
1 Modal Operators

1.1 A new language

Modal logic is an extension of propositional and predicate logic that is widely used
to reason about possibility and necessity, obligation and permission, the flow of
time, the processing of computer programs, and a range of other topics. Each of
these applications begins by adding new symbols to the formal language of classi-
cal propositional or predicate logic. Before we explore such additions, let’s briefly
review why we use formal languages in the first place.

When reasoning about a given topic, we sometimes want to make sure that the
stated conclusions really follow from the stated premises. If they do, we say that the
reasoning is valid. By this we mean that there is no conceivable scenario in which
the premises are true while the conclusions are false.

Here is an example of a valid argument.

All myriapods are oviparous.
Some arthropods are myriapods.
Therefore: Some arthropods are oviparous.

You can tell that this argument is valid even if you don’t understand the zoological
terms, because every argument of the same logical form is valid. The relevant logical
form might be expressed as follows.

All 𝐹 are 𝐺.
Some 𝐻 are 𝐹.
Therefore: Some 𝐻 are 𝐺.

No matter what descriptive terms you plug in for 𝐹, 𝐺, and 𝐻, you get a valid argu-
ment. The argument about myriapods is therefore not just valid, but logically valid
– valid in virtue of its logical form.
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1 Modal Operators

In natural languages like English, the logical form of sentences is not always trans-
parent. ‘Every dog barked at a tree’ can mean either that there is a single tree at
which every dog barked, or that for each dog there is a tree at which it barked. The
two readings have different logical consequences, so it would be good to keep them
apart. Worse, the meaning of logical expressions (‘all’, ‘some’, ‘and’, etc.) in natu-
ral language is often unclear and complicated. ‘Paul and Paula got married and had
children’ suggests that the marriage came before the children. In ‘Paul went to the
zoo and Paula stayed at home’, the word ‘and’ does not seem to have this temporal
meaning.

To get around these problems, we invent formal languages in which there are no
ambiguities of logical form and in which all logical expressions have determinate,
precise meanings. If we want to evaluate natural-language arguments for logical
validity, we first have to translate them into the formal language. (Sometimes an ar-
gument will be valid on one translation and invalid on another.) With some practice,
one can also reason directly in a formal language.

Now consider the following argument.

It might be raining.
It is certain that we will get wet if it is raining.
Therefore: We might get wet.

The argument looks valid. Indeed, any argument of this form is plausibly valid:

It might be that 𝐴.
It is certain that 𝐵 if 𝐴.
Therefore: It might be that 𝐵.

But it’s hard to bring out the validity of these arguments in classical propositional or
predicate logic. We need formal expressions corresponding to ‘it might be that’ and
‘it is certain that’. The languages of classical logic do not have such expressions.

So let’s add them. Let’s invent a new formal language with two new logical sym-
bols. It doesn’t matter what these look like; a popular choice is a diamond ♢ and
a box □. We use the diamond to formalize ‘it might be that’, and the box for ‘it is
certain that’.

If we add these symbols to the language of propositional logic, we get the standard
language of modal propositional logic. If we add them to the language of predicate
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1 Modal Operators

logic, we get the standard language of modal predicate logic. We will stick with
propositional logics until chapter 9.

Let’s officially define the standard language of modal propositional logic.

Definition 1.1: The language 𝔏𝑀

A sentence letter of 𝔏𝑀 is any lower-case letter of the Latin alphabet
(𝑎, 𝑏, 𝑐, … , 𝑧), possibly followed by numerical subscripts (𝑎1, 𝑝18, …).
A sentence of 𝔏𝑀 is either a sentence letter of 𝔏𝑀 or an expression of the
form ¬𝐴, (𝐴 ∧ 𝐵), (𝐴 ∨ 𝐵), (𝐴 → 𝐵), (𝐴 ↔ 𝐵), □𝐴, or ♢𝐴, where 𝐴 and 𝐵 are
𝔏𝑀-sentences.

I use lower-case letters 𝑎, 𝑏, 𝑐, … as atomic 𝔏𝑀-sentences and upper-case letters
𝐴, 𝐵, 𝐶, … when I want to talk about arbitrary 𝔏𝑀-sentences. To reduce clutter, I gen-
erally omit outermost parentheses and quotation marks when I mention 𝔏𝑀-symbols
or sentences: 𝑝 ∧ 𝑞 is treated as an abbreviation of ‘(𝑝 ∧ 𝑞)’.

Exercise 1.1
Which of these are 𝔏𝑀-sentences?
(a) 𝑝
(b) ♢
(c) ♢𝑝 ∨ (□𝑝 → 𝑝)
(d) □□𝑝
(e) □𝐴 → 𝐴
(f) (♢𝑟 ∧ ♢𝑞𝑟) ∧ ♢□♢□𝑝

Having new symbols is only the beginning. We also need to lay down rules for
reasoning with these symbols. The rules should be motivated by what the symbols
are supposed to mean. So we shall also assign a more precise meaning to the dia-
mond and the box – just as classical logic assigns a precise meaning to the symbol
∧ that may or may not exactly match the meaning of ‘and’ in English.

