
10 Game Theory

10.1 Games

Game theory studies decision problems in which the outcome of an agent’s choice
depends on other agents’ choices. Such problems are called games, and the agents
players. The Prisoner’s Dilemma (example 1.3) is a game in this sense, because
the outcome of your choice (confessing or remaining silent) depends on what your
partner decides to do.

Whenever an agent faces a choice in a game, the MEU Principle tells us that they
ought to choose whichever option maximizes expected utility. We don’t need a new
decision theory for games. Nonetheless, there are reasons for studying the special
case where the states in a decision problem are other people’s (real or potential)
actions.

One reason is that we may be able to shed light on important social and political
issues. The way we live and behave, as a society, is in many ways not ideal. We are
depleting the Earth’s resources. We are destabilising the climate. We are woefully
underprepared for pandemics and other catastrophes. We buy goods from online
retailers where most of the products are a scam. Corruption is rampant. The political
system is broken. Dating is broken. And so on, and on. Why? Why don’t we fix
these problems? Is it because the current system benefits powerful actors who have
us under their control? Game theory suggests an alternative possibility.

Remember the Prisoner’s Dilemma. If you and your partner are rational and don’t
care about each other, you both confess and spend a long time in prison. Collectively,
you could have achieved a much better outcome by remaining silent. Things are
unnecessarily bad – you spend a long time in prison – not because a powerful third
party stands to gain from your misery. The bad outcome is simply a result of your
misaligned incentives.

This kind of situation is sadly common. Professional athletes, for example, have a
strong incentive to use steroids, as long as the chance of being caught is low. Whether
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or not their competitors do the same, using steroids provides an advantage. The
outcome is that everyone uses steroids, even though everyone would prefer that no-
one uses steroids. Structurally, the athletes’ decision problem is the same as the
Prisoner’s Dilemma. Any decision problem with this structure is nowadays called a
Prisoner’s Dilemma, even if no prisoners are evolved.

Another famous example is the “tragedy of the commons”. Fishermen have an
incentive to catch as many fish as they can, even though everyone would be better
off if everyone restrained themselves to sustainable quotas.

Thomas Hobbes (in effect) argued that the pervasiveness of Prisoner’s Dilemmas
justifies the subordination of people under a state. It is in everyone’s interest to
impose a system of control and punishment that ensures the best outcome in what
would otherwise be a Prisoner’s Dilemma.

Exercise 10.1 †
Explain why a system of control and punishment can change a decision prob-
lem from a Prisoner’s Dilemma into a problem with a different structure.

Another reason to study games is that a new set of conceptual tools and techniques
become available if the states in a decision problem are other people’s actions. In
particular, we can often figure out which state obtains based on the other players’
desires. In the (original) Prisoner’s Dilemma, we know that if your partner is rational
any only cares about their own prison term then they will confess.

Here is how game theorists would typically draw the matrix for the Prisoner’s
Dilemma, assuming you and your partner don’t care about each other:

Confess Silent
Confess -5, -5 0, -8

Silent -8, 0 -1, -1

As before, the rows are the acts available to you. The columns are the acts available
to your partner. We generally don’t assign credences to the columns. The numbers
in the cells represent the utility of the relevant outcome for you and your partner. We
don’t describe the outcome itself any more, for lack of space. The first number in
each cell is the utility for the row player (whom we’ll call ‘Row’ and assume to be
female); the second is the utility for the column player (‘Column’, male).
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In game theory jargon, a solution to a game is a prediction of what each player is
going to do, assuming that they are rational. The solution to the Prisoner’s Dilemma
is that each player confesses. Confessing dominates remaining silent. You should
confess no matter what you think your partner will do.

Consider the following matrix, for a different kind of game.

𝐶1 𝐶2
𝑅1 2, 2 1, 3
𝑅2 1, 1 2, 2

Row no longer has a dominant option. What she should do depends on what she
thinks Column will do. If Column chooses 𝐶1, then Row should play 𝑅1; if Column
chooses 𝐶2, then Row should play 𝑅2. Can we nonetheless say what Row will do,
without specifying her beliefs?

