
2 Possible Worlds

2.1 The possible-worlds analysis of possibility and

necessity

An important breakthrough in the history of modal logic was the development of
“possible-worlds semantics” in the 1940s-60s. The core idea of possible-worlds
semantics is to analyze modal notions in terms of truth at possible worlds. In its
simplest form, the analysis goes like this:

A proposition is possible iff it is true at some possible world.
A proposition is necessary iff it is true at all possible worlds.

In philosophy jargon, a possible world is a maximally specific possibility. An
example of a possible world is the actual world – the totality of everything that is
the case. In the actual world, light travels faster than sound and the Conservatives are
in government. In other possible worlds, sound travels faster than light and Labour
is in government.

The possible-worlds analysis translates modal statements into quantificational state-
ments about possible worlds. You may feel uneasy about this. Talking about merely
possible worlds may strike you as fanciful and unscientific. Besides, you may won-
der if anything is really gained by the translation, since we now face the question
what sorts of worlds should be classified as “possible”.

Remember that there are different flavours of modality. A proposition might be
epistemically possible, historically possible, metaphysically possible, and so on. If
we want to analyse all these kinds of possibility in terms of possible worlds, we
need different flavours of worlds. There must be epistemically possible worlds, his-
torically possible worlds, metaphysically possible worlds, etc. And if we ask how
these types of worlds are defined it looks like we have to turn back to relevant fea-
tures of the actual world. The ultimate reason why you can’t go from Auckland to
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2 Possible Worlds

Sydney by train is surely that there is no suitable train line here in our world, not that
you don’t make the journey in some non-actual worlds.

These objections cast doubt on the possible-worlds analysis as a piece of reduc-
tive metaphysics. But the metaphysics of modality is not our topic. When we use
the possible-world analysis, we don’t assume that the translation in terms of possi-
ble worlds reveals the metaphysical grounds of the original modal statements. We
merely assume that the original statements can be paraphrased in the fanciful lan-
guage of possible worlds.

For a first glimpse of why this might be useful, consider the following hypothesis.

□♢□𝑝 |= □𝑝

Is this true? If something is necessarily possibly necessary, does it follow that it is
necessary? Hard to say. We know that 𝐴 logically entails 𝐵 iff there is no conceivable
scenario in which 𝐴 is true and 𝐵 false, under any interpretation of the non-logical
expressions. The problem is that it is not obvious what a scenario would have to
look like for □♢□𝑝 to be true, under a given interpretation of 𝑝.

The possible-worlds analysis can help clear things up. By the possible-worlds
analysis, □♢□𝑝 says that ♢□𝑝 is true at every possible world. The hypothesis that
□♢□𝑝 is true in a scenario therefore reduces to the hypothesis that ♢□𝑝 is true at
every world in the scenario. ♢□𝑝 says that □𝑝 is true at some world. So if ♢□𝑝
is true at every world in a scenario then □𝑝 is true at some world in the scenario.
And if □𝑝 is true at some world in a scenario then 𝑝 is true at every world in the
scenario. This is just what □𝑝 says. So whenever □♢□𝑝 is true in a scenario (under
some interpretation of 𝑝), then □𝑝 is true in that scenario (under that interpretation).
We’ve shown that □♢□𝑝 entails □𝑝.

Exercise 2.1
Explain, in the same informal manner, why ♢𝑝 does not entail □𝑝, assuming
the possible-worlds analysis of the box and the diamond.
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2.2 Models

In section 1.3, I defined validity and entailment in terms of scenarios and interpre-
tations. A sentence is valid, I said, iff it is true in every conceivable scenario under
every interpretation of the non-logical expressions. This is a little vague. What, ex-
actly, is a conceivable scenario, and what counts as a relevant interpretation? Also,
scenarios and interpretations are unwieldy objects. It is difficult to give a full de-
scription of a scenario and an interpretation. Fortunately, most of the details are
irrelevant if all we care about is which 𝔏𝑀-sentences are true and which are false in
a scenario under a particular interpretation. This observation will lead us to a more
precise definition of validity and entailment.

Suppose I tell you the following about a scenario 𝑆 and an interpretation 𝐼 of the
sentence letters.

There are three worlds in 𝑆, 𝑤1, 𝑤2, and 𝑤3. Under the interpretation
𝐼 , the sentence 𝑝 expresses a proposition that is true at 𝑤1, false at 𝑤2,
and true at 𝑤3. All other sentence letters express propositions that are
false at all three worlds.