The meaning of ∧ can be given by a truth table:
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A B 𝐴 ∧ 𝐵
T T T
T F F
F T F
F F F

This tells us how the truth-value of 𝐴 ∧ 𝐵 depends on the truth-value of 𝐴 and 𝐵:
the compound sentences is true iff (if and only if) both of its parts are true. If you
know this, you know all there is to know about the meaning of ∧. (You can see, for
example, that 𝐴 ∧ 𝐵 does not imply anything about the temporal order of 𝐴 and 𝐵.)

Exercise 1.2
Draw the truth tables for ¬, ∨, → , and ↔.

The sentence operators (or connectives) of classical propositional logic (¬, ∧, ∨, → ,
and ↔) are all truth-functional. Recall that an operator is truth-functional if the
truth-value of a compound sentence formed by applying the operator to other sen-
tences is always determined by the truth-value of these other sentences. The truth
tables for the classical operators spell out this dependence. They tell us how to com-
pute the truth-value of a compound sentence from the truth-values of its constituents.

The diamond operator can’t be truth-functional if it is supposed to mean anything
like ‘it might be that’ in English. To see why, note first that ‘it might be that 𝑃’ can
be true if 𝑃 is true, but also if 𝑃 is false. ‘It might be raining’ doesn’t entail that
it is actually raining, nor that it isn’t raining. It merely says that our evidence is
compatible with rain. Now, if the diamond were truth-functional, then what would
follow from the fact that ♢𝑝 is sometimes true when 𝑝 is true? It would follow that
♢𝑝 is always true when 𝑝 is true. (Make sure you understand why.) Likewise, from
the fact that ♢𝑝 is sometimes true when 𝑝 is false, it would follow that ♢𝑝 is true
whenever 𝑝 is false. ♢𝑝 would be a logical truth. But ‘it might be raining’ is surely
not a logical truth.

If an operator isn’t truth-functional, its meaning can’t be defined by a truth table.
The standard approach to defining the meaning of modal operators instead involves
the concept of possible worlds. Roughly, we’ll interpret ♢𝐴 as saying that 𝐴 is true
at some possible world, and □𝐴 as saying that 𝐴 is true at all possible worlds. Much
more on this later.
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Exercise 1.3
Which of these English expressions are truth-functional?
(a) It used to be the case that …
(b) It is widely known that …
(c) It is false that …
(d) It is necessary that …
(e) I can see that …
(f) God believes that …
(g) Either 2+2=4 or it is practically feasible that …

1.2 Flavours of modality

‘It might be that’ and ‘it is certain that’ express an epistemic kind of possibility and
necessity, related to evidence and knowledge. There are other kinds – or flavours –
of possibility and necessity.

Consider ‘John must leave’. This expresses a kind of necessity, but it would typ-
ically not be understood as a statement about the available evidence. On its most
natural interpretation, it says that some relevant norms require John to leave. This
flavour of necessity is called deontic (from Greek deontos: ‘of that which is bind-
ing’).

Other statements about possibility and necessity are neither deontic nor epistemic.
If I say that you can’t travel from Auckland to Sydney by train, I don’t just mean that
my information implies that you won’t make that journey; nor do I mean that you’re
not permitted to make it. Rather, I mean that relevant circumstances in the world
– such as the presence of an ocean between Auckland and Sydney – preclude the
journey. This flavour of modality is sometimes called circumstantial. It comes in
many sub-flavours, depending on what kinds of circumstances are in play.

Each of these flavours of modality corresponds to a branch of modal logic. Epis-
temic logic formalizes reasoning about knowledge and information. Deontic logic
deals with norms, permissions, and obligations. A third branch of modal logic might
be called circumstantial logic, but nobody uses that label. Some authors speak of
alethic modal logic (from aletheia: ‘truth’), but this label is also not used widely,
and it is used for different things by different authors.
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Confusingly, some philosophers use ‘modal logic’ for the logic of a certain sub-
flavour of circumstantial modality, known as metaphysical modality. Metaphysical
modality is concerned with what is or isn’t compatible with the nature of things. We
will follow the more common practice of using ‘modal logic’ as an umbrella term
that covers all the applications I have mentioned, as well as many others.

We will take a closer look at epistemic logic in chapter 5 and at deontic logic in
chapter 6. In chapter 7 we are going to study a branch of modal logic called temporal
logic that is concerned with reasoning about time. Chapter 8 is on conditional logic.
Here we will introduce (non-truth-functional) two-place operators that are meant to
formalise certain ‘if …then …’ constructions in English. In chapter 4, we will briefly
look at provability logic, which investigates formal properties of mathematical prov-
ability. What unifies the different branches of modal logic is not a particular subject
matter, but a loosely defined collection of abstract ideas and techniques that turn out
to be useful in all these applications.

When we study some flavour of possibility or necessity, the diamond♢ is generally
used for the relevant kind of possibility and the box □ for the corresponding kind of
necessity. In this context, you may pronounce the diamond ‘it is possible that’ and
the box ‘it is necessary that’. In general, however, I would recommend pronouncing
the diamond ‘diamond’ and the box ‘box’.

