
8 Risk

8.1 Why maximize expected utility?

So far, we have largely taken for granted that rational agents maximize expected
utility. It is time to put this assumption under scrutiny.

In chapter 1, I gave a simple initial argument for the MEU Principle. An adequate
decision rule, I said, should consider all the outcomes an act might bring about –
not just the best, the worst, or the most likely – and that it should weigh outcomes in
proportion to their probability, so that more likely outcomes are given proportionally
greater weight.

In chapter 5, we looked at the internal structure of utility. I didn’t mention it at
the time, but the account we developed can be used to support the MEU Principle.
Consider a schematic decision problem with two acts and two states.

𝑆1 𝑆2
𝐴 𝑂1 𝑂2
𝐵 𝑂3 𝑂4

Let’s assume the four outcomes are logically incompatible with each other. (We can
always make them incompatible by describing the outcomes in more detail.) By
Jeffrey’s axiom,

U(𝑂1 ∨ 𝑂2) = U(𝑂1) ⋅ Cr(𝑂1 / 𝑂1∨𝑂2) + U(𝑂2) ⋅ Cr(𝑂2 / 𝑂1∨𝑂2).

Since choosing 𝐴 effectively means choosing 𝑂1 ∨ 𝑂2, we have

Cr((𝑂1∨𝑂2) ↔ 𝐴) = 1.
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Moreover, on the supposition that 𝑂1 ∨ 𝑂2 is true, it is certain that 𝑂1 comes about
just in case state 𝑆1 obtains. That is,

Cr(𝑂1 / 𝑂1∨𝑂2) = Cr(𝑆1 / 𝑂1∨𝑂2).

Together, the previous two observations entail that

Cr(𝑂1 / 𝑂1∨𝑂2) = Cr(𝑆1/𝐴).

In a well-defined decision matrix, the states must be independent of the acts. This
suggests that Cr(𝑆1/𝐴) = Cr(𝑆1). We get

Cr(𝑂1 / 𝑂1∨𝑂2) = Cr(𝑆1).

By the same reasoning, Cr(𝑂2 / 𝑂1∨𝑂2) = Cr(𝑆2). The above instance of Jeffrey’s
axiom can therefore be rewritten as

U(𝐴) = U(𝑂1) ⋅ Cr(𝑆1) + U(𝑂2) ⋅ Cr(𝑆2).

This says that the utility of the act 𝐴 equals the expected utility of 𝐴!
Now, utility is a measure of (all-things-considered) desirability. The MEU prin-

ciple is therefore equivalent to the seemingly innocuous claim that rational agents
choose an act that they desire at least as strongly as any alternative. (We are going
to challenge this seemingly innocuous claim, and the present argument, in chapter
9.)

In chapter 6, we met yet another argument for the MEU Principle. The argument
began with an idea about how to measure (or define) an agent’s intrinsic utility func-
tion. The idea was to look at the agent’s preferences between outcomes and lotteries.
Assuming that the agent always chooses a most preferred option, von Neumann’s
construction of utility entails that an agent obeys the MEU Principle (in choices
between lotteries) iff their preferences satisfy the “axioms” of Completeness, Tran-
sitivity, Continuity, Independence, and Reduction.

To finish this argument for the MEU Principle (for choices between lotteries), we
would need to explain why the five axioms should be considered requirements of
rationality.

An influential argument in support of the axioms attempts suggests that if an
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agent’s preferences violate the axioms, then the agent is disposed to make patently
bad choices in certain multi-stage decision problems.

To illustrate, suppose an agent violates the Transitivity axiom. The agent prefers
𝐴 to 𝐵, 𝐵 to 𝐶, but 𝐶 to 𝐴. These preferences form a cycle. Whichever of 𝐴, 𝐵
or 𝐶 the agent has, she would prefer to have one of the others. If she is willing to
pay a small amount to get the preferred option, we could exploit her in a kind of
multi-stage Dutch Book.