This tells you almost nothing about what the scenario looks like. You don’t know
if 𝑤1 is a world at which it is currently raining. You don’t know who is in government
at 𝑤2. You also don’t know what the sentence letters mean under my interpretation.
Does 𝑝 mean that it is raining? That Labour is in government? I haven’t told you.
Yet the sparse information I have given is enough to determine the truth-value of
every 𝔏𝑀-sentence at every world.

Exercise 2.2
Which of the following sentences are true at 𝑤1 in my scenario 𝑆 under my
interpretation 𝐼?
(a) ¬𝑝
(b) ¬𝑝 →□𝑝
(c) □𝑝
(d) ♢□𝑝
(e) ♢♢𝑝 ∨ ♢□𝑝
(f) □(□𝑝 → 𝑝)

31



2 Possible Worlds

A joint representation of a scenario and an interpretation (of non-logical expres-
sions) that contains just enough information to determine the truth-value of every
sentence is called a model. Just as a model airplane often leaves out important as-
pects of a real airplane – the motor, the seats, etc. – models in logic leave out many
important aspects of the scenarios and interpretations they represent.

Adopting the simple possible-worlds analysis of the box and the diamond, we can
define a model for 𝔏𝑀 as consisting of two parts. First, a model must specify a set
of things we call “worlds”. They don’t need to be genuine worlds. They can be
arbitrary (usually not further specified) objects whose job is to represent genuine
worlds. Second, a model must specify an “interpretation function” that tells us for
each sentence letter at which of the worlds it is true.

Definition 2.1
A basic model of 𝔏𝑀 is a pair ⟨𝑊, 𝑉 ⟩ of
• a non-empty set 𝑊 , and
• a function 𝑉 that assigns to each sentence letter of 𝔏𝑀 a subset of 𝑊 .

In the next chapter, we will replace this definition by a slightly more complicated
definition. That’s why I’ve called models of the present kind ‘basic’.

You should be familiar with elementary concepts of set theory. A set is a collection
of objects, called the members or elements of the set. Sets can be defined by listing
their members enclosed in curly braces: ‘{𝑎, 𝑏, 𝑐}’. The empty set, with no members,
is denoted by ‘∅’. A subset of a set 𝑋 is a set all whose members are members of 𝑋.
A function is a mapping – a kind of abstract machine that takes objects of a certain
kind as input and outputs objects of a possibly different kind.

The interpretation function 𝑉 in a model maps each sentence letter to the set of
worlds at which the sentence is true. For example, if 𝑊 contains three worlds 𝑤1, 𝑤2,
and 𝑤3, and 𝑉(𝑝) = {𝑤1, 𝑤3} – meaning that 𝑉 maps 𝑝 to the set {𝑤1, 𝑤3} –, then 𝑝
is true at 𝑤1 and 𝑤3 but not at 𝑤2.

Notice that an interpretation function only specifies at which worlds the sentence
letters are true. 𝑉 is defined for 𝑝, 𝑞, and 𝑟, but not for 𝑝 → 𝑞 or □𝑝 or ♢□𝑞. This
is the key idea behind the possible-worlds analysis. Once we know at which worlds
each sentence letter is true, we have all we need to determine the truth-value of every
sentence at every world.
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To formally define how the truth-value of complex sentences is determined, I will
use (meta-linguistic) statements of the form

𝑀, 𝑤 |= 𝐴

as shorthand for

𝐴 is true at world 𝑤 in model 𝑀.

I use ‘𝑀, 𝑤 |≠ 𝐴’ for the negation of ‘𝑀, 𝑤 |= 𝐴’. I use ‘𝑀, 𝑤 |≠ 𝐴’ for the negation
of ‘𝑀, 𝑤 |= 𝐴’.

Yes, it’s the same turnstile that we use for entailment and validity. This should
cause no confusion because it is usually clear if the things to the left of the turnstile
are 𝔏𝑀-sentences or meta-linguistic expressions for a model and a world. (In its
present use, the turnstile is often pronounced ‘makes true’ or ‘satisfies’.)

The relation |= between a model, a world and an 𝔏𝑀-sentence is defined as follows.