Different interpretations of the box and the diamond often motivate different rules
for reasoning with these expressions. Consider, for example, the inference from □𝑝
to 𝑝. If the box expresses a circumstantial kind of necessity, then this inference is
plausibly valid: if the circumstances ensure that something is the case, then it really
is the case. On a deontic reading of the box, by contrast, the inference is invalid. We
can easily imagine scenarios in which, say, it is required that all library books are
returned on time (□𝑝) and yet it is not the case that all library books are returned on
time (¬𝑝).

So we can’t say, once and for all, whether □𝑝 entails 𝑝. We will develop different
“logics” or “systems” of modal logic. In some systems, the inference is valid, in
others it is invalid.

The diamond and the box are sentence operators. English expressions for neces-
sity and possibility often don’t have this form. We can talk about what’s necessary
or possible with ‘must’, ‘might’, or ‘can’, which are (auxiliary) verbs. We can also
use adjectives like ‘feasible’, ‘certain’, and ’obligatory’, or adverbs like ‘possibly’,
‘certainly’, and ‘inevitably’.
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When translating from English into 𝔏𝑀 , it is often helpful to first paraphrase the
English sentence with ‘it is necessary that’ and ‘it is possible that’ (or other suitable
sentence operators). For example,

You can’t go from Auckland to Sydney by train

might be paraphrased as

It is not possible [in light of relevant circumstances] that you go from
Auckland to Sydney by train

An adequate translation is ¬♢𝑝, where 𝑝 represents ‘you go from Auckland to Syd-
ney by train’ and the diamond represents the relevant kind of circumstantial possi-
bility.

Exercise 1.4
Translate the following sentences, as well as possible, into 𝔏𝑀 , assuming that
the diamond expresses epistemic possibility (‘it might be that’) and the box
epistemic necessity (‘it must be that’).
(a) I may have offended the principal.
(b) It can’t be raining.
(c) Perhaps there is life on Mars.
(d) If the murderer escaped through the window, there must be traces on the

ground.
(e) If the murderer escaped through the window, there might be traces on the

ground.

Exercise 1.5
Translate the following sentences, as well as possible, into 𝐿𝑀 , assuming that
the diamond expresses deontic possibility (‘it is permitted that’) and the box
deontic necessity (‘it is obligatory that’).
(a) I must go home.
(b) You don’t have to come.
(c) You can’t have another beer.
(d) If you don’t have a ticket, you must pay a fine.
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Exercise 1.6
Translate the following sentences, as well as possible, into 𝐿𝑀 , assuming that
the diamond expresses (some relevant sub-flavour of) circumstantial possibil-
ity and the box circumstantial necessity.
(a) I could have studied architecture.
(b) The bridge is fragile.
(c) I can’t hear you if you’re talking to me from the kitchen.
(d) If you have a smartphone, you can use an electronic ticket.

Special care is required when translating English sentences that contain both modal
expressions and an ‘if’ clause. The surface form of English can be misleading. A
good strategy is to first rephrase the English sentence so that it no longer contains
any conditional expression, then translate that paraphrase. The paraphrase, and there-
fore the translation, will often sound rather unlike the original sentence, but that’s
OK. What’s important is that it has the same truth-conditions. There should be no
conceivable scenario in which the original sentence is true and the paraphrase (or
translation) false, or the other way round.

1.3 The turnstile

In section 1.1, I said that an argument is valid if there is no conceivable scenario in
which the premises are true and the conclusion is false. An argument is logically
valid, I said, if it is valid “in virtue of its logical form”. Can we make this more
precise?

Consider this English argument.

Some cats are black.
Therefore: Some animals are black.

The argument is valid, but not logically valid. Its validity turns on the meaning of
‘cat’, which we don’t consider a logical expression.

To bring out how the argument’s validity depends on the meaning of ‘cat’, we
can imagine a language that is much like English except that ‘cat’ means chair. In
this language, the argument just displayed is invalid. It is invalid because there are
conceivable scenarios in which there are black chairs but no black animals. In any
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such scenario, the argument’s premise is true (in our imaginary language) while the
conclusion is false.

When we say that an argument is valid “in virtue of its logical form”, we mean
that its validity does not depend on the meaning of the non-logical expressions. In
other words, there is no conceivable scenario in which the premises are true and the
conclusion is false, no matter what meaning we assign to the non-logical expres-
sions.

The concept of validity for arguments is closely related to that of entailment. If
an argument is valid, we say that the premises entail the conclusion. If an argument
is logically valid, we say that the premises logically entail the conclusion. In logic,
we’re interested in logical entailment. We adopt the following definition.

Definition 1.2
Some sentences Γ (’gamma’) (logically) entail a sentence 𝐴 iff there is no
conceivable scenario in which all sentences in Γ are true and 𝐴 is false, under
any interpretation of the non-logical expressions.

Instead of saying that the sentences Γ logically entail 𝐴, we also say that 𝐴 is a
logical consequence of Γ, or that 𝐴 logically follows from Γ. Two sentences are
(logically) equivalent if either logically follows from the other.