Concretely, let’s assume the agent starts with 𝐶. Since she prefers 𝐵 to 𝐶, she
should be willing to pay an insignificant amount (say, 1p) if we let her swap 𝐶 for
𝐵. Once she has 𝐵, we let her swap 𝐵 for 𝐴 in exchange for another penny. She is
happy to do that, since she prefers 𝐴 to 𝐵. Finally, we let her swap 𝐴 for 𝐶, again
in exchange for 1p. The agent should accept, since she prefers 𝐶 to 𝐴. The agent
is back where she started, with 𝐶, and we have gained three pence. We could start
over, letting the agent swap 𝐶 for 𝐵 for 𝐴 for 𝐶 until we have emptied her wallet.

This kind of argument is called a money-pump argument (for obvious reasons).
It’s worth spelling out in more detail. In its present form, the argument has a serious
flaw.

8.2 Money pumps and sequential choice

We are dealing with an agent with cyclical preferences:

𝐴 ≻ 𝐵
𝐵 ≻ 𝐶
𝐶 ≻ 𝐴

We imagine presenting this agent with a sequence of choices. A decision problem
with more than one choice point is called a sequential decision problem. The
branch of decision theory that studies sequential decision problems is called sequen-
tial decision theory or dynamic decision theory. Our money-pump argument in-
vites us to take a brief look into this area.

We have assumed that the agent starts with 𝐶. At the first choice point in our
money-pump scenario, the agent can either keep 𝐶 or exchange it for 𝐵, at a small
cost. Let 𝐵- express 𝐵 with the added small cost: 𝐵- = 𝐵∧-1p. So the first choice
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is between 𝐶 and 𝐵-. If the agent chooses 𝐵-, she is given the option to pay another
penny to swap 𝐵 for 𝐴. If she goes in for the trade, she is left with 𝐴-- = 𝐴∧-2p. She
is then offered a third choice, in which she can stick with 𝐴-- or get 𝐶--- = 𝐶∧-3p.

We can picture the sequential decision problem in a tree diagram, called an exten-
sive form representation.

1

2

𝐶

𝐵-

𝐶

3

𝐵-

𝐴--

𝐵 -

𝐶---

𝐴--

𝐶---

𝐴 --

The circled nodes are choice points. Now, what path through this tree will the
agent take?

Earlier, we have assumed that the agent will choose 𝐵- at node 1, because she
prefers 𝐵 to 𝐶, and we take for granted that the preference is strong enough that she
also prefers 𝐵- to 𝐶. Similarly, we have assumed that the agent would choose 𝐴-- at
node 2 (because she prefers 𝐴 to 𝐵), and 𝐶--- at node 3 (because she prefers 𝐶 to 𝐴).
She ends up with 𝐶--- = 𝐶∧-3p even though she could have gotten 𝐶 at no cost by
“turning right” at the first node.

But would the agent really make these choices?
Look again at node 1. Superficially, the agent is here offered a choice between 𝐶

and 𝐵-. But if she “chooses 𝐵-” she isn’t actually getting 𝐵- unless she “turns right”
at node 2. If she turns left at node 2 and again at node 3, as we assumed she will,
then “choosing 𝐵-” at node 1 actually means getting 𝐶---. And 𝐶--- is worse than 𝐶.
If the agent can foresee that she will turn left at nodes 2 and 3, then she will not turn
left at node 1.

The flaw in our argument is that we have ignored any information the agent might
have about her predicament and about what she would do at later stages in the sce-
nario. We have adopted what is called a myopic approach to sequential choice. The
myopic approach treats each choice point as if it were the only decision the agent
ever faces, ignoring any downstream consequences. This won’t do. An adequate
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evaluation of the agent’s options should take into account what the agent is likely to
do later. This approach to sequential choice is called sophisticated.

To investigate the above decision problem from a sophisticated perspective, we
need to say what the agent knows about her situation. Let’s assume that she is fully
informed about the sequential decision problem that she is facing. Let’s also assume
that she has perfect knowledge of her preferences, so that she can figure out what
she will do at any future choice point.

