
11 Bounded Rationality

11.1 Models and reality

We have studied an abstract model of rational agents. The model assumes that an
agent has some idea of what the world might be like, which we represent by a cre-
dence function Cr over a suitable space of propositions. The agent also has some
goals or values or desires, represented by a (possibly partial) utility function U on the
same space of propositions. The credence function is assumed to satisfy the formal
rules of the probability calculus. It evolves over time by conditionalizing on sensory
information, and it satisfies some further constraints like the Probability Coordina-
tion Principle. An agent’s utility function is assumed to satisfy Jeffrey’s axiom, so
that it is jointly determined by the agent’s credences and their “intrinsic utility func-
tion” that assigns a value to the agent’s “concerns” – combinations of things the
agent ultimately cares about. These intrinsic utilities may in turn be determined by
aggregating subvalues. When the agent faces a choice, they are assumed to choose
an act that maximizes the credence-weighted average of the utility of the possible
outcomes.

Our model is really a family of models, as there are different ways of filling in
the details. Should expected utility be understood causally or evidentially? Should
credences satisfy some version of the Indifference Principle? Should we rule out
some basic desires as irrational? Should we require time consistency? Should we
impose constraints on how basic desires may change over time? Different answers
yield different models.

Each model in this family can be understood either normatively or descriptively.
Understood normatively, the model would purport to describe an ideal to which real
agents should perhaps aspire. Understood descriptively, the model would purport to
describe the attitudes and choices of ordinary humans.

It is a commonplace in current economics and psychology that our model is de-
scriptively inadequate (no matter how the details are spelled out): that real people
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are not expected utility maximizers. In itself, this is not necessarily a problem – not
even for the descriptive interpretation of our models. Remember that “all models are
wrong”. With the possible exception of the standard model of particle physics, the
purpose of a model is to identify interesting and robust patterns in the phenomena,
not to get every detail right. Nonetheless, it is worth looking at how our model aligns
with reality, and what we could change to make it more realistic.

Many supposed cases where people are said to violate the MEU Principle are not
counterexamples to the descriptive adequacy of the model we have been studying.
Our model can easily accommodate agents who care about risk or fairness or regret
(chapter 8). We can accommodate altruistic behaviour (section 1.2), the endowment
effect (section 5.2), and apparent failures of time consistency (section 7.4).

Other phenomena are harder to accommodate. Suppose I offer you £100 for telling
me the prime factors of 82,717. You have 10 seconds. Can you do it? Probably not.
All you’d have to do, to get the money, is utter ‘181 and 457’, which is surely an
available act. Moreover, that ‘181 and 457’ is the correct answer logically follows
from simpler facts of which you are highly confident. By the rules of probability,
you should be confident that ‘181 and 457’ is the correct answer. As an expected
utility maximizer (assuming you’d like to get the £100), you would utter these words.
Yet you don’t.

Exercise 11.1 ††
Explain why, if some proposition 𝐶 logically follows from two other proposi-
tions 𝐴 and 𝐵, and Cr(𝐴) > 0.9 and Cr(𝐵) > 0.9, then Cr(𝐶) > 0.81.

In 1913, Ernst Zermelo proved that in the game of chess, there is either a strategy
for the starting player, White, that guarantees victory no matter what Black does, or
there is such a strategy for Black, or there is a strategy for either player to force a
draw. Consequently, if two ideal Bayesian agents sat down to a game of chess, and
their only interest was in winning, they would either agree to a draw or one of them
would resign immediately, before the first move. Real people don’t play like this.

Another respect in which real people plausibly deviate from our model is that
they often overlook certain options. You go to the shop, but forget to buy soap. You
walk along the highway because it doesn’t occur to you that you could take the nicer
route through the park. The relevant options (buying soap, taking the nicer route)
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are available to you, and they are better by the lights of your beliefs and desires, so
it is a mistake that you don’t choose them.

Relatedly, real people are forgetful. I don’t remember what I had for dinner last
Monday. As an ideal Bayesian agent, I would still know what I had for dinner on
every day of my life.