Logicians often use the symbol ‘⊧’ (the “double-barred turnstile”) for entailment.
The claim that □(𝑝 → 𝑞) and □𝑝 together entail 𝑞, for example, could be expressed
as

□(𝑝 → 𝑞),□𝑝 ⊧ 𝑞.

This is not a sentence of 𝔏𝑀 . The comma and the turnstile belong to the meta-
language we use to talk about the object language 𝔏𝑀 . (The rest of our meta-
language is mostly English.) We use the turnstile to express a certain relationship
between 𝔏𝑀-sentences, not to construct further 𝔏𝑀-sentences.
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Exercise 1.7
What do you think of this simpler alternative to definition 1.2? “Sentences Γ
entail a sentence 𝐴 iff there is no interpretation of non-logical expressions that
renders all sentences in Γ true and 𝐴 false.”

The following fact about logical consequence often proves useful.

Observation 1.1: If 𝐴 and 𝐵 are sentences and Γ is a (possibly empty) list
of sentences, then

Γ, 𝐴 ⊧ 𝐵 iff Γ ⊧ 𝐴 → 𝐵.

Proof. Look at the statement on the right-hand side of the ‘iff’. ‘Γ ⊧ 𝐴 → 𝐵’ says
that there is no conceivable scenario in which all sentences in Γ are true while
𝐴 → 𝐵 is false, under any interpretation of the non-logical expressions. By the
truth-table for ‘ → ’, 𝐴 → 𝐵 is false iff 𝐴 is true and 𝐵 is false. So we can rephrase
the statement on the right-hand side as saying that there is no conceivable scenario
and interpretation that makes all sentences in Γ true and 𝐴 true and 𝐵 false. That’s
just what the statement on the left-hand side asserts.

Observation 1.1 tells us that if we start with a claim of the form 𝐴1, 𝐴2, 𝐴3 … ⊧ 𝐵,
we can always generate an equivalent claim by moving the turnstile to the left of
the sentence that precedes it and putting an arrow in its original place. For example,
instead of

□(𝑝 → 𝑞),□𝑝 ⊧ □𝑞

we can equivalently say

□(𝑝 → 𝑞) ⊧ □𝑝 →□𝑞.

We can go further to

⊧ □(𝑝 → 𝑞) → (□𝑝 →□𝑞).
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This says that □(𝑝 → 𝑞) → (□𝑝 →□𝑞) logically follows from no premises at all. A
sentence that follows from no premises is called logically true or (logically) valid.

(So an argument is called valid if the conclusion follows from the premises, while
a sentence is called valid if it follows from no premises.)

Sentence validity is implicitly covered by definition 1.2, using an empty list of
sentences for Γ. But it’s worth making the definition more explicit.

Definition 1.3
A sentence 𝐴 is valid (for short, ⊧ 𝐴) iff there is no conceivable scenario in
which 𝐴 is false, under any interpretation of the non-logical expressions.

Make sure you don’t confuse the arrow with the turnstile. It’s not just that the two
symbols belong to different languages – one to 𝔏𝑀 , the other to our meta-language.
They also have very different meanings. 𝑝 → 𝑞 is true iff either 𝑝 is false or 𝑞 is true
(or both). 𝑝 ⊧ 𝑞, on the other hand, is true iff there is no conceivable scenario in
which 𝑝 is true and 𝑞 is false, under any interpretation of 𝑝 and 𝑞. Nonetheless, there
is an important connection between the arrow and the turnstile: 𝐴 ⊧ 𝐵 is true iff
𝐴 → 𝐵 is valid.

The definitions of this section are still somewhat imprecise. Eventually we will
want to prove various claims about entailment and validity. To this end, we will
need to give rigorous meanings to ‘conceivable scenario’ and ‘interpretation of non-
logical expressions’. Let’s leave this task until the next chapter.

1.4 Duality

‘Neville can’t be the murderer’, says Watson. His claim could be paraphrased as ‘it
is not possible that Neville is the murderer’. This suggests that ¬♢𝑝 is an adequate
translation (where 𝑝 expresses that Neville is the murderer). But Watson’s claim
might also be paraphrased as ‘it is certain that Neville is not the murderer’, which
we might translate as □¬𝑝.

The two paraphrases are plausibly equivalent. In general, ‘it is not (epistemically)
possible that 𝐴’ seems to say the same as ‘it is certain that not 𝐴’. Similarly, ‘it is
not certain that 𝐴’ arguably says the same as ‘it is possible that not 𝐴’.
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Whether or not the equivalence holds in English, we stipulate that it holds in 𝔏𝑀 :
for any 𝔏𝑀-sentence 𝐴,

¬♢𝐴 is equivalent to □¬𝐴;(Dual1)
¬□𝐴 is equivalent to ♢¬𝐴.(Dual2)

Operators that stand in the relationship expressed by (Dual1) and (Dual2) are
called duals of each other. There is a convention in modal logic to use the sym-
bols □ and ♢ only for concepts that are duals of each other.

