relations are then “complete”, in the following
sense:

Completeness
For any 𝐴 and 𝐵, exactly one of 𝐴 ≻ 𝐵, 𝐵 ≻ 𝐴, or 𝐴 ∼ 𝐵 is the case.

Next, suppose you are at least as confident in 𝐴 as in 𝐵, and at least as confident
in 𝐵 as in 𝐶. Then you should be at least as confident in 𝐴 as in 𝐶. So ≿ should be
“transitive”:
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Transitivity
If 𝐴 ≿ 𝐵 and 𝐵 ≿ 𝐶 then 𝐴 ≿ 𝐶.

Exercise 3.10 †††
Show that Transitivity and Completeness together entail that (a) if 𝐴 ∼ 𝐵 then
𝐵 ∼ 𝐴, and (b) if 𝐴 ∼ 𝐵 and 𝐵 ∼ 𝐶, then 𝐴 ∼ 𝐶.

For the next assumptions, I use ‘⊤’ to stand for the logically necessary proposition
(the set of all worlds) and ‘⊥’ for the logically impossible proposition (the empty set).

Non-Trviality
⊤ ≻ ⊥.

Boundedness
There is no proposition 𝐴 such that ⊥ ≻ 𝐴.

These should be fairly plausible demands of rationality.
My next assumption is best introduced by an example. Suppose you are more

confident that Bob is German than that he is French. Then you should also be more
confident that Bob is either German or Russian than that he is either French or
Russian. Conversely, if you are more confident that he is German or Russian than
that he is French or Russian, then you should be more confident that he is German
than that he is French. In general:

Quasi-Additivity
If 𝐴 and 𝐵 are both logically incompatible with 𝐶, then 𝐴 ≿ 𝐵 iff (𝐴 ∨ 𝐶) ≿
(𝐵 ∨ 𝐶).

De Finetti conjectured that whenever an agent’s comparative credence relations
satisfy the above five assumptions, then there is a unique probability measure Cr
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such that 𝐴 ≿ 𝐵 iff Cr(𝐴) ≥ Cr(𝐵) (which entails that 𝐴 ≻ 𝐵 iff Cr(𝐴) > Cr(𝐵) and
𝐴 ∼ 𝐵 iff Cr(𝐴) = Cr(𝐵)). The conjecture turned out to be false, because a sixth
assumption is required. But the following can be shown:

Probability Representation Theorem
If an agent’s comparative credence relations satisfy Completeness, Transitiv-
ity, Non-Triviality, Boundedness, Quasi-Additivity, and the Sixth Assump-
tion, then there is a unique probability measure Cr such that 𝐴 ≿ 𝐵 iff
Cr(𝐴) ≥ Cr(𝐵).

Before I describe the Sixth Assumption, let me explain what the Probability Rep-
resentation Theorem might do for us.

I have argued that we can’t take numerical credences as unanalysed primitives.
There must be an answer to why an agent’s degree of belief in rain is correctly rep-
resented by the number 0.2 rather than, say, 0.3. De Finetti’s idea was to derive
numerical representations of belief from comparative attitudes towards propositions.

Imagine we order all propositions on a line, in accordance with the agent’s compar-
ative judgements (which we take as primitive). Whenever the agent is more confident
in one proposition than in another, the first goes to the right of the first. Whenever the
agent is equally confident in two propositions, they are stacked on top of each other
at the same point on the line. If the agent is reasonable, the impossible proposition
⊥ will be at the left end, the necessary proposition ⊤ at the right end.

We now want to use numbers to represent the relative position of propositions
along the line, in such a way that as we move from the ⊥ position to the ⊤ position,
the numbers get higher and higher. The Probability Representation Theorem assures
us that this can be done, provided that the agent’s comparative judgements satisfy
the six assumptions. In that case, it says, there will be an assignment of numbers to
propositions that “represents” the agent’s comparative judgements in the sense that
𝐴 ≿ 𝐵 iff the number assigned to 𝐴 is at least as great as the number assigned to 𝐵.

The next problem is that if there is one such assignment then there are infinitely
many, giving different numbers to propositions in between ⊥ and ⊤. (For example,
if 𝑓 represents ≿ then so does the function 𝑔 defined by 𝑔(𝐴) = 𝑓 (𝐴)2.) We need
to settle on a particular assignment. Again, the Probability Representation Theo-
rem comes to our help. It tells us that among the eligible assignments of numbers
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to propositions – among those that represent the agent’s comparative judgements –
there is only one that satisfies the conditions on a probability measure. Let’s adopt
the convention of using this assignment.