Definition 2.2: Basic Possible-Worlds Semantics
If 𝑀 = ⟨𝑊, 𝑉 ⟩ is a basic model, 𝑤 is a member of 𝑊 , 𝑃 is any sentence letter,
and 𝐴, 𝐵 are any 𝔏𝑀-sentences, then

(a) 𝑀, 𝑤 |= 𝑃 iff 𝑤 is in 𝑉(𝑃).
(b) 𝑀, 𝑤 |= ¬𝐴 iff 𝑀, 𝑤 |≠ 𝐴.
(c) 𝑀, 𝑤 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑤 |= 𝐴 and 𝑀, 𝑤 |= 𝐵.
(d) 𝑀, 𝑤 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑤 |= 𝐴 or 𝑀, 𝑤 |= 𝐵.
(e) 𝑀, 𝑤 |= 𝐴 → 𝐵 iff 𝑀, 𝑤 |≠ 𝐴 or 𝑀, 𝑤 |= 𝐵.
(f) 𝑀, 𝑤 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑤 |= 𝐴 → 𝐵 and 𝑀, 𝑤 |= 𝐵 → 𝐴.
(g) 𝑀, 𝑤 |= □𝐴 iff 𝑀, 𝑣 |= 𝐴 for all 𝑣 in 𝑊 .
(h) 𝑀, 𝑤 |= ♢𝐴 iff 𝑀, 𝑣 |= 𝐴 for some 𝑣 in 𝑊 .

Let’s go through the clauses in this definition.
Clause (a) says that a sentence letter is true at a world in a model iff the world is

an element of the set of worlds which the model’s interpretation function assigns to
the sentence letter. This is just what I explained above.

Clause (b) says that the negation ¬𝐴 of an 𝔏𝑀-sentence 𝐴 is true at a world in a
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model iff 𝐴 is not true at that world in that model. In other words, the truth-table
for negation applies locally at every world: at any world, ¬𝐴 is true iff 𝐴 is not true.
Clauses (c)–(f) similarly tell us that the truth-tables for the other truth-functional
connectives apply locally at each world.

Clauses (g) and (h) spell out the possible-worlds analysis of the box and the dia-
mond. According to (g), a sentence □𝐴 is true at a world in a model iff 𝐴 is true at
all worlds in the model. According to (h), ♢𝐴 is true at a world in a model iff 𝐴 is
true at some world in the same model.

The whole definition is called a semantics because a semantics for a language
is an account of what the expressions in the language mean, and definition 2.2 can
be seen as giving the meaning of the logical expressions in 𝔏𝑀 . (The non-logical
expressions in 𝔏𝑀 don’t have a fixed meaning.)

Since every 𝔏𝑀-sentence is built up from sentence letters with the operators cov-
ered in definition 2.2, the definition settles the truth-value of every sentence at every
world in every model.

Consider, for example, the following model 𝑀:

𝑊 = {𝑤1, 𝑤2}
𝑉(𝑝) = {𝑤1, 𝑤2}
𝑉(𝑞) = {𝑤1}
𝑉(𝑃) = ∅ for all other sentence letters 𝑃

This model contains only two worlds, 𝑤1 and 𝑤2. The interpretation function 𝑉
indicates that 𝑝 is true at both worlds, 𝑞 is true at 𝑤1, and all other sentence letters
are true nowhere. With the help of definition 2.2, we can figure out at which of
the two worlds, say, □♢(□𝑞 →♢□𝑝) is true. We start with the smallest parts of the
sentence.

1. 𝑝 is true at 𝑤1 and 𝑤2 (by clause (a) of definition 2.2).
2. 𝑞 is true at 𝑤1 and not true at 𝑤2 (by clause (a) of definition 2.2).
3. □𝑝 is true at 𝑤1 and 𝑤2 (by 1 and clause (g) of definition 2.2).
4. □𝑞 is true at no world (by 2 and clause (g) of definition 2.2).
5. ♢□𝑝 is true at 𝑤1 and 𝑤2 (by 3 and clause (h) of definition 2.2).
6. (□𝑞 →♢□𝑝) is true at 𝑤1 and 𝑤2 (by 4, 5, and clause (e) of definition 2.2).
7. ♢(□𝑞 →♢□𝑝) is true at 𝑤1 and 𝑤2 (by 6 and clause (h) of definition 2.2).
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2 Possible Worlds

8. □♢(□𝑞 →♢□𝑞) is true at 𝑤1 and 𝑤2 (by 7 and clause (g) of definition 2.2).