Exercise 11.2 ††
Show that if Cr𝑡(𝐴) = 1, and the agent conditionalizes on information 𝐸 with
Cr𝑡(𝐸) > 0, then Cr𝑡+1(𝐴) = 1. (Conditionalization was introduced in section
4.2.)

There is also strong indirect evidence that our model does not fit real agents in
every respect. The evidence comes from research on artificial intelligence, where
our model forms the background for much recent research. Various parts of the
model – including the MEU Principle and the Principle of Conditionalization – turn
out to be computationally intractable. Real agents with limited cognitive resources,
it seems, couldn’t possibly conform to our model.

11.2 Avoiding computational costs

Before we look at ways of making our model more realistic, I want to address another
common misunderstanding.

Suppose you walk back to the shop to buy soap. At any point on your way, you
could change course. You could decide to turn around, or start running. You could
check if your shoe laces are tied. You could mentally compute 181 + 457, or start
humming the national anthem. There are millions of things you could do. Many of
these would lead to significantly different outcomes, especially if you consider long-
term consequences. (Hitler almost certainly would not have existed if hours or even
months before his conception, his mother had decided to run rather than walk to buy
soap.) Some authors take the MEU Principle to imply that at each point on your walk,
you should explicitly consider all your options, envisage all their possible outcomes,
assess their utility and probability, and on that basis compute their expected utility.
This is clearly unrealistic and infeasible.
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But the MEU Principle requires no such thing. The MEU Principle says that
rational agents choose acts that maximize expected utility; it specifies which acts
an agent should choose, given their beliefs and desires. It says nothing about the
internal processes that lead to these choices. It does not say that the agent must
explicitly consider all their options and compute expected utilities.

Exercise 11.3 ††
The opposite is closer to the truth. Suppose an agent has a choice between
turning left (𝐿), turning right (𝑅), and sitting down to compute the expected
utility of 𝐿 and 𝑅 and then choosing whichever comes out best. Let 𝐶 be this
third option. If computing expected utilities involves some costs in terms of
effort or time, then either 𝐿 or 𝑅 generally has greater expected utility than 𝐶.
Explain why.

The MEU Principle does not require calculating expected utilities. But this raises
a puzzle. An agent who conforms to our model always chooses acts with greatest
expected utility. How are they supposed to do this without calculating? It doesn’t
seem rational to choose one’s acts randomly and maximize expected utility by sheer
luck.

Part of the answer is that in many circumstances, simple alternatives to comput-
ing expected utilities reliably lead to optimal choices. As the psychologist Gerd
Gigerenzer once pointed out, if you want to catch a flying ball, an efficient alterna-
tive to computing the ball’s trajectory – which is generally intractable – is to move
around in such a way that the angle between you and the ball remains within a certain
range. This ensures that you’ll eventually stand where the ball will arrive.

Exercise 11.4 †
Suppose you’re a musician in the middle of a performance. Trying to compute
the expected utility of all the notes you could play next would probably derail
your play. Even if it wouldn’t, it would change your experience of playing,
probably for the worse. Give another example where conceptualizing one’s
acts as maximizing expected utility would undermine the value of performing
the acts.
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One reason why many decision problems don’t require sophisticated computations
is that one of the acts clearly dominates the others. Whether this is the case depends
on the agent’s utility function. It follows that you can reduce the computational costs
of decision-making by tweaking your utilities.

For example, suppose you assign significant (sub)value to obeying orders. Doing
whatever you’re ordered to do is then a reliable way of maximizing expected utility,
and it requires little cognitive effort. Similarly if you value imitating whatever your
peers are doing.

Our capacity for planning and commitment can also be seen in this light. Before
you went to the shop, you probably decided to go to the shop. The direct result
of your decision was an intention to go to the shop. Once an intention or plan is
formed, we are motivated to execute it. Revising a plan or overturning a commitment
has negative (sub)value. Consequently, once you’ve formed an intention, simply
following it reliably maximizes expected utility. You don’t need to think any more
about what to do unless you receive surprising new information or your basic values
suddenly change. (This is true even if you’ve made a mistake when you originally
formed the intention.)