Look at the game from Column’s perspective. No matter what Row does, Column
is better off choosing 𝐶2. 𝐶2 dominates 𝐶1. So if Row knows the utility that Column
assigns to the outcomes, then she can figure out that Column will choose 𝐶2. And
so Row should choose 𝑅2. The solution is 𝑅2, 𝐶2: Row chooses 𝑅2 and Column 𝐶2.

Here is another, more complex example.

𝐶1 𝐶2 𝐶3
𝑅1 0, 1 2, 2 3, 1
𝑅2 2, 2 1, 3 2, 2
𝑅3 1, 1 0, 2 0, 3

From Row’s perspective, 𝑅1 is the best choice if Column plays 𝐶2 or 𝐶3, and 𝑅2 is
the best choice if Column goes for 𝐶1. For Column, 𝐶2 is the best choice in case of
𝑅1 or 𝑅2, and 𝐶3 is best in case of 𝑅3. But Column can hardly expect Row to choose
𝑅3, since 𝑅3 is dominated by 𝑅2. Column can figure out that Row will play either
𝑅1 or 𝑅2, which means that Column will play 𝐶2. And since Row can figure out that
Column will play 𝐶2, Row will play 𝑅1. The solution is 𝑅1, 𝐶2.

To reach this conclusion, we need to assume more than that both players know
each other’s utilities. To figure out that Column will play 𝐶2, Row needs to know
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that Column knows her (Row’s) utilities, and she needs to know that Column knows
that she (Row) won’t choose a dominated option.

A common idealisation in game theory is that the players have complete infor-
mation about the game, meaning that

(1) all players know the structure of the game (as displayed in the matrix);
(2) all players know that all players are rational;
(3) all players know that (1)–(3) are satisfied.

By applying to itself, the clause (3) ensures that (1) and (2) hold with arbitrarily
many iterations of ‘all players know that’ stacked in front. If something is in this
way known by everyone, and known by everyone to be known by everyone, and so
on, then it is said to be common knowledge. (1)–(3) say that the structure of the
game and the rationality of all participants are common knowledge.

Exercise 10.2 ††
Under the assumptions (1)–(3), what will Row and Column do in the following
games?

a.
𝐶1 𝐶2

𝑅1 1, 0 1, 2
𝑅2 0, 3 0, 1

b.
𝐶1 𝐶2 𝐶3

𝑅1 1, 0 1, 2 0, 1
𝑅2 0, 3 0, 1 2, 0

c.
𝐶1 𝐶2 𝐶3

𝑅1 0, 1 2, 0 2, 4
𝑅2 4, 3 1, 4 2, 5
𝑅3 2, 4 3, 6 3, 1

10.2 Nash equilibria

Have a look at this game.

𝐶1 𝐶2 𝐶3
𝑅1 4, 2 2, 3 3, 1
𝑅2 3, 1 3, 2 4, 1
𝑅3 4, 2 1, 1 0, 3
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No option for either player is dominated by any other. Can we nonetheless figure out
what Row and Column will choose?

Let’s start with some trial and error. Take 𝑅1, 𝐶1. Could this be the outcome
that is reached whenever the game is played by two players under the idealizing
assumptions (1)–(3)? No. Otherwise Column would know that Row is going to play
𝑅1. And then Column is better off playing 𝐶2. The opposite happens with 𝑅1, 𝐶2:
if Row knew that Column plays 𝐶2, she would be better off playing 𝑅2. This kind
of reasoning disqualifies all combinations except 𝑅2, 𝐶2 – the middle cell. If Row
knows that Column is going to play 𝐶2, she can do no better than play 𝑅2. Likewise
for Column: if Column knows that Row is going to play 𝑅2, he can do no better than
play 𝐶2.

A combination of options that is “stable” in this way is called a Nash equilibrium
(after the economist John Nash). In general, a Nash equilibrium is a combination of
acts, one for each player, such that no player could get greater utility by deviating
from their part of the equilibrium, given that the other players stick to their part.

There is a simple algorithm for finding Nash equilibria in finite two-player games.
Start from the perspective of the row player. For each act of the column player,
underline the best outcome(s) Row can achieve if Column chooses this act. In the
example above, you would underline the 4s in the first column, the 3 in the middle
cell, and the 4 in the third column. Then do the same for the column player: for each
act of Row, underline the best possible outcome(s) for Column. The result looks like
this.