What the agent should do at node 1 now depends on what she will do at node 2.
What she should do at node 2 similarly depends on what she will do at node 3. But if
there are no relevant choices after node 3 then we can figure out what the agent will
do here. The choice at node 3 then really is between 𝐴-- and 𝐶---. Since the agent
prefers 𝐶 to 𝐴, it is plausible that she will choose 𝐶---.

With this information in hand, we can return to node 2. Her choice at node 2 is
effectively between 𝐶--- (via node 3) and 𝐵-. The agent prefers 𝐵 to 𝐶. So we can
expect her to choose 𝐵- at node 2.

Now return to node 1. Given what we have just figured out, the choice at node 1 is
effectively between 𝐶 and 𝐵-. The agent prefers 𝐵 (and 𝐵-) to 𝐶. We may therefore
expect her to choose 𝐵- at node 1. She will “turn left” at node 1 and right at node 2.

This kind of reasoning is called backward induction. We’ll meet it again in
section 10.5.

Exercise 8.1 †††
Draw a decision matrix (without utility values, but with credences) for the
agent’s choice at node 1.

Our attempted money pump doesn’t work. At least not if the agent knows about
our plan. But this can be fixed. In the following sequential decision problem, our
agent would trade 𝐴 for 𝐴- at node 1, assuming again that she is fully informed about
the scenario and her preferences. She would make a guaranteed and avoidable loss
of 1 penny.
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1
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𝐴

𝐶

Exercise 8.2 ††
Explain by backward induction why the agent would choose 𝐴- at node 1.

Exercise 8.3 †
Where would the agent end up if her preferences were transitive, so that 𝐴 ≻ 𝐵,
𝐵 ≻ 𝐶, and 𝐴 ≻ 𝐶?

The real point is, of course, not about money. The point is that cyclical preferences
effectively lead to the choice of a dominated strategy. The agent could have gotten
𝐴, by “turning left” at each node. Due to her cyclical preferences, she ends up with
a strictly worse outcome 𝐴-.

We have assumed that the agent prefers 𝐴 to 𝐵, 𝐵 to 𝐶, and 𝐶 to 𝐴. Not all vio-
lations of Transitivity involve cycles of this kind. Instead of preferring 𝐶 to 𝐴, the
agent could be indifferent between 𝐶 and 𝐴. Or she could have no attitude at all
about the comparison between 𝐴 and 𝐶, violating both Transitivity and Complete-
ness. These preferences, too, can be shown to support the choice of a dominated
strategy. The same is true, more generally, for almost all preferences that violate the
von Neumann and Morgenstern axioms.

8.3 The long run

Let’s look at one last argument for the MEU Principle. This one turns on a connec-
tion between probability and relative frequency.
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Suppose you repeatedly toss a fair coin, keeping track of the number of heads and
tails. You will find that over time, the proportion of heads approaches its objective
probability, 1/2. After one toss, you will have 100% heads or 100% tails. After ten
tosses, it’s very unlikely that you’ll still have 100% heads or 100% tails. 60% heads
and 40% tails wouldn’t be unusual. The (objective) probability of getting 40% tails
or less in 10 independent tosses of a coin is 0.377. For 100 tosses, it is 0.028; for
1000, it is less than 0.000001. After 1000 tosses, the probability that the proportion
of tails lies between 45% and 55% is 0.999.

In general, the rules of probability entail that if there is a sequence of “trials”
𝑇1, 𝑇2, 𝑇3 … in which the same outcomes (like heads and tails) can occur with the
same probabilities, then the probability that the proportion of any outcome in the
sequence differs from its probability by more than an arbitrarily small amount 𝜖
converges to 0 as the number of trials gets larger and larger. This is known as the
(weak) law of large numbers. Loosely speaking: in the long run, probabilities turn
into proportions.