Habits can play a similar role. Most of us spend little effort deciding whether we
should brush our teeth in the morning. We do it out of habit. Habitual behaviour is
computationally cheap, and it can reliably maximize expected utility – especially if
we assign (sub)value to habitual behaviour. And we do, at least on a motivational
conception of desire: habits motivate.

The upshot is that various cognitive strategies that are often described as alterna-
tives to computing expected utilities – habits, instincts, heuristics, etc. – may well
be efficient techniques for maximizing expected utility. Far from ruling out such
strategies, our model predicts that we should use them.

An example in which something like this might play a role is Ellsberg’s Paradox,
another classical “counterexample” to the MEU Principle.

Example 11.1 (Ellsberg’s Paradox)
An urn contains 300 balls. 100 of the balls are red, the others are green or
blue, in unknown proportion. A ball is drawn at random from the urn. Which
of the following two gambles (𝐴 and 𝐵) do you prefer?
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Red Green Blue
𝐴 £1000 £0 £0
𝐵 £0 £1000 £0

Next, which of 𝐶 and 𝐷 do you prefer?

Red Green Blue
𝐶 £1000 £0 £1000
𝐷 £0 £1000 £1000

Many people prefer 𝐴 to 𝐵 and 𝐷 to 𝐶. Like in Allais’s Paradox, there is no way
of assigning utilities to the monetary outcomes that supports these preferences.

Exercise 11.5 †
Assume the outcomes in Ellsberg’s paradox are described correctly and
you prefer more money to less. By the Probability Coordination Principle,
Cr(Red) = 1/3. What would your credences in Green and Blue have to look
like so that EU(𝐴) > EU(𝐵)? What would they have to look like so that
EU(𝐷) > EU(𝐶)?

In Ellsberg’s Paradox, risk aversion doesn’t seem to be at issue. What makes the
difference is that you know the objective probability of winning for options 𝐴 and
𝐷: it is 1/3 for 𝐴 and 2/3 for 𝐷. You don’t know the objective probability of winning
with 𝐵 and 𝐶, since you have too little information about the non-red balls.

Why does this matter? One explanation is that people simply prefer lotteries, in
which the outcomes have known objective probabilities, to gambles in which the
outcomes can only be assigned subjective probabilities. With such a utility function,
the outcome labelled ‘£1000’ in 𝐴 is actually better than the corresponding outcome
in 𝐶, because only the former involves having chosen a lottery.

But why would agents prefer lotteries? A possible answer is that such a preference
tends to reduce computational costs. If you know the objective probabilities of a
state, it is easy to figure out the credence you should give to the state: it should
match the objective probabilities. If you don’t know the objective probability, more
work may be required to figure out the extent to which the state is supported by
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your total evidence. In Ellsberg’s Paradox, Cr(Red) is a easier to figure out than
Cr(Green) and Cr(Blue). If you have a preference for lotteries, you don’t need to
figure out Cr(Green) and Cr(Blue): from eyeballing the options, you can already
see that the expected monetary payoff of 𝐴 and 𝐵 is approximately the same (as is
the expected payoff of 𝐶 and 𝐷); a preference for lotteries tips the balance in favour
of 𝐴 (and 𝐷).

11.3 Reducing computational costs

I will now review a few ideas from theoretical computer science for rendering our
models computationally tractable.

Imagine we want to design a robot – an artificial agent with a probabilistic repre-
sentation of its environment and some goals. Let’s assume that we want our agent
to assign credences and utilities to a total of 50 logically independent propositions
𝐴1, … , 𝐴50 (an absurdly small number). How large of a database do we need?

You might think that we need 50 records for the probabilities and 50 for the utilities.
But we generally can’t compute 𝐶𝑟(𝐴∧𝐵) or Cr(𝐴∨𝐵) from Cr(𝐴) and Cr(𝐵). Nor
can we compute U(𝐴∧𝐵) or U(𝐴∨𝐵) from U(𝐴) and U(𝐵). If we want to determine
the agent’s entire credence and utility functions (without further assumptions), we
need to store at least the probability and utility of every “possible world” – every
maximally consistent conjunction of 𝐴1, … , 𝐴50 and their negations.