𝐶1 𝐶2 𝐶3
𝑅1 4, 2 2, 3 3, 1
𝑅2 3, 1 3, 2 4, 1
𝑅3 4, 2 1, 1 0, 3

Any cell in which both numbers are underlined identifies a Nash equilibrium.
If a game has a unique Nash equilibrium, and assumptions (1)–(3) hold, then the

equilibrium is plausibly the game’s solution: each player can be expected to play
their part of the equilibrium.

This is not as obvious as it may perhaps appear. Consider the next game.
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𝐶1 𝐶2 𝐶3
𝑅1 2, -2 -1, 1 1, -1
𝑅2 0, 0 0, 0 -2, 2
𝑅3 0, 0 0, 0 1, -1

There is a unique Nash equilibrium: 𝑅3, 𝐶2. If this is the guaranteed outcome under
assumptions (1)–(3), then Row can be sure that Column will play 𝐶2. But if Column
plays 𝐶2, then 𝑅2 and 𝑅3 are equally good for Row. So how can we be sure Row
won’t play 𝑅2?

You might argue that if Row played 𝑅2 and Column could predict her choice, then
Column would play 𝐶3, leading to a worse result for Row. But we’re not assuming
that Column can predict Row’s choice. All we’re assuming is (1)–(3).

Still, there is an argument in favour of 𝑅3, 𝐶2 as the unique solution. Suppose for
reductio that Row could play either 𝑅3 or 𝑅2, and conditions (1)–(3) are satisfied.
Then Column could not be sure which of these Row will choose; without further
information, he would have to give roughly equal credence to 𝑅2 and 𝑅3. But then
his best choice is 𝐶3. Anticipating this, Row ought to choose 𝑅3. This contradicts
our assumption that Row could just as well play 𝑅2.

Exercise 10.3 †
Identify the Nash equilibria in the following games.

a.
𝐶1 𝐶2

𝑅1 3, 4 4, 3
𝑅2 1, 3 5, 2
𝑅3 2, 0 1, 5

b.
𝐶1 𝐶2 𝐶3

𝑅1 1, 0 1, 2 0, 1
𝑅2 0, 3 0, 1 2, 0

c.
𝐶1 𝐶2 𝐶3

𝑅1 0, 1 2, 0 2, 4
𝑅2 4, 3 1, 4 2, 5
𝑅3 2, 4 3, 6 3, 1

Exercise 10.4 ††
Whenever the method from section 10.1, which is called elimination of dom-
inated strategies, identifies a combination of acts as a game’s solution, then
this combination of acts is a Nash equilibrium. Can you explain why?
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10.3 Zero-sum games

In some games, the players’ preferences are exactly opposed: if Row prefers one
outcome to another by a certain amount, then Column prefers the second outcome
to the first by the same amount. The utilities in every cell sum to the same number.
Since utility scales don’t have a fixed zero, we can re-scale the utilities so that the
sum is zero. For this reason, games in which the players’ preferences are opposed
are called zero-sum games. Here is an example.

𝐶1 𝐶2 𝐶3
𝑅1 1, -1 3, -3 1, -1
𝑅2 2, -2 -2, 2 -1, 1

There is a unique Nash equilibrium: 𝑅1, 𝐶3. Under assumptions (1)–(3), the MEU
Principle entails that Row should play 𝑅1 and Column 𝐶3 – although this isn’t obvi-
ous, since we haven’t specified any probabilities. Curiously, 𝑅1, 𝐶3 is also supported
by the maximin rule that we’ve met in section 1.4. Maximin tells each player to
choose an option with the best worst-case result. In our example, the worst-case re-
sult of choosing 𝑅1 (for Row) has utility 1; the worst-case result of 𝑅2 is -2. Maximin
therefore says that Row should choose 𝑅1. For Column, it similarly recommends 𝐶3.