How is this relevant to the MEU Principle? Consider a bet on a fair coin flip:
if the coin lands heads, you get £1, otherwise you get £0. The bet costs £0.40. If
you are offered this deal again and again, the law of large numbers entails that the
percentage of heads will (with high probability) converge to 50%. If you buy the
bet each time, you can be confident that you will loose £0.40 in about half the trials
and win £0.60 in the other half. The £0.10 expected payoff turns into an average
payoff. In this kind of scenario, the MEU Principle effectively says that you should
prefer acts with greater average utility (and therefore greater total utility) over acts
with lower average (and total) utility. If you face the same decision problem over
and over, then you are almost certain to achieve greater total utility if you follow the
MEU Principle than if you follow any other rule.

In reality, of course, there are limits to how often one can encounter the very
same decision problem. “In the long run, we are all dead”, as John Maynard Keynes
quipped. Fortunately, we saw in the coin flip example that the convergence of pro-
portions to probabilities tends to be quick. It does not take millions of tosses until
the percentage of heads is almost certain to exceed 40%.

As it stands, the long-run argument still assumes that the same decision problem
is faced over and over. But we can weaken this assumption. Suppose you face a
sequence of decision problems that may involve different outcomes, different states,
and different probabilities. One can show that if the states in these problems are
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probabilistically independent, and the relevant probabilities and utilities are not too
extreme, then over time, maximizing expected utility is likely to maximize average
(and total) utility.

From all this, you might expect that professional gamblers and investors generally
put their money on the options with greatest expected payoff, since this would give
them the greatest overall profit in the long run. But they do not. (Those who do
don’t remain professional gamblers or investors for long.) To see why, imagine you
are offered an investment in a startup that tries to find a cure for snoring. If the startup
succeeds, your investment will pay back tenfold. If the startup fails, the investment is
lost. The chance of success is 20%, so the expected return is 0.2⋅1000%+0.8⋅0% =
200%. Even if this exceeds the expected return of all other investment possibilities,
you would be mad to put all your money into this gamble. If you repeatedly face this
kind of decision and go all-in each time, then after ten rounds you are bankrupt with
a probability of 1 − 0.210 = 0.9999998976.

This does not contradict the law of large numbers. In the startup example, you are
not facing the same decision problem again and again. If you lose all your money
in the first round, you don’t have anything left to invest in later rounds. Still, the ex-
ample illustrates that by maximizing expected utility you don’t always make it likely
that you will maximize average or total utility in the long run. More importantly,
the example suggests that there is something wrong with the MEU Principle. Sen-
sible investors balance expected returns and risks. A safe investment with lower ex-
pected returns is often preferred to a risky investment with greater expected returns.
Shouldn’t we adjust the MEU Principle, so that agents can factor in the riskiness of
their options?

Exercise 8.4 ††
Every year, an investor is given £100,000, which she can either invest in a
risky startup of the kind described (a different one each year), or put in a bank
account at 0% interest. If she always chooses the second option, she will have
£1,000,000 after ten years.

(a) What are the chances that she would do at least as well (after ten years) if
she always chooses the first option, without reinvesting previous profits?
(Hint: Compute the chance that she would do worse.)
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(b) How does the answer to (a) mesh with my claim in the text that an in-
vestor who always goes with the risky option is virtually guaranteed to
go bankrupt?

8.4 Risk aversion

Many people are risk averse, at least for certain kinds of choices. They prefer situa-
tions with a predictable outcome over highly unpredictable situations. This does not
seem irrational. Does it pose a threat to the MEU Principle?

A standard way to measure risk aversion involves lotteries. Consider a lottery
with an 80% chance of £0 and a 20% chance of £1000. The expected payoff is £200.
Given a choice between the lottery and £100 for sure, a risk averse agent might prefer
the £100. Can we account for these preferences?

We can. We could, for example, assume that the difference in utility between
£1000 and £100 is, for this agent, less than five times the difference in utility between
£100 and £0. For example, if U(£0) = 0, U(£100) = 1, and U(£1000) = 4, then the
lottery has expected utility 0.8 ⋅ 0 + 0.2 ⋅ 4 = 0.8, which is less than the guaranteed
utility of the £100.