Exercise 2.3
At which worlds in the model just described is ♢𝑝 → (𝑞 ∨ ♢□𝑝) true?

2.3 Basic entailment and validity

Using the concept of a model, we can sharpen the hand-wavy definitions of entail-
ment and validity from section 1.3.

Imagine a list of all conceivable scenarios and all possible interpretations of the
sentence letters. By definition 1.3, a sentence is valid iff it is true in all of these sce-
narios under each of these interpretations. Every combination of a scenario 𝑆 and an
interpretation 𝐼 is represented by a model. The model contains enough information
to figure out whether any given sentence is true or false in 𝑆 under 𝐼 . Assuming that,
conversely, every model represents some combination of a scenario and an interpre-
tation, it follows that a sentence is valid iff it is true in every model. In the same
way, some sentences Γ entail a sentence 𝐴 iff 𝐴 is true in every model in which all
members of Γ are true.

That’s the idea. There is, however, a small problem. Take a model with two worlds,
𝑊 = {𝑤1, 𝑤2}, and assume that 𝑉(𝑝) = {𝑤1}. Is 𝑝 true in this model? We can’t say.
Definition 2.2 only specifies under what conditions a sentence is true at a world in
a model. We have not defined what it means for a sentence to be true in a model. So
we can’t say that a sentence is valid iff it is true in all models.

There are two ways to fix this. The conceptually cleaner response is to change
the definition of a model. Intuitively, the worlds in a scenario are not all on a par.
Think of a scenario in which it is raining although it might have been snowing. This
scenario has worlds at which it is raining and others at which it is snowing. One of
these worlds – a rain world – is special: it represents the actual world in the scenario.
‘It is raining’ is true in the scenario because it is raining in the actual world of the
scenario. Following this line of thought, we could define a model to consist of three
elements: a set of worlds 𝑊 , an interpretation function 𝑉 , and a “designated element
of 𝑊” that indicates which world in 𝑊 represents the actual world of the scenario.
We could then say that a sentence is true in a model iff it is true at the actual world
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of the model. Models of this type – with a designated element of 𝑊 – are called
pointed models.

We will adopt the more popular second response. Here we change the definition
of entailment and validity. Instead of saying that a sentence is valid iff it is true
in every model, we say that a sentence is valid iff it is true at every world in every
model. Similarly, we say that some sentences Γ entail a sentence 𝐴 iff 𝐴 is true at
every world in every model at which all members of Γ are true.

The two responses amount to the same thing. Since every world in every basic
(un-pointed) model could be chosen as the designated world, a sentence is true at all
worlds in all basic models just in case it is true in all pointed models. The response
we adopt has the minor advantage of keeping models slightly simpler, and logicians
want their models to be as simple as possible.

Definition 2.3
A sentence 𝐴 is valid (for short: |= 𝐴) iff it is true at every world in every basic
model.

Definition 2.4
Some sentences Γ (logically) entail a sentence 𝐴 (for short: Γ |= 𝐴) iff there
is no world in any basic model at which all sentences in Γ are true while 𝐴 is
false.

Exercise 2.4
Call a sentence true throughout a model iff it is true at every world in the
model. What do you think of the following definition? ‘Γ |= 𝐴 iff there is no
model throughout which all sentences in Γ are true and throughout which 𝐴
is false.’ Is this equivalent to definition 2.4? (Hint: consider the hypothesis
that 𝑝 |= □𝑝.)

Above I mentioned an assumption implicit in our new definitions: that every
model represents a pair of a conceivable scenario and interpretation. This isn’t ob-
vious. For example, if our topic is metaphysical possibility and necessity, it may be
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hard to conceive of a scenario with exactly two possible worlds. Is it really conceiv-
able that there are only two ways a world might have been, compatible with the nature
of things? We could stipulate that a model, at least for this application, must contain
at least (say) a million worlds, or infinitely many. It turns out, however, that this
would make no difference to the logic. The very same sentences are valid whether
we impose the restriction or not. So we’ll allow for models with very few worlds.
Such models are often useful as toy models to illustrate facts about entailment and
validity.

2.4 Explorations in S5

By definition 2.3, a sentence is valid iff it is true at all worlds in all (basic) models.
Definition 2.1 explains what a (basic) model is; definition 2.2 specifies the truth-
value of any sentence at any world in any model. Together, these definitions settle
which sentences are valid.