This is not a coincidence. Every Nash equilibrium in every zero-sum game is
supported by the maximin rule. For suppose it isn’t. Suppose, more concretely, that
𝑅𝑖, 𝐶𝑗 is a Nash equilibrium in a (two-player) zero-sum game, but 𝑅𝑖 isn’t supported
by the maximin rule. Then the outcome of 𝑅𝑖, 𝐶𝑗 isn’t the worst possible outcome of
𝑅𝑖 for Row: there is some alternative 𝐶𝑘 to 𝐶𝑗 for which 𝑅𝑖, 𝐶𝑘 is worse for Row than
𝑅𝑖, 𝐶𝑗. Since the game is zero-sum, 𝑅𝑖, 𝐶𝑘 is better for Column than 𝑅𝑖, 𝐶𝑗. And so
𝑅𝑖, 𝐶𝑗 isn’t a Nash equilibrium.

Many games have more than one Nash equilibrium. As we will see, it can then be
hard to predict what the players will do without looking at their beliefs. They may
not even reach one of the Nash equilibria. In zero-sum games, however, this problem
is unlikely to arise. Consider the following example.
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𝐶1 𝐶2 𝐶3
𝑅1 2, -2 1, -1 1, -1
𝑅2 3, -3 1, -1 1, -1
𝑅3 0, 0 -1, 1 -2, 2

The game has four Nash equilibria. What will the players do? Should Row play 𝑅1
or 𝑅2? Should Column play 𝐶2 or 𝐶3? Well, it doesn’t matter. The players can
arbitrarily choose among these options. Whatever they choose, they are guaranteed
to end up at an equilibrium, and all the equilibria have the same utility.

Exercise 10.5 †††
Prove that this holds for all two-player zero-sum games: if 𝑅𝑖, 𝐶𝑗 and 𝑅𝑛, 𝐶𝑚
are Nash equilibria, then so are 𝑅𝑖, 𝐶𝑚 and 𝑅𝑛, 𝐶𝑗; moreover, all Nash equilib-
ria have the same utility.

Some games have no Nash equilibrium at all. Here is a matrix for Rock–Paper–
Scissors.

Rock Paper Scissors
Rock 0, 0 -1, 1 1, -1
Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

There is no equilibrium. What should you do in this kind of game?
A standard answer in game theory is that you should randomize. You should, say,

toss a fair die and choose Rock on 1 or 2, Paper on 3 or 4, and Scissors on 5 or 6.
Such a randomized choice is called a mixed strategy. We will write ‘[1/3 Rock, 1/3
Paper, 1/3 Scissors]’ for the mixed strategy of playing Rock, Paper, or Scissors each
with (objective) probability 1/3.

Suppose two players both play [1/3 Rock, 1/3 Paper, 1/3 Scissors]. Then neither
could do better by playing anything else (including other mixed strategies). The
combination of the two mixed strategies is a Nash Equilibrium. It is the only Nash
Equilibrium in Rock–Paper–Scissors.
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It can be shown that every finite game has at least one Nash Equilibrium if mixed
strategies are included. (This was shown by John Nash.) The proof obviously as-
sumes that randomization introduces no additional costs or benefits. If you hate
randomization and prefer losing in Rock–Paper–Scissors to randomizing, then the
game has no Nash Equilibrium, not even among mixed strategies.

Exercise 10.6 ††
Suppose your opponent plays [1/3 Rock, 1/3 Paper, 1/3 Scissors]. What is the
expected utility of playing Rock? How about Paper and Scissors? What is the
expected utility of playing [1/3 Rock, 1/3 Paper, 1/3 Scissors]?

10.4 Harder games

Most games in real life are not zero-sum games. The following example illustrates
the class of coordination problems in which the players would like to coordinate
their actions.

Example 10.1
You and your friend Bob want to meet up, but neither of you knows to which
party the other will go. Party A is better than party B, but you will both go
home if you don’t find each other.

Party A Party B
Party A 3, 3 0, 0
Party B 0, 0 2, 2

There are two Nash equilibria (without randomization): both going to party A,
and both going to party B. We can’t assume that whenever rational agents play the
game, then they will end up in one of these equilibria. If you suspect that Bob will
go to party B, and Bob suspects you will go to party A, then you’ll go to B and Bob
to A.
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But could this actually happen, under assumptions (1)–(3)? As you may check,
going to party B maximizes expected utility if and only if your credence that Bob
goes to B is at least 0.6. But could you be at least 60% confident that Bob will go to
B, given what you know about Bob’s utilities?