This is how economists model risk aversion. They assume that for risk averse
agents, utility is a “concave function of money”, meaning that the amount of utility
that an extra £100 would add to an outcome of £1000 is less than the amount of
utility the same £100 would add to a lesser outcome of, say, £100. We have already
encountered this phenomenon in chapter 5, where we saw that money has declining
marginal utility: the more you have, the less utility you get from an extra £100. Ac-
cording to standard economics, risk aversion is the flip side of declining marginal
utility.

This should seem strange. Intuitively, the fact that the same amount of money
becomes less valuable the more money you already have has nothing to do with risk.
Money could have declining marginal utility even for an agent who loves the thrill of
risky options. Conversely, an agent might value every penny as much as the previous
one, but shy away from risks.

No doubt some actions that appear to display risk aversion (say, among profes-
sional gamblers) are really explained by the declining marginal utility of money.
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But many people prefer predictable situations in a way that can’t be explained along
these lines. The following example is due to Maurice Allais,

Example 8.1 (Allais’s Paradox)
A ball is drawn from an urn containing 80 red balls, 19 green balls, and 1 blue
ball. Consider first a choice between the following two lotteries. Which do
you prefer?

Red (0.8) Green (0.19) Blue (0.01)

𝐴 £0 £1000 £1000
𝐵 £0 £1200 £0

Next, consider the alternative lotteries 𝐶 and 𝐷, based on the same draw from
the urn. Which of these do you prefer?

Red (0.8) Green (0.19) Blue (0.01)

𝐶 £1000 £1000 £1000
𝐷 £1000 £1200 £0

If you choose 𝐶 in the second choice, you get £1000 for sure. If you choose 𝐷,
you get either £1000 (most likely) or £0 (least likely) or £1200. If you’re risk averse,
it makes sense to take the sure £1000.

In the first choice, the most likely outcome is £0 no matter what you do. It may
seem reasonable to take the 19% chance of getting £1200 (by choosing 𝐵) rather
than the 20% chance of getting £1000 (by choosing 𝐴).

Many people, when confronted with Allais’s puzzle, seem to reason in this way.
They prefer 𝐶 to 𝐷 and 𝐵 to 𝐴. These preferences can’t be explained by the declining
marginal utility of money. Indeed, there is no way of assigning utilities to monetary
payoffs that makes a preference of 𝐶 over 𝐷 and 𝐵 over 𝐴 conform to the MEU
Principle. If you have the risk-averse preferences, you appear to violate the MEU
Principle.
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Exercise 8.5 †††
The preference for 𝐶 over 𝐷 and 𝐵 over 𝐴 appears to violate the Independence
axiom of von Neumann and Morgenstern. Explain. (The axiom states that, for
any 𝐴, 𝐵, 𝐶, if 𝐴 ≿ 𝐵, and 𝐿1 is a lottery that leads to 𝐴 with some probability
𝑥 and otherwise to 𝐶, and 𝐿2 is a lottery that leads to 𝐵 with probability 𝑥 and
otherwise to 𝐶, then 𝐿1 ≿ 𝐿2.)

Some say that the kind of risk aversion that is manifested by a preference of 𝐵 over
𝐴 and 𝐶 over 𝐷 is irrational. Rational agents, they say, can’t prefer predictable situ-
ations over unpredictable situations. This might be OK if our topic were “economic
rationality”. But it’s not OK if we’re interested in a general model of how coherent
beliefs and desires relate to choice. There is nothing incoherent about a desire for
predictability.

The following scenario, presented as a counterexample to the MEU Principle by
Mark J. Machina, reinforces this verdict.

Example 8.2
A mother has a treat that she can give either to her daughter Abbie or to her
son Ben. She considers three options: giving the treat to Abbie, giving it to
Ben, and tossing a fair coin, so that Abbie gets the treat on heads and Ben
on tails. Her decision problem might be summarized by the following matrix
(assuming for simplicity that if the mother decides to give the treat directly to
one of her children, she nonetheless tosses the coin, just for fun).