Exercise 11.6 †††
Explain why the probability of every proposition that can be defined in
terms of 𝐴1, … , 𝐴50 can be computed from the probability assigned to these
“worlds”. Then explain why the utility of every such proposition can be com-
puted from the probability and utility assigned to the worlds.

There are 250 = 1, 125, 899, 906, 842, 624 maximally consistent conjunctions of
𝐴1, … , 𝐴50 and their negations. Since we need to store both credences and utili-
ties, we need a database with 2, 251, 799, 813, 685, 248 records. (I am exaggerat-
ing. Once we’ve fixed the probability of the first 1,125,899,906,842,623 worlds, the
probability of the last world is 1 minus the sum of the others, so we really only need
2, 251, 799, 813, 685, 247 records.)
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We’ll need to buy a lot of hard drives for our robot if we want to store 2 quadrillion
floating point numbers. Worse, updating all these records in response to sensory
information, or computing expected utilities on their basis, will take a very long
time, and use a large amount of energy.

In chapters 5.4 and 7, we have encountered two tricks that allow us to simplify
the representation of an agent’s utility function. First, if the agent cares about some
attributes of the world and not about others, it is enough to store the agent’s utility
for her “concerns”: the maximally consistent conjunctions of the attributes they care
about (section 5.4). If, for example, our robot only cares about the possible combi-
nations of 20 among the 50 propositions 𝐴1, … , 𝐴𝑛, we only need to store 220 values.
Second, if our robot’s preferences are separable with respect to these attributes, then
the value of any combination of the 20 propositions and their negations can be deter-
mined by adding up relevant subvalues (section 7.2). We can cut down the number
of utility records from 220 to 2 ⋅ 20 = 40.

Similar tricks are available for the agent’s credence function. Mirroring the first
trick, we could explicitly store only the robot’s credence in certain sets of worlds, and
assume that its credence is distributed uniformly within these sets. The trick can be
extended to non-uniform distributions. For example, suppose our robot has imper-
fect information about how far it is from the next charging station. Instead of explic-
itly storing a probability for every possible distance (1 m, 2 m, 3 m, …), we might
assume that the robot’s credence over these possibilities follows a Gaussian distribu-
tion, which can be specified by two numbers (mean and variance). Researchers in
artificial intelligence make heavy use of this trick.

An analogue of separability, for credences, is probabilistic independence. If 𝐴 and
𝐵 are probabilistically independent, then Cr(𝐴 ∧ 𝐵) = Cr(𝐴) ⋅ Cr(𝐵). If all the 50
propositions 𝐴1, … , 𝐴50 are mutually independent, then we can fix the probability of
all possible worlds (and therefore of all logical combinations of the 50 propositions)
by specifying their individual probability.

Independence is sometimes plausible. Whether the next charging station is 100
meters away plausibly doesn’t depend on whether the outside temperature is above
20∘C. For many other propositions, however, independence is implausible. On the
supposition that it is warm outside, it may well be more likely that the window
is open, or that there are people on the street, than on the supposition that it isn’t
warm. If our agent is unsure whether it is warm, it follows that Cr(Open/Warm) >
Cr(Open), and Cr(People/Warm) > Cr(People). We can’t assume probabilistic
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independence across all the 50 propositions 𝐴1, … , 𝐴50.
Even where independence fails, however, we often have conditional indepen-

dence. If warm temperatures make it more likely that the window is open and that
there are people on the street, then an open window is also evidence that there are
people on the street: Cr(People/Open) > Cr(People). So People and Open are not
independent. However, on the supposition that it is warm outside, the window being
open may no longer increase the probability of people on the street:

Cr(People/Open ∧ Warm) = Cr(People/Warm).

In this case, we say that People and Open are independent conditional on Warm.
Now consider the possible combinations of Warm, People, Open and their nega-

tions. By the probability calculus (compare exercise 2.10),

Cr(Warm∧People∧Open) = Cr(Warm)⋅Cr(Open/Warm)⋅Cr(People/Open∧Warm).