Exercise 1.8
Find all pairs of duals among the following English expressions.
(a) It is necessary that …
(b) It is impossible that …
(c) It is possible that …
(d) It is possibly not the case that …
(e) It was at some point the case that …
(f) It will at some point be the case that …
(g) It has always been the case that …
(h) It will always be the case that …
(i) The law requires that …
(j) The law does not require that …
(k) The law allows that …
(l) It is true that …

(m) It is false that …

(Dual1) implies that ¬♢¬𝑝 is equivalent to □¬¬𝑝, choosing ¬𝑝 as the sentence 𝐴.
In standard modal logic, logically equivalent expressions are interchangeable. So we
can simplify □¬¬𝑝 to □𝑝, drawing on the equivalence between ¬¬𝑝 and 𝑝. We’ve
shown that ¬♢¬𝑝 is equivalent to □𝑝.

The same reasoning could be applied to any other sentence 𝐴 in place of 𝑝. (Dual1)
therefore implies that for any sentence 𝐴,

□𝐴 is equivalent to ¬♢¬𝐴.
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In the same way, (Dual2) implies that (for any sentence 𝐴)

♢𝐴 is equivalent to ¬□¬𝐴.

This shows that the box and the diamond can be defined in terms of one another.
We could have used a language whose only primitive modal operator is the box, and
read♢𝐴 as an abbreviation of ¬□¬𝐴. Alternatively, we could have used the diamond
as the only primitive modal operator and read □𝐴 as an abbreviation of ¬♢¬𝐴.

Exercise 1.9
Which of these sentences are equivalent to ♢♢¬𝑝? (a) ♢¬♢𝑝, (b) ♢¬□𝑝, (c)
¬□♢𝑝, (d) ¬♢□𝑝, (e) ¬□□𝑝

You might think that there is another connection between ‘possible’ and ‘neces-
sary’. When we say that something is possible (or that it might be the case), we often
convey that it is not necessary (or not certain). This suggests that ♢𝑝 entails ¬□𝑝.
We’ve just assumed, however, that ♢𝑝 is equivalent to ¬□¬𝑝. If ♢𝑝 entails ¬□𝑝, we
would have to conclude that ¬□¬𝑝 entails ¬□𝑝. By contraposition, we could infer
that □𝑝 entails □¬𝑝. But ‘it is necessary that 𝑃’ surely doesn’t entail ‘it is necessary
that not-𝑃’!

We have to reject either the duality of ‘possible’ and ‘necessary’ or the apparent
entailment from ‘possible’ to ‘not necessary’. On reflection, the case for duality is
stronger. There is a good explanation of why ‘possible’ often appears to entail ‘not
necessary’ even if it actually doesn’t.

Take an example. Suppose Watson says ‘Neville might be the murderer’. Let’s
assume that ‘might’ is the dual of ‘certain’, so that ‘it might be that 𝑃’ is equivalent
to ‘it is not certain that not 𝑃’. On this interpretation, what Watson said – that Neville
might be the murderer – is merely that it isn’t certain that Neville is not the murderer.
It may well be certain that Neville is the murderer. Why, then, does his statement
convey that Neville’s guilt is an open question?

Well, suppose Watson had known that Neville is the murderer. In that case, he
shouldn’t have said ‘Neville might be the murderer’. These words would still have
been true – or so we assume – but they would not have been helpful. Watson would
have been in a position to say something more informative: that Neville is the mur-
derer, or that he is known to be the murderer. We generally assume that speakers
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are trying to be helpful, that they are not hiding relevant information. Assuming
that Watson is trying to be helpful, his statement that Neville might be the murderer
implies that he considers Neville’s guilt an open question. This follows not from
what he said, but from the fact that he said it, together with the assumption that he
is trying to be helpful.

This kind of effect is studied in the field of pragmatics, where it is known as a
scalar implicature. Scalar implicatures arise when an utterance of a logically weaker
sentence conveys that a certain stronger sentence is false. ‘Some students passed the
test’, for example, conveys that not all students passed the test, although the statement
would be true even if all students had passed. In that case, however, it would not have
been helpful: the speaker should have used ‘all students passed’.

I want to say a little more about duality. To do so, I need to introduce the concept
of a schema.

Formally, a schema (for 𝔏𝑀-sentences) is simply an 𝔏𝑀-sentence with upper-case
schematic variables in place of sentence letters. Every 𝔏𝑀-sentence that results from
a schema by (uniformly) replacing the schematic variables with object-language sen-
tences is called an instance of the schema.

□𝐴 → 𝐴, for example, is a schema. Three of its instances are □𝑝 → 𝑝 and □(𝑝 ∨
𝑞) → (𝑝 ∨ 𝑞) and □□𝑝 →□𝑝. The sentence □𝑝 → 𝑞 is not an instance: the same
schematic variable must always be replaced by the same object-language sentence.
(That’s what I meant by “uniformly”.)