Heads Tails
Give treat to Abbie (𝐴) Abbie gets treat Abbie gets treat
Give treat to Ben (𝐵) Ben gets treat Ben gets treat

Let the coin decide (𝐶) Abbie gets treat Ben gets treat

The mother’s preferences are 𝐶 ≻ 𝐴, 𝐶 ≻ 𝐵, 𝐵 ≻ 𝐴.

As in Allais’s Paradox, there is no way of assigning utilities to the outcomes in the
mother’s decision matrix that makes her preferences conform to the MEU Principle.

137



8 Risk

Yet these preferences are surely not irrational. The mother prefers 𝐶 because it is
the most fair of the three options. It would be absurd to claim that rational agents
cannot value fairness.

8.5 Redescribing the outcomes

When confronted with an apparent counterexample to the MEU Principle, the first
thing to check is always whether the decision matrix has been set up correctly. In
particular, we need to check if the outcomes in the matrix specify everything that
matters to the agent.

My matrices in example 8.4 (Allais’s Paradox) specify how much money you get
depending on your choice and the draw. But if you’re genuinely risk averse, then
you don’t just care about how much money you will have. You also care about risk.
We need to add more information to the outcomes.

There are two ways of doing this. The first adds to the monetary payoffs further
things that will happen as a result of the relevant choice (and draw).

Consider the bottom right cell of the second matrix in example 8.4. What will
happen if you choose 𝐷 and the blue ball is drawn? You get £0. But you might
also feel frustrated about your bad luck: there was a 99% chance of getting at least
£1000, and you got nothing! You might also feel regret about your choice: if only
you had chosen the safe alternative 𝐶, you’d now have £1000. You probably don’t
like feelings of frustration and regret. If so, these feelings should be added to the
outcome. The outcome in the bottom right cell of the second matrix might now say
something like ‘£0 and considerable frustration/regret’.

By contrast, consider the bottom right cell of the first matrix. If you choose 𝐵
and the blue ball is drawn, you get £0. The chance of getting £0 was 81%, so you’ll
be much less frustrated about your bad luck. The outcome in that cell might say
something like ‘£0 and a little frustration/regret’. With these changes, the preference
for 𝐵 over 𝐴 and 𝐶 over 𝐷 is easily reconciled with the MEU Principle.

Exercise 8.6 †
Assign utilities to the outcomes in the two matrices, with the changes just
described, so that EU(𝐵) > EU(𝐴) and EU(𝐶) > EU(𝐷).
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A problem for this first type of response is that it doesn’t always work. Suppose
you face Allais’s Paradox towards the end of your life. The ball will only be drawn
after your death, and the money will go to your children. You will not be around
to experience frustration or regret, nor might your children, if the whole process is
kept secret from them. But if you’re risk averse, you might still prefer 𝐵 to 𝐴 and 𝐶
to 𝐷.

The second strategy for redescribing outcomes gets around this problem. As be-
fore, we want to distinguish the outcomes in the bottom right cell of the two decision
matrices. Let’s ask again what will happen if you choose 𝐷 and the blue ball is drawn.
One thing that will happen is that you get £0. You may or may not experience frus-
tration and regret. But here’s another thing that is guaranteed to happen: you will
have chosen a risky option instead of a safe alternative. If you are risk averse, then
plausibly (indeed, obviously!) you care about whether your choices are risky. So
we should put that into the outcome.

The outcome in the bottom right cell of the first matrix does not have this feature
– that you will have chosen a risky option instead of a safe alternative. There is no
safe alternative. We can once again distinguish the two outcomes, and reconcile your
preferences with the MEU Principle.

Exercise 8.7 †
We should also distinguish the outcomes in the top right cell of the two matri-
ces. Can you explain how?