On this approach, ‘Cr(Rain) = 0.2’ means that the agent’s comparative confi-
dence judgements order the propositions in such a way that the unique probabil-
ity measure that “represents” these judgements assigns 0.2 to Rain. Any agent
whose attitudes of comparative credence satisfy the six assumptions is guaranteed
to have probabilistic credences, because the agent’s credence function is defined as
the unique probability measure (!) that represents her comparative judgements. An
agent who doesn’t satisfy the six assumptions doesn’t have a credence function at all,
because our convention of measurement – on the present approach – doesn’t cover
such agents.

As you may imagine, this approach has also not gone unchallenged. One obvious
question is whether we can take comparative confidence as primitive. If we can, a
further question is whether the six assumptions are plausible as general constraints
on any agent with degrees of belief. The missing sixth assumption is especially
troublesome in this regard. The form of the assumption turns out to depend on
whether the number of propositions is finite or infinite. In either case the condition
is so complicated that many struggle to accept it as a basic norm of rationality – let
alone as a basic condition anyone must satisfy in order to have degrees of belief at all.
Just to prove the point, here is the condition for the slightly simpler case of finitely
many propositions:

The Sixth Assumption (finite version)
For any two sequences of propositions 𝐴1,… , 𝐴𝑛 and 𝐵1,… , 𝐵𝑛 such that for
every possible world 𝑤 there are equally many propositions in the first se-
quence that contain 𝑤 as in the second, if 𝐴𝑖 ≿ 𝐵𝑖 for all 𝑖 < 𝑛, then 𝐵𝑛 ≿ 𝐴𝑛.

Essay Question 3.1

I have expressed the Dutch Book Theorem with monetary outcomes. One
might try to avoid commitment to the betting interpretation by replacing the
monetary outcomes with other goods the agent happens to care about. For ex-
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ample, when we looked at Kolmogorov’s axiom (i), I said that an agent whose
degree of belief in 𝐴 is 2 would pay (say) £1.50 for a bet that pays £1 if 𝐴 is
true and £0 otherwise. This assumes the betting interpretation. Now let ‘U1.5’
denote an arbitrary good to which the agent assigns utility 1.5. Similarly, let
U1 be a good with utility 1, and U0 a good with utility 0. Consider a bet that
would give the agent U1 if 𝐴 is true and U0 otherwise. The bet’s expected
utility is Cr(𝐴) ⋅U(U1)+Cr(¬𝐴) ⋅U(U0) = Cr(𝐴). Assuming the MEU Prin-
ciple, an agent with Cr(𝐴) = 2 would prefer this bet over U1.5, even though
the latter is guaranteed to give her greater utility, which is surely irrational.
Can you spell out a full argument for probabilism along these lines? What
problems do you see for this line of argument?

Sources and Further Reading
For a critical overview and assessment of Dutch Book arguments, see Alan Hájek,
“Dutch Book Arguments” (2008). If you want to dive even deeper, you may start with
Susan Vineberg’s Stanford Encyclopedia entry on Dutch Book Arguments (2022).

For a more extensive philosophical introduction and criticism of the comparative ap-
proach from section 3.6, see Edward Elliott, “Comparativism and the Measurement
of Partial Belief” (2020). Peter Fishburn’s “The Axioms of Subjective Probability”
(1986) goes deeper into the mathematical background.

A recently popular third way of arguing for probabilism, besides the Dutch Book ap-
proach and the comparative approach, draws on the observation (also first made by
de Finetti) that for every non-probabilistic credence function there is a probabilistic
credence function that is guaranteed to be closer to the truth – where closeness to the
truth is a certain measure of the distance between the credence given to any propo-
sition and the proposition’s truth-value (0=false, 1=true). See, for example, James
Joyce, “A nonpragmatic vindication of probabilism” (1998).

Martin Peterson’s Stanford Encyclopedia entry on the St. Petersburg paradox dis-
cusses the historical context of the St. Petersburg paradox and also introduces a “mod-
ern” version in which the monetary payoffs are replaced by units of utility.

The bus fare exercise is from Brian Skyrms, Choice and Chance (2000).
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