Exercise 1.10
Which of the following expressions are instances of □(𝐴 →♢(𝐴 ∧ 𝐵))?
(a) □(𝑝 →♢(𝑞 ∧ 𝑟))
(b) □(♢𝑝 →♢(♢𝑝 ∧ 𝑝))
(c) □□(𝑝 →♢(𝑝 ∧ 𝑞))
(d) □((𝑝 →♢(𝑝 ∧ 𝑞)) →♢((𝑝 →♢(𝑝 ∧ 𝑞)) ∧ ♢𝑝))
(e) □((𝐴 ∧ 𝐶) →♢((𝐴 ∧ 𝐶) ∧ (𝐵 ∧ 𝐶)))

Schemas are useful when we want to talk about all 𝔏𝑀-sentences of a certain form.
In the next section, for example, we are going to define a system of modal logic by
giving a list of schemas all instances of which are considered valid.

Now compare the schemas □𝐴 → 𝐴 and 𝐴 →♢𝐴. Given the duality of the box
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and the diamond, and the fact that logically equivalent expressions can be freely
exchanged for one another, we can show that every instance of one of them is equiv-
alent to an instance of the other. In this sense, the two schemas are equivalent. And
because their equivalence relies on the duality of the box and the diamond, the two
schemas are called duals of one another.

To see why every instance of □𝐴 → 𝐴 is equivalent to an instance of 𝐴 →♢𝐴, take
a simple instance: □𝑝 → 𝑝. By the truth-table for the arrow, this is equivalent to
¬𝑝 → ¬□𝑝. By (Dual2), ¬□𝑝 is equivalent to ♢¬𝑝. So ¬𝑝 → ¬□𝑝 is equivalent to
¬𝑝 →♢¬𝑝. And this is an instance of 𝐴 →♢𝐴. The same line of reasoning obviously
works for any other sentence in place of 𝑝, and a similar line of reasoning shows the
converse, that every instance of 𝐴 →♢𝐴 is equivalent to an instance of □𝐴 → 𝐴.

It’s crucial that we’re talking about schemas here. We have not shown that the
sentence □𝑝 → 𝑝 is equivalent to 𝑝 →♢𝑝. In fact, the duality principles and the re-
placement of equivalents don’t suffice to show that these sentences are equivalent.

The equivalence of the schemas, however, is enough to show that it doesn’t matter
which of them we use when we list schemas to define a logic. We can say that all
instances of □𝐴 → 𝐴 are valid in a certain logic, or we can say that all instances of
𝐴 →♢𝐴 are valid – it amounts to the same thing, because every instance of either
schema is equivalent to an instance of the other.

The equivalence between □𝐴 → 𝐴 and 𝐴 →♢𝐴 is an example of a more general
pattern. Any schema with an arrow ( → or ↔) as the only truth-functional operator
can be converted into an equivalent schema – its dual – by swapping antecedent and
consequent and replacing every box with a diamond and every diamond with a box.

Exercise 1.11
Find the duals of (a) □𝐴 →□□𝐴, (b) ♢𝐴 →□♢𝐴, (c) □𝐴 →♢𝐴.

Exercise 1.12
A proposition is contingent if it neither necessary nor impossible. Let ∇ be a
sentence operator for ‘it is contingent that’. Reading the box as ‘it is necessary
that’ and the diamond as ‘it is possible that’, try to find
(a) a sentence whose only modal operator is □ that is equivalent to ∇𝑝;
(b) a sentence whose only modal operator is ♢ that is equivalent to ∇𝑝;
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(c) a sentence whose only modal operator is ∇ that is equivalent to □𝑝.

1.5 A system of modal logic

Whether a sentence is logically valid, or logically entailed by other sentences, never
depends on the meaning of the non-logical expressions. But it may well depend on
the meaning of the logical expressions. In modal logic, the box and the diamond
are treated as logical expressions, but their interpretation varies from application
to application. Sometimes the box means epistemic necessity, sometimes it means
deontic necessity, sometimes it means something else. As I mentioned in section
1.2, this has the consequence that we need to distinguish different “systems of modal
logic”. In some applications, we want □𝑝 to entail 𝑝, in others we don’t.

Suppose, now, that we want to fully spell out one of these “systems”. We want to
completely specify which 𝔏𝑀-sentences are valid, and which are entailed by which
others, on a particular understanding of the modal operators.

There are many ways of approaching this task. We could, for example, define pre-
cise notions of conceivable scenarios and interpretations and apply the definitions of
the previous section. But let’s choose a more direct route. When we think about cir-
cumstantial necessity, we can intuitively see that□𝑝 entails 𝑝, without going through
sophisticated considerations about scenarios and interpretations. Assume, then, that
we simply start with direct judgements about entailment and validity.

We still face a problem. There are infinitely many 𝔏𝑀-sentences. We can’t look
at every sentence and argument one by one. We need to find some shortcuts.

We can begin by drawing on a consequence of observation 1.1. Above I said that in
order to spell out a system of modal logic, we need to specify (i) which 𝔏𝑀-sentences
are valid and (ii) which 𝔏𝑀-sentences are entailed by which others. Observation 1.1
tells us that we can ignore part (ii) of the task. Once we have settled which sentences
are valid, we have implicitly also settled which sentences entail which others. If, for
example, we decide that □𝑝 → 𝑝 is valid, we have also decided that □𝑝 entails 𝑝.