By the above assumption of conditional independence, this simplifies to

Cr(Warm ∧ People ∧ Open) = Cr(Warm) ⋅ Cr(Open/Warm) ⋅ Cr(People/Warm).

In general, with the assumption of conditional independence, we can fix the prob-
ability of all combinations of Warm, People, Open, and their negations by speci-
fying the probability of Warm, the probability of People conditional on Warm and
on ¬Warm, and the probability of Open conditional on Warm and on ¬Warm. The
number of required records shrinks from 23 − 1 = 7 to 5. This may not look all
that impressive, but the method really pays off if more than three propositions are
involved.

The present technique for exploiting conditional independence to simplify proba-
bilistic models is formalized in the theory of Bayesian networks (or Bayes nets, for
short). Bayes nets have proved useful in wide range of applications.

A special case of Bayes nets is widely used in artificial intelligence to model
decision-making agents.

A decision maker needs information not only about the present state of the world,
but also about the future. We can represent a history of states as a sequence 𝑆1, 𝑆2,
𝑆3,…, where 𝑆1 is a particular hypothesis about the present state, 𝑆2 about the next
state, and so on. If there are 100 possible states at any given time, there will be
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10010 = 100, 000, 000, 000, 000, 000, 000 possible histories with length 10. Instead
of storing individual probabilities for each of these possibilities, it helps to assume
that a later state (probabilistically) depends only on its immediate predecessor, so
that Cr(𝑆3/𝑆1 ∧ 𝑆2) = Cr(𝑆3/𝑆2). This is known as the Markov assumption. It
reduces the number of records we’d need to store from 10010 to 990,100.

To further simplify the task of decision-making, computer scientists usually as-
sume that the decision maker’s intrinsic preferences are stationary and separable
across times, so that the value of a history of states is a discounted sum of a sub-
value for individual states. To specify the whole utility function, we then only need
to store the discounting factor 𝛿 and 100 values for the individual states. The task
of conditionalization can also be simplified, by assuming that sensory evidence only
contains direct information about the present state of the world.

These simplifications define what computer scientists call a ‘POMDP’: a Par-
tially Observable Markov Decision Process. There is a simple recursive algorithm
for computing expected utilities in POMDPs.

In practice, even these simplifications generally don’t suffice to make condition-
alization and expected utility maximization tractable. Further simplifications are
needed. It often helps to ignore states in the distant future and let the agent maximize
the expected total utility in the next few states only. Several techniques have been
developed that allow an efficient approximate computation of expected utilities and
posterior probabilities. These techniques are often supplemented by a meta-decision
process that lets the system choose a level of precision: when a lot is at stake, it is
worth spending more effort on getting the computations right.

While originating in theoretical computer science, these models and techniques
have in recent years had a great influence on our models of human cognition. There
is evidence that when our brain processes sensory information or decides on a mo-
tor action, it employs the same techniques computer scientists have found useful in
approximating the Bayesian ideal. Several quirks of human perception and decision-
making have been argued to be a consequence of the shortcuts our brain uses to
approximate conditionalization and computing expected utilities.
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11.4 “Non-expected utility theories”

Meanwhile, researchers at the intersection of psychology and economics have also
tried to develop more realistic models of decision-making. The most influential of
these alternatives is prospect theory, developed by Daniel Kahneman and Amon
Tversky in the 1970s-1990s.

Prospect theory has to be understood on the background of a highly restricted
version of decision theory that dominates economics. The highly restricted theory
assumes that utility is only defined for money and other material goods, and it only
deals with choices between lotteries, where the objective probabilities are known.
People are assumed to want more money and goods, but with declining marginal
utility. When you find social scientists discuss “Expected Utility Theory”, this highly
restricted theory is what they usually have in mind. Prospect theory now proposes
four main changes.

1. Reference dependence. According to prospect theory, agents classify possible
outcomes into gains and losses, by comparing the outcomes with a contextually de-
termined reference point. Outcomes better than the reference point are modelled as
having positive utility, outcomes worse than the reference point have negative utility.