In general, the first strategy assumes that the “attributes” that make up an outcome
are events that occur as a causal consequence of the relevant choice. Your frustration
or regret might be such events. That you have chosen a risky option is not. This is
not a separate event, caused by your choice of a risky option, as you can see from
the fact that the “occurrence” of this event after your choice does not depend on the
causal structure of the world.

Let’s say that an outcome is individuated locally if it only comprises causal con-
sequences of the relevant choice. A locally individuated outcome entails nothing
about what happened at or before the time of choice.

Genuine risk aversion arguably calls for a non-local individuation of outcomes.
Just as (genuine) risk aversion is not the same as declining marginal utility of money,
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it is not the same as fear of regret or frustration. If you are risk averse, then one of the
things you care about is predictability. Since the outcomes should specify everything
you care about, they should specify whether an outcome was brought about by a risky
gamble or whether it was predictable.

Exercise 8.8 †
Redescribe the outcomes in example 8.4 so that the mother’s preferences con-
form to the MEU Principle.

Exercise 8.9 ††
(a) In your solution to exercise 8.5, did you individuate the outcomes locally

or non-locally?
(b) Either way, can you find another answer to the exercise that individuates

outcomes the other way?

Many decision theorists, especially outside philosophy, assume that outcomes
must be individuated locally. The assumption is so common that it doesn’t even
have a name. Let’s call it localism. According to localism, genuine risk aversion
(as manifested, for example, by the preference for 𝐶 over 𝐷 and 𝐵 over 𝐴 in Allais’s
Paradox) is incompatible with the MEU Principle.

There are several reasons for the prevalence of localism. Some are historical. As
we saw in chapter 5, ‘utility’ was originally used to denote something like pleasure
or wealth or welfare, and it is still often used in that sense. On this usage, the utility
of an outcome is clearly not affected by how the outcome was brought about. Once
it is settled how much pleasure or wealth or welfare the agent has, we know how
much utility they have, no matter whether the outcome was brought about in a risky
manner.

Even authors who don’t directly identify utility with pleasure or welfare or wealth
often assume that utility is a measure of something like pleasure of welfare or wealth.
It is assumed to measure the extent to which the agent desires the outcome “in itself”,
irrespective of its origin.

On either interpretation of ‘utility’, an agent’s utility function may not capture all
their basic desires. A basic desire to act fairly or avoid risks, for example, may not
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show up in the agent’s utility function. The MEU Principle then effectively tells the
agent to disregard these desires. This is obviously problematic. If we don’t want to
declare the relevant desires irrational, we need to revise the MEU Principle.

Many localists have therefore put forward alternatives to the MEU Principle that
are meant to take some of these other desires into account, while still assuming that
utility functions are only sensitive to local features of outcomes. In Lara Buchak’s
“Risk-Weighted Expected Utility Theory”, for example, rational choice is determined
by three parameters: an agent’s credences, their (local) utilities, and a third parame-
ter that captures the agent’s attitude towards risk.

We have taken a different approach – the standard approach at least in some quar-
ters of theoretical philosophy. We have assumed that an agent’s utility function re-
flects all their basic desires. We have put no official constraints on what sorts of
things an agent might desire.

To some extent, this is just a difference in bookkeeping. But it has some important
ramifications. On our approach, the MEU Principle never tells an agent to disregard
some of their basic desires. We can easily accommodate risk aversion. More gener-
ally, we don’t need to find a new modification of the MEU Principle for every desire
that doesn’t pertain to local features of outcomes.

Exercise 8.10 ††
Risk and fairness are two non-local attributes that many people care about.
Can you think of another such attribute?

That basic desires can pertain to non-local features of outcomes has consequences
for preference-based approaches to utility. In particular, it seems to break von Neu-
mann’s methods for determining an agent’s intrinsic utility function from their pref-
erences.