Well, Bob will go to B provided that he is at least 60% confident that you will
go to B. So to be at least 60% confident that Bob will go to B, you only need to be
at least 60% confident that Bob is at least 60% confident that you will go to B. Of
course, Bob can figure out that you will go to B only if you are at least 60% confident
that he will go to B. So to be at least 60% confident that Bob will go to B, you need
to be at least 60% confident that Bob is at least 60% confident that you are at least
60% confident that Bob will go to B. And so on. There is nothing incoherent about
this state of mind, in which you are at least 60% confident that Bob will go to B.
Nonetheless, we may wonder how you could have arrived at it. How could you have
rationally arrived at a 60% confidence that Bob is at least 60% confident that you
are at least 60% confident that …and so on and on forever?

The assumptions (1)–(3) here give rise to an epistemological puzzle. If you have
no further relevant evidence, how confident should you be that Bob goes to B? You
might think your degree of belief should be 1/2, by the Principle of Indifference. But
then you should assume that Bob’s degree of belief in you going to B is also 1/2. And
that would imply that Bob goes to A. So it can’t be right that you should give equal
credence to the two possibilities.

In real coordination problems, the players often do have further information. When
you’re driving on a road, you are playing a coordination game with drivers going in
the opposite direction. You prefer to drive on the left if and only if the others drive on
the left; the others prefer to drive on the left if and only if you drive on the left. The
existence of a law to drive on the left gives you reason to think that the others will
drive on the left. But even without a law, the mere observation that people generally
drive on the left would give you reason to think that that’s what they will continue
to do.

A different kind of coordination is called for in the following game.
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Example 10.2 (Chicken)
For fun, you and your friend Bob drive towards each other at high speed. If
one of you swerves and the other doesn’t, the one who swerves loses. If neither
swerves, you both die.

Swerve Straight
Swerve 0, 0 -1, 1
Straight 1, -1 -10, -10

Games like chicken are sometimes called anti-coordination games, because each
player would prefer the other one to yield without yielding themselves. There are two
Nash Equilibria in Chicken that don’t involve randomization: ‘Swerve, Straight’ and
‘Straight, Swerve’. As above, either choice is rationally defensible, given suitable
beliefs about the opponent, and as before there is an epistemological puzzle about
how any of these beliefs could come about.

An interesting feature of many anti-coordination games is that they seem to favour
irrational agents who do not maximize expected utility. Suppose Bob is insane and
will go straight no matter what, despite the large cost of dying if you both go straight.
And suppose you know about Bob’s insanity. Then you, as an expected utility max-
imizer, will have to swerve. Bob will win.

There are stories that during the cold war, the CIA leaked false information to the
Russians that the US President was an alcoholic, while the KGB falsified medical
reports suggesting that Brezhnev was senile. Both sides tried to gain a strategic
advantage over the other by indicating that they would irrationally retaliate against
a nuclear strike even if they had nothing to gain any more.

Exercise 10.7 †
What should you do in Chicken if you give equal credence to the hypotheses
that Bob will swerve and that he will go straight?
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Exercise 10.8 †††
A third Nash equilibrium in Chicken involves randomization. Can you find it?
What is the expected utility for both players if they play the mixed strategy?

10.5 Games with several moves

So far, we have looked at games in which each player makes just one move, and
no player knows about the others’ moves ahead of their choice. Game theory also
studies situations in which these assumptions are relaxed. Let’s have a quick look at
games with several moves, assuming players always know what was played before.

As in section 8.2, we can picture the relevant decision situations in a tree-like
diagram (an “extensive form representation”). Below is a diagram for a game in
which Row first has a choice between 𝑅1 and 𝑅2. If she chooses 𝑅2, the game ends
with an outcome that has utility 2 for Row and 3 for Column. If Row chooses 𝑅1,
then Column gets a choice between 𝐶1 and 𝐶2. If he chooses 𝐶2, Row gets utility 3
and Column 0; if Column chooses 𝐶1, Row gets 1 and Column 2.

1

2

2, 3

3, 0

1, 2

𝑅1

𝑅2

𝐶1

𝐶2

We can use backward induction to predict how the game is going to be played,
assuming (1)–(3).