2. Diminishing sensitivity. Prospect theory holds that both gains and losses have
diminishing marginal utility: the same objective difference in wealth makes a larger
difference in utility near the reference point than further away, on either side. For
example, the utility difference between a loss of £100 and a loss of £200 is greater
than that between a loss of £1000 and a loss of £1100. This predicts that people are
risk averse about gains but risk seeking about losses: they prefer a sure gain of £500
to a 50 percent chance of £1000, but they prefer a 50 percent chance of losing £1000
to losing £500 for sure.

3. Loss aversion: According to prospect theory, people are more sensitive to
losses than to gains of the same magnitude. The utility difference between a loss of
£100 and a loss of £200 is greater than that between a gain of £200 and a gain of
£100. This explains why many people turn down a lottery in which they can either
win £110 or lose £100, with equal probability.

4. Probability weighting. According to prospect theory, the outcomes are weighted
not by their objective probability, but by transformed probabilities known as ‘deci-
sion weights’ that are meant to reflect how seriously people take the relevant states
in their choices. Decision weights generally overweight low-probability outcomes.
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Thus probability 0 events have weight 0, probability 1 events have weight 1, but in
between the weight curve is steep at the edges and flatter in the middle: probability
0.01 events might have weight 0.05, probability 0.02 events weight 0.08, …, prob-
ability 0.99 events weight 0.92. Among other things, this is meant to explain why
people play the lottery, and why they tend to pay a high price for certainty: they pre-
fer a settlement of £90000 over a trial in which they have a 99% chance of getting
£100000 but a 1% chance of getting nothing.

Prospect theory is clearly an alternative to the simplistic economical model men-
tioned above. It is not so obvious whether it is an alternative to the more liberal
model that we have been studying. Diminishing sensitivity and loss aversion cer-
tainly don’t contradict our model. Reference dependence and probability weighting
are a little more subtle.

Our model assumes that if an agent knows the objective probability of a state,
then in decision-making she will weight that state in proportion to the known prob-
ability. Prospect theory says that people don’t actually do this. If we measure an
agent’s credences in terms of preferences or choices, then the decision weights of
prospect theory are the agent’s credences: they play precisely the role of credences
in guiding behaviour. From this perspective, prospect theory assumes that people
systematically violate the Probability Coordination Principle. Their credence in low-
probability events is greater than the known objective probability.

Some have argued that the observations that motivate probability weighting are
better explained by redescribing the outcomes and allowing people to care about
things like risk or fairness. But there is evidence that people really do fail to coordi-
nate their beliefs with known objective probabilities, especially if the probabilities
are communicated verbally. People’s decision weights tend to be closer to the objec-
tive probabilities if they have experienced the probabilities as relative frequencies in
repeated trials.

Reference dependence may also raise a genuine challenge. Many forms of ref-
erence dependence can easily be accommodated in our model. We can allow that
people care about how much they own in comparison to what they have owned be-
fore, or in comparison to what their peers own. But sometimes the reference point is
affected by intuitively irrelevant features of the context, and this is harder to square
with our model.
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Exercise 11.7 †
When people compete in sports, average performance sometimes seems to
function as a reference point, insofar as the effort people put in to avoid per-
forming below average is higher than the effort they put in to exceed the aver-
age. Can you explain this observation by “redescribing the outcomes” in the
model we have studied, without appealing to reference points?

The problematic type of reference dependence is closely related to so-called fram-
ing effects. In experiments, people’s choices can systematically depend on how one
and the same decision problem is described. When presented with a hypothetical
situation in which 1000 people are in danger of death, and a certain act would save
exactly 600 of them, subjects are more favourable towards the act if it is described in
terms of ‘600 survivors’ than if it is described in terms of ‘400 deaths’. In prospect
theory, the difference might be explained by a change in reference point: if the out-
come is described in terms of survivors, it is classified as a gain; if it is described in
terms of deaths, it is classified as a loss.

In principle, our liberal model could explain the relevance of the description. Per-
haps people assign basic value to choosing options that have been described in terms
of survivors rather than in terms of deaths. On reflection, however, most people
would certainly deny that the verbal description of an outcome is of great concern
to them. As in the case of decision weights, a more adequate model would arguably
have to take into account our incomplete grasp of a verbally described scenario.
When hearing about survivors, we focus on a certain attribute of the outcome, on
all the people who are saved. This attribute is desirable. When hearing about deaths,
a different, and much less desirable, attribute of the same outcome becomes salient.

Ideal agents always weigh up all attributes of every possible outcome. Real agents
arguably don’t do that, as it requires considerable cognitive effort. As a result, the
attributes we consider depend on contextual clues such as details of a verbal descrip-
tion. Some recent models of decision making take this kind of attribute selection
into account.
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11.5 Imprecise credence and utility

I’m going to toss three dice. Would you rather get £1000 if the sum of the numbers
on the dice is at least 10 or if all three numbers are different? You’d probably need
some time to give a final answer. You know that the six possible results for every
dice have equal probability, and that the results are independent. But it takes some
effort to figure out which of the two events I described is more likely.

A real agent’s cognitive system can’t explicitly store a credence and utility for
every proposition. It can only store a limited number of constraints on credences
and utilities. A constraint rules out some credences and utilities, but not others. That
outcomes of die tosses are probabilistically independent is a constraint; it entails that
the probability of three sixes is the product of the probabilities for the individual dice:
Cr(Six1 ∧ Six2 ∧ Six3) = Cr(Six1) ⋅ Cr(Six2) ⋅ Cr(Six3), but it does not fix what
these probabilities are.

Will the constraints stored by an agent’s cognitive system always be rich enough
to determine a unique credence and utility function? Perhaps not. There might well
be questions on which you don’t have a settled opinion, even in principle, after ideal
reflection. Or suppose you don’t have time for lengthy reflection, or you’re too tired.
It might be wrong to model your attitudes by a single, precise credence function, and
a single, precise utility functions.

Across several disciplines, researchers have developed models that don’t assume
unique and precise credences and utilities. The standard approach is to use sets of
credence and utility functions instead of single functions. If we think of your cogni-
tive system as storing constraints, then the set comprises all the (pairs of) functions
that meet these constraints. Intuitively, each member of the set is a refinement or
precisification of your indeterminate state of mind.

On a preference-based approach, “imprecise” credences and utilities naturally
arise through violations of the Completeness axiom. Completeness says that for
any propositions 𝐴 and 𝐵, you either prefer 𝐴 to 𝐵, or you prefer 𝐵 to 𝐴, or you are
indifferent between 𝐴 and 𝐵. This is trivial if we define preference in terms of choice.
Indeed, in a forced choice between 𝐴 and 𝐵, you will inevitably choose either 𝐴 or 𝐵;
even indifference can be ruled out. But we’ve seen that if we want to measure cre-
dence and utility in terms of preference, then the relevant preference relation can’t
be directly defined in terms of choices. Once we take a step back from choice be-
haviour, it seems perfectly possible that you neither prefer 𝐴 to 𝐵, nor 𝐵 to 𝐴, and
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yet you’re not indifferent between the two. You simply haven’t made up your mind.
The two propositions seem roughly “on a par”, but you wouldn’t say they are exactly
equal in value.

Here is a possible example. Would you rather lose your capacity to hear or your
capacity to walk? You may well have no clear preference, even after considerable
reflection. Does this mean that you’re exactly indifferent? Not necessarily. If you
were, you should definitely prefer losing the capacity to hear and getting £1 to losing
the capacity to walk. In reality, the added £1 may not make a difference.

Exercise 11.8 ††
Suppose we define ‘𝐴 ∼ 𝐵’ as ‘not 𝐴 ≻ 𝐵 and not 𝐵 ≻ 𝐴’. Completeness
is then logically guaranteed. But Transitivity might fail, if you haven’t fully
made up your mind. Explain why.

Even if we give up completeness, however, we might still require completability.
We might want to say that if an agent’s preferences violate, say, Ramsey’s axioms be-
cause they fail to rank certain options, then there is a refinement of their preferences,
filling in the missing rankings, that does satisfy the axioms. Ramsey’s representa-
tion theorem then implies that the agent’s preferences are represented by a set of
credence and utility functions.