Suppose, for example, that we want to determine the utility function for the mother
in example 8.4. Let 𝑎 and 𝑏 be the outcomes of directly giving the treat to Abby or
Ben, respectively. If the mother cares about fairness, then one relevant (non-local)
aspect of 𝑎 and 𝑏 is that who gets the treat is not decided by a chance process. By
von Neumann’s method, we should now ask whether the mother prefers some other
outcome 𝑐 to a lottery 𝐿 between 𝑎 and 𝑏. This lottery would be a chance process
that leads to outcomes which don’t come about through a chance process. That’s
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logically impossible. 𝐿 entails that either 𝑎 or 𝑏 comes about, and it also entails that
neither of them come about. We can hardly assume that the mother has interesting
views about how 𝐿 compares to 𝑎 and 𝑏.

If many of the lotteries in the von Neumann construction are logically impossible,
then either the Completeness axiom or most of the other axioms become highly
implausible. We loose a popular approach to defining utility, and a popular argument
for the MEU Principle.

Exercise 8.11 ††
Explain how a non-local individuation of outcomes can undermine the money-
pump argument for Transitivity from section 8.2.

This doesn’t mean that we have to give up the whole preference-based approach
to utility. Ramsey’s account might still work, but it depends on how some details
are filled in. A clear example of an account that is compatible with arbitrary basic
desires was developed by Ethan Bolker and Richard Jeffrey in the 1960s.

Instead of lotteries or gambles, Bolker and Jeffrey use unspecific propositions. If
𝑎 and 𝑏 are two outcomes or concerns, then their disjunction 𝑎 ∨ 𝑏 can play the role
of a gamble. As long as 𝑎 and 𝑏 are consistent, 𝑎 ∨ 𝑏 is guaranteed to be consistent
as well. In general, Bolker and Jeffrey assume that an agent’s preferences simply re-
late propositions. The Bolker-Jeffrey representation theorem shows that if these
preferences satisfy certain formal conditions, then they are represented by a prob-
abilistic credence function Cr and a utility function U relative to which the agent
evaluates arbitrary propositions in line with Jeffrey’s axiom. Utility is still derived
from preference – although the relevant preferences, relating arbitrary propositions,
are even further removed from choice dispositions as they are in von Neumann’s or
Ramsey’s construction.

Essay Question 8.1

The money-pump argument from section 8.2 relies on non-trivial assumptions
about the agent’s basic desires. Can you find a way to tweak the argument to
show that cyclical preferences are always problematic, even for agents who
don’t have the relevant basic desires? (You might, for example, try to make
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some of the moves I made in section 3.5.)

Sources and Further Reading
A useful survey of money-pump arguments for the von Neumann and Morgenstern
axioms is Johan E. Gustafsson, Money-Pump Arguments (2022). Katie Steele, “Dy-
namic Decision Theory” (2018) briefly summarizes some of the philosophical con-
troversy over these arguments.

I don’t know any good literature on the long-run argument. I describe some moves
towards generalising the argument beyond cases where the agent faces the same de-
cision problem over and over at www.umsu.de/wo/2018/678.

For an intro to Allais’s Paradox, see Philippe Mongin, “The Allais paradox: What
it became, what it really was, what it now suggests to us” (2019). The example of
the mother and the treat is from Mark J. Machina, “Dynamic Consistency and Non-
Expected Utility Models of Choice Under Uncertainty” (1989).

That risk aversion should be handled by including risk as an “attribute” of outcomes is
defended, for example, in Paul Weirich, “Expected Utility and Risk” (1986). For argu-
ments against a non-local individuation of outcomes, see Jean Baccelli and Philippe
Mongin, “Can redescriptions of outcomes salvage the axioms of decision theory?”
(2021) and chapter 4 of Lara Buchak, Risk and Rationality (2013). This book defend
Buchak’s risk-weighted expected utility theory.

The Jeffrey-Bolker construction is described in chapter 9 of Richard Jeffrey, The Logic
of Decision (1965/83). Unless the agent’s utilities are unbounded, Jeffrey and Bolker
actually don’t manage to secure a unique representation. On this issue, see James
Joyce, “Why we still need the logic of decision” (2000).
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