Consider node 2, where Column has a choice between outcome ‘3, 0’ and outcome
‘1, 2’. The choice involves no relevant uncertainty, and Column prefers ‘1, 2’ over
‘3, 0’. He can be expected to play 𝐶1. Anticipating this, Row can figure out that
playing 𝑅1 at node 1 will lead to ‘1, 2’. 𝑅1 instead leads to ‘2, 3’. This is better for
Row. So Row will play 𝑅1.

In the following example, backward induction leads to a more surprising result.

176



10 Game Theory

Example 10.3 (Centipede)
You and Bob are playing a game. The game starts with a pot containing £2.
In round 1, you can decide whether to continue or end the game. If you end
the game, you get the £2 and Bob gets £0. If you continue, the money in the
pot increases by £2 and Bob decides whether to continue or end. If he ends
the game here (in round 2), the pot is divided so that he gets £3 and you get
£1. If he continues, the money in the pot increases by another £2 and it’s your
turn again. If you end the game (in round 3), you get £4 and Bob gets £2. And
so on. In each round, the money in the pot increases by £2 and whoever ends
the game gets £2 more than the other player. In round 100, Bob no longer has
an option to continue.

Suppose you and Bob don’t care about each other; each of you only wants to get
as much money as possible. Here is a partial diagram of the resulting game.

1

2, 0
𝐸

𝑦

2

1, 3

𝐸
𝑏

𝐶𝑦
3

4, 2

𝐸
𝑦

𝐶𝑏
98

97, 99

99

100, 98

𝐸
𝑏

𝐶𝑏
100

99, 101

𝐸
𝑦

𝐶𝑦

𝐸
𝑏

Let’s use backward induction to solve the game. At node 100, Bob doesn’t have a
choice. If you continue at node 99 (𝐶𝑦), you will get £99 and Bob £101. If you end
the game (𝐸𝑦) at node 99, you will get £100. It is obviously better to end the game.
Anticipating this, what should Bob do in round 98? If he ends the game (𝐸𝑏), he’ll
get £99; if he continues (𝐶𝑏), he’ll get £98. So he should end the game. Anticipating
this, you should end the game in round 97, to ensure that you’ll get £98 rather than
£97. And so on, all the way back to round 1. At each point, backward induction tells
us that the game should be ended. In particular, you can anticipate in round 1 that
Bob will end the game in round 2. So you should end the game in round 1. You will
get £2 and Bob £0.

When actual people play the Centipede game, almost no-one ends the game right
away. Is this a sign of either altruism or irrationality? Not necessarily.
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Let’s look at your choice in round 1 from an MEU perspective. It is clear what
happens if you end the game: you’ll get £2. But what would happen if you chose to
continue? The argument from backward induction assumes that Bob would end the
game. If you could be certain that Bob would do that, then you should indeed end
the game in round 1. But why should Bob end the game? Because, so the argument,
he can be certain that you would end the game in round 3. But the argument for
ending in round 3 is exactly parallel to the argument for ending in round 1. And if
Bob faces a choice in round 2, then he has just seen that you did not end the game
in round 1. Based on this information, he can’t be sure you would end it in round 3.
On the contrary, he should be somewhat confident that you will continue in round
3. And then continuing maximizes expected utility in round 2. Anticipating this,
continuing also maximizes expected utility in round 1, as it is likely to get you at
least to round 3.

This suggests that the backward induction argument went wrong somewhere. But
where? Surely you really ought to end the game in round 99. And surely this means
that Bob should end the game in round 98. And so on! This puzzle is sometimes
called the paradox of backward induction.

Exercise 10.9 ††
Consider a variant of the Centipede game with no fixed end point. Instead,
each time a player chooses to continue, the game ends with a probability of
1%. Does this change anything? How should you play?

Exercise 10.10 ††
Suppose you repeatedly face the Prisoner’s Dilemma with the same partner,
for an unknown number of rounds. You only care about your own prison terms.
You expect that your partner will remain silent in the first round and from then
on imitate whatever you did in the previous round. What should you do? Does
your answer show that you should choose a dominated act?
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10.6 Evolutionary game theory

One of the most successful applications of game theory lies (somewhat surprisingly)
in the study of biological and cultural evolution. Consider the following game.

Example 10.4 (The Stag Hunt)
Two players independently decide whether to hunt stag or rabbit. Hunting stag
requires cooperation, so if only one of the players decides to hunt stag, she will
get nothing. The utilities are as follows.