Allowing for a set of credence and utility functions requires some changes to our
model. How should a set of credence functions be revised when new information
comes in? How should an agent choose based on a set of credence and utility func-
tions? Both questions raise serious problems.

The most obvious answer to the first question is that if an agent has a set of cre-
dence functions ℂ𝕣 and receives total evidence 𝐸, then her new set of credence
functions should result from ℂ𝕣 by conditionalising each member of ℂ𝕣 on 𝐸.

One problem with this answer is that this process is, in general, computationally
harder than conditionalising a single probability measure. In this respect, our model
has become less realistic, not more.

Here is another problem. Suppose I have an urn containing 2 balls, one of which
is white. The other is either white or red. You have no opinion about how the other
ball’s colour: your belief state ℂ𝕣 contains all possible probability assignments to
the hypothesis that the other ball is white. Now I shuffle the urn, draw a ball, and
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show it to you. The ball is white. If you conditionalise each member of ℂ𝕣 on this
information, your belief state remains unchanged! Your new imprecise credence is
still ℂ𝕣. It remains at ℂ𝕣 no matter how often I draw a white ball, each time replacing
the previously drawn ball. This seems wrong.

Exercise 11.9 †††
Explain why seeing a white ball doesn’t change ℂ𝕣.

Let’s briefly turn to the other question. How should you choose between some
options if you have a set of credence and utility functions? Suppose option 𝐴 max-
imizes expected utility relative to one of your credence and utility functions, while
option 𝐵 maximizes expected utility according to another. Should you choose 𝐴 or
𝐵? A popular “permissivist” answer is that either choice is acceptable.

Exercise 11.10 ††
Explain how the preference of 𝐴 over 𝐵 and 𝐷 over 𝐶 in Ellsberg’s paradox
might be justified by the permissivist approach, without redescribing the out-
comes.

But now imagine you are offered two bets 𝐴 and 𝐵, one after the other, on a propo-
sition 𝐻 to which you don’t assign a precise credence. Let’s say your credence in 𝐻
spans the range from 0.2 to 0.8. Bet 𝐴 would give you £1.40 if 𝐻 and £-1 if ¬𝐻. Bet
𝐵 would give you £-1 if 𝐻 and £1.40 if ¬𝐻. Assume for simplicity that your utility
is precise and proportional to the monetary payoff. The permissivst account then
classifies both bets as optional: you may take them or leave them. But accepting
both bets yields a guaranteed gain of £0.40. By refusing both bets, you would miss
out on a sure gain.

Sources and Further Reading
A standard textbook on artificial intelligence is Stuart Russell and Peter Norvig, Ar-
tificial Intelligence: A Modern Approach (4th ed., 2020). Part IV covers most of the
material I have summarized in section 11.3.
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For evidence that our brains might use some of the tricks AI researchers have found
see, for example, Samuel Gershman and Nathaniel Daw, “Perception, Action and
Utility” (2012). For a more high-level view on the idea that cognitive systems try to
approximate the Bayesian ideal, see Thomas Griffiths et al, “Rational Use of Cog-
nitive Resources” (2015), or Samuel Gershman et al, “Computational rationality: A
converging paradigm” (2015).

For a brief overview of prospect theory and related models, motivated by the idea of
bounded rationality, see Daniel Kahneman, “A Perspective on Judgment and Choice”
(2003). The empirical claims about probabilities, frequencies, and reference points
in section 11.4 are from Kahneman’s Thinking Fast and Slow (2011).

For a model of attribute selection in the evaluation of options, see Franz Dietrich and
Christian List, “Reason-Based Choice and Context-Dependence” (2016). There are
also models for how to selectively use different aspects of a credence function. See
Peter Fritz and Harvey Lederman, “Standard State Space Models of Unawareness”
(2015).

The Stanford Encyclopedia Entry “Imprecise Probabilities” by Saemus Bradley
(2019) provides a good overview of research on the topic of section 11.5. The urn
problem is an instance of “belief inertia”.

The Ellsberg Paradox was presented in Daniel Ellsberg, “Risk, Ambiguity, and the
Savage Axioms” (1961).

199

https://plato.stanford.edu/entries/imprecise-probabilities/