Our task of spelling out a system of modal logic therefore reduces to the task of
specifying which 𝔏𝑀-sentences are valid. That’s why a system of modal logic is
usually defined simply as a set of 𝔏𝑀-sentences.

To make this more concrete, let’s look at a particular sub-flavour of circumstantial
necessity, sometimes called historical necessity. Something is historically necessary
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if it is “settled”: it is true and there is nothing anyone can do about it. Facts about the
past are plausibly settled. Nothing we can do is going to make a difference to what
happened yesterday. By contrast, some facts about the future are intuitively “open”.

Let’s use the box to formalise this (admittedly vague) concept of historical neces-
sity. So □𝑝 says that 𝑝 is settled. Since the diamond is the dual of the box, ♢𝑝
expresses that it not settled that 𝑝 is false. In other words, 𝑝 is either open or settled
as true.

Our task is to specify all 𝔏𝑀-sentences that are valid on this understanding of
the box and the diamond. This will give us a system of modal logic, a set of 𝔏𝑀-
sentences that are valid on a certain interpretation of the box and the diamond. We
want to know which sentences are in the system – for short, which sentences are “in”
– and which are not.

If the box expresses historical necessity then □𝑝 clearly entails 𝑝. So □𝑝 → 𝑝 is
in. There is nothing special here about the sentence 𝑝. Whatever is settled is true.
Every instance of the schema □𝐴 → 𝐴 is in. (As mentioned in section 1.4, it follows
that every instance of 𝐴 →♢𝐴 is in as well.)

In the same vein, we may now look at other schemas. Arguably, all instances of
the following schemas – listed here with their conventional names – are valid, and
therefore in our target system:

¬♢𝐴 ↔ □¬𝐴(Dual)
□𝐴 → 𝐴(T)
□(𝐴 → 𝐵) → (□𝐴 →□𝐵)(K)
□𝐴 →□□𝐴(4)
♢𝐴 →□♢𝐴(5)

(Dual) corresponds to the duality principle (Dual1) from section 1.4. Its instances
are guaranteed to be valid by the fact that we have introduced the diamond as the dual
of the box.

We’ve already talked about (T).
(K) is a little easier to understand as a claim about entailment:

□(𝐴 → 𝐵),□𝐴 ⊧ □𝐵.

On our present interpretation, this says that if a material conditional 𝐴 → 𝐵 is settled,
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and its antecedent 𝐴 is settled, then its consequent 𝐵 is guaranteed to be settled as
well. Why should we accept this? Let 𝐴 and 𝐵 be arbitrary propositions, and assume
that 𝐴 → 𝐵 and 𝐴 are both settled. It follows that they are both true. Since 𝐴 → 𝐵 and
𝐴 entail 𝐵, it follows that 𝐵 is true as well. Could it be that 𝐵 is true but open?
Arguably not: If we could bring about a situation in which 𝐵 is false then we could
also bring about a situation in which either 𝐴 → 𝐵 or 𝐴 is false, since one of these
is guaranteed to be false in any situation in which 𝐵 is false. The assumption that
𝐴 → 𝐵 and 𝐴 are settled therefore implies that 𝐵 is settled. So all instances of (K) are
in.

(4) and (5) assert that facts about what is settled are themselves settled. (4) says
that if something is settled then it is settled that it is settled. (5) says that if something
is not settled then it is settled that it is not settled. Here it is important that we adopt
a consistent point of view. It is easy to think of situations in which something is
open to us (say, we could read a certain letter) and we can do something (say, burn
the letter) that would make it no longer open. This doesn’t contradict (5), since (5)
concerns what is open and settled now. If something is now open, then arguably
there is nothing we can do that would change the fact that it is now open. Likewise,
if something is now settled, then arguably there is nothing we can do that would
change the fact that it is now settled.

I could have listed further schemas. For example, whenever a conjunction is
settled, then both its conjuncts are plausibly settled as well. So every instance of
□(𝐴 ∧ 𝐵) → (□𝐴 ∧ □𝐵) should be in. There are, in fact, infinitely many further
schemas, not covered by the five above, whose instances belong to our target sys-
tem.

That’s the bad news. The good news is that we don’t need to list any of them. We
can replace the whole lot by specifying two rules for generating new sentences from
sentences we have already classified as “in”.

The first of these rules captures the plausible thought that anything that follows
from a valid sentence by classical (non-modal) propositional logic is itself valid.
Since we’ve decided that □𝑝 → 𝑝 is valid (in the logic of historical necessity), we
can, for example, infer that (□𝑝 → 𝑝) ∨ 𝑞 is also valid, because 𝐴 ∨ 𝐵 follows from
𝐴 in classical propositional logic. Our system of modal logic thereby becomes an
extension of classical propositional logic.

To state the rule concisely, let Γ ⊧𝑃 𝐴 mean that 𝐴 follows from Γ in classical
propositional logic – as can be determined, for example, by the truth table method.
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Then our rule says that for any list of sentences Γ and any sentence 𝐴,

If Γ ⊧𝑃 𝐴 and all members of Γ are in, then 𝐴 is in.(CPL)

As a special case, (CPL) implies that every propositional tautology is “in”, since
tautologies follow in classical propositional logic from any premises whatsoever
(and even from no premises).