Stag Rabbit
Stag 5, 5 0, 1

Rabbit 1, 0 1, 1

In the evolutionary interpretation, the utilities represent the relative fitness that
results from a combination of choices, measured in terms of average number of sur-
viving offspring. Let’s assume that each strategy is played by a certain fraction of
individuals in a population. Individuals who achieve an outcome with greater util-
ity will, by definition, have more offspring on average, so their proportion in the
population will increase.

Suppose initially 1/4 of the individuals in the population goes for stags and 3/4 for
rabbits. Assuming that encounters between individuals are completely random, this
means that any given individual has a 1/4 chance of playing with someone hunting
stag, and a 3/4 chance of playing with someone hunting rabbit. The average utility
of hunting stag is 1/4 ⋅ 5 + 3/4 ⋅ 0 = 1.25; for hunting rabbit the utility is of course
1. Individuals going for stag have greater average fitness. Their fraction in the pop-
ulation increases. As a consequence, it becomes even more advantageous to go for
stag. Eventually, everyone will hunt stag.

By contrast, suppose initially only 1/10 of the population goes for stags. Then
hunting stag has an average utility of 0.5, which is less than the utility of hunting
rabbit. The rabbit hunters will have more offspring, which makes it even worse to
hunt stags. Eventually, everyone will hunt rabbits.
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The two outcomes ‘Stag, Stag’ and ‘Rabbit, Rabbit’ are the two Nash Equilibria
in the Stag Hunt. Evolutionary game theory predicts that the proportion of stag and
rabbit hunters in a population will approach one of these equilibria.

Not every Nash Equilibrium is a possible end point of evolution though. If a
population repeatedly plays the game of Chicken, and the players can’t recognize in
advance who will swerve and who will go straight, then the asymmetric equilibria
‘Swerve, Straight’ and ‘Straight, Swerve’ do not mark possible end points of evolu-
tionary dynamics. But note that in a community in which almost everyone swerves,
you’re better off going straight; similarly, in a community in which almost everyone
goes straight, the best choice is to swerve. Evolution will therefore lead to the third,
mixed strategy equilibrium. It will lead to a state in which a certain fraction of the
population swerves and the others go straight.

The assumption that individuals in a population are randomly paired with one
another is obviously an idealisation. In reality, individuals are more likely to interact
with members of their own family, which increases the chances that they will be
paired with individuals of the same type; they might also actively seek out others
who share the relevant traits. Either way, the resulting correlated play dramatically
changes the picture.

Imagine a population in which individuals repeatedly play a Prisoner’s Dilemma
wherein they can either cooperate (remain silent, in the original scenario) or defect
(confess). Since defectors do better than cooperators in any encounter, it may seem
that cooperation can never evolve. On the other hand, cooperators do much better
when paired with other cooperators than defectors when paired with defectors. If the
extent of correlation is sufficiently high, cooperators can take over (although perhaps
not completely).

In many species, one can find altruistic individuals who sacrifice their own fitness
for the sake of others. Evolutionary game theory explains how this kind of altruism
could have evolved.

Exercise 10.11 †
Why can’t we expect cooperative behaviour to take over completely in the
scenario where cooperation spreads through correlated play?
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Exercise 10.12 †
What are the Nash equilibria in the following game (ignoring randomization)?
Could all the equilibria come about through an evolutionary process?

A B
A 5, 5 1, 1
B 1, 1 1, 1

Essay Question 10.1

Explain the paradox of backward induction. Why is it a paradox? How do you
think it could be resolved?

Sources and Further Reading
There are many decent introductions to Game Theory. The “Game Theory” entry
in the Stanford Encyclopedia by Don Ross (2019) provides a fairly comprehensive
overview. A suitable next step might be Steven Tadelis, Game Theory: An Introduc-
tion (2013).

The paradox of backward induction is discussed, for example, in Philip Pettit and
Robert Sugden, “The Backward Induction Paradox” (1989).

For a little more on evolutionary game theory, see Brian Skyrms, “Game Theory,
Rationality and Evolution of the Social Contract” (2000). For even more, see Brian
Skyrms, “The Stag Hunt and the Evolution of Social Structure” (2004).
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