Take, for instance, □𝑝 → 𝑝. This is valid on our definitions. To see why, let 𝑤 be
an arbitrary world in an arbitrary model 𝑀. Either 𝑝 is true at 𝑤 or not. If 𝑝 is true
at 𝑤, then by clause (e) of definition 2.2, □𝑝 → 𝑝 is also true at 𝑤. If 𝑝 is not true at
𝑤, then by clause (g) of definition 2.2, □𝑝 is not true at 𝑤 in 𝑀, and then □𝑝 → 𝑝 is
true at 𝑤 by clause (e). Either way, □𝑝 → 𝑝 is true at 𝑤. Since 𝑤 and 𝑀 were chosen
arbitrarily, this shows that every instance of □𝑝 → 𝑝 is true at every world in every
model.

(In the previous chapter, I mentioned that for some applications of modal logic,
we don’t want □𝑝 → 𝑝 to be valid. In the next chapter, we will see how this can be
achieved, by adding a slight tweak to the definitions of the present chapter.)

How about, say, □𝑝 →□□𝑝? If something is necessary, is it necessarily neces-
sary? Our semantics says yes. Let 𝑤 be an arbitrary world in an arbitrary model. If
□𝑝 is false at 𝑤, then □𝑝 →□□𝑝 is true at 𝑤, by clause (e) of definition 2.2. Sup-
pose then that □𝑝 is true at 𝑤. In that case, 𝑝 is true at all worlds, by clause (g) of
definition 2.2. And then □𝑝 is true at all worlds, again by clause (g). And so □□𝑝 is
also true at all worlds, by clause (g). So whenever □𝑝 is true at a world in a model,
then so is □□𝑝. By clause (e) of definition 2.2, it follows that □𝑝 →□□𝑝 is true at
every world in every model.
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Exercise 2.5
Show that □𝑝 →♢𝑝 is valid.

There is a shorter way to show that □𝑝 →□□𝑝 is valid. Definition 2.2 entails
that if a sentence starts with a modal operator, then its truth-value never varies from
world to world. For example, if ♢𝑝 is true at some world 𝑤 in some model, then ♢𝑝
is true at all worlds in the model. It follows that if a sentence starts with a modal
operator, then its truth-value doesn’t change if you stack further modal operators in
front. If ♢𝑝 is true at a world in a model, then so are □♢𝑝 and ♢♢𝑝.

This means that any sentence that begins with a sequence of modal operators is
equivalent to the same sentence with all but the last operator removed. ♢□□♢♢𝑝
is equivalent to ♢𝑝. □□𝑝 is equivalent to □𝑝. Since replacing logically equivalent
sentences inside a larger sentence never affects the larger sentence’s truth-value at
any world, □□𝑝 →□𝑝 is equivalent to □𝑝 →□𝑝. And this is obviously valid.

Do not conflate the concepts of necessity and validity. Necessity means truth at all
worlds (or so we currently assume). Validity means truth at all worlds in all models.
Whether an 𝔏𝑀 sentence is necessary generally varies from model to model. In a
model whose interpretation function makes 𝑝 true at all worlds, 𝑝 is necessary insofar
as □𝑝 is true at all worlds. In a model whose interpretation function makes 𝑝 false at
some world, □𝑝 is false at all worlds. Validity, by contrast, is not relative to a model.
The sentence 𝑝 is definitely not valid. The sentence □𝑝 → 𝑝 is.

Exercise 2.6
Show that if a sentence 𝐴 is valid, then so is □𝐴.

Here is an example of an invalid sentence:

□(𝑝 ∨ 𝑞) → (□𝑝 ∨ □𝑞)

How could we show that this is invalid? By definition 2.3, a sentence is valid iff it
is true at all worlds in all models. So we have to find some model in which there is
some world at which the sentence is false. Such a model is called a countermodel
for the sentence. The following model is a countermodel for the sentence above, as
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you should verify with the help of definition 2.2.

𝑊 = {𝑤, 𝑣}
𝑉(𝑝) = {𝑤}
𝑉(𝑞) = {𝑣}

I haven’t explained at which worlds sentence letters other than 𝑝 and 𝑞 are true, be-
cause it doesn’t matter.

Exercise 2.7
Show that 