Our second rule reflects the idea that all logical truths are settled: For any sentence
𝐴,

If 𝐴 is in, then □𝐴 is in.(Nec)

And now we’re done. I claim – and this may seem rather mysterious at the mo-
ment – that there is a natural understanding of historical necessity (of ‘settled’) on
which the sentences that are valid in the logic of historical necessity are precisely
the sentences that can be generated from instances of (T), (K), (4), (5) and (Dual) by
(CPL) and (Nec). (In fact, (4) is redundant: any instance of (4) can be derived from
the remaining axioms and rules.)

The system of modal logic defined by these schemas and rules is perhaps the best
known of all systems of modal logic. Its conventional name is ‘S5’ because it was
introduced as the fifth system in an influential list of systems published by C.I. Lewis
and C.H. Langford in 1932.

Other systems of modal logic can be defined by different schemas or rules. Lewis
and Langford’s system S4, for example, is defined by (T), (K), (4), (Dual), (CPL)
and (Nec), without (5). This system is adequate for other interpretations of the box
and the diamond, where we don’t want to treat all instances of (5) as valid.

Exercise 1.13
Which of the schemas and rules I have listed are plausible for the following
interpretations of the box (with the diamond defined as the box’s dual):
(a) it is true that
(b) it is false that
(c) it is either true or false that
(d) it is logically true that
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Remember that a system of modal logic is just a set of 𝔏𝑀-sentences. I have
defined the system S5 in terms of (T), (K), (4), (5), or (Dual), (CPL) and (Nec), but
the same system can be defined by many other combinations of schemas and rules.
(Lewis and Langford used a very different definition.)

The schemas and rules that I have chosen are called an axiomatisation of S5. The
schemas – or more precisely, their instances – are called axioms because they are
the starting points if we want to show that a sentence is in the system.

To illustrate this point, think of how we could show that □(𝑝 ∧ 𝑞) →□𝑝 is in S5
(that it is “S5-valid”). The sentence is not an instance of any of the schemas I have
listed. Instead, we may start with the non-modal sentence (𝑝 ∧ 𝑞) → 𝑝. This is a
propositional tautology, so (CPL) tells us that it is in S5. By (Nec), it follows that
□((𝑝 ∧ 𝑞) → 𝑝) is in S5 as well. Since all instance of (K) are in S5, the system
contains

□((𝑝 ∧ 𝑞) → 𝑝) → (□(𝑝 ∧ 𝑞) →□𝑝).

By Modus Ponens, □((𝑝∧𝑞) → 𝑝) and □((𝑝∧𝑞) → 𝑝) → (□(𝑝∧𝑞) →□𝑝) entail our
target sentence □(𝑝 ∧ 𝑞) →□𝑝. By (CPL), this means the target sentence is also in
S5.

Here is a more streamlined presentation of this line of reasoning.

1. (𝑝 ∧ 𝑞) → 𝑝 (CPL)
2. □((𝑝 ∧ 𝑞) → 𝑝) (1, Nec)
3. □((𝑝 ∧ 𝑞) → 𝑝) → (□(𝑝 ∧ 𝑞) →□𝑝) (K)
4. □(𝑝 ∧ 𝑞) →□𝑝 (2, 3, CPL)

We can use the same streamlined format to show that, say, □𝑝 →♢𝑝 is S5-valid.

1. □¬𝑝 → ¬𝑝 (T)
2. ¬♢𝑝 ↔ □¬𝑝 (Dual)
3. ¬♢𝑝 → ¬𝑝 (1, 2, CPL)
4. 𝑝 →♢𝑝 (3, CPL)
5. □𝑝 → 𝑝 (T)
6. □𝑝 →♢𝑝 (4, 5, CPL)
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These annotated lists look a lot like proofs. They are proofs. Every axiomatisa-
tion of a logical system defines a corresponding axiomatic calculus. A proof in an
axiomatic calculus is simply a list of sentences each of which is either an axiom or
follows from earlier sentences in the list by one of the rules. (The annotations on the
right are not officially part of the proof. They are added to help understand where
the lines come from.)

Exercise 1.14
Try to find axiomatic proofs showing that the following sentences are in S5.
(a) □(□𝑝 → 𝑝)
(b) (□𝑝 ∧ □𝑞) →□(𝑝 ∧ 𝑞)
(c) ♢¬𝑝 ↔ ¬□𝑝

Exercise 1.15
In the axiomatic calculus for S5, (Nec) allows us to derive □𝐴 from 𝐴. Some-
one might object that this inference is obviously invalid, since a sentence
might be true without being necessarily true. Can you explain why (Nec) is
an acceptable rule in the axiomatic calculus for S5?

The axiomatic method is the oldest formal method of proof. It has many virtues,
but user-friendliness is not among them. Even simple facts are often hard to prove
in an axiomatic calculus. In the next chapter, we will meet a different method that is
much easier to use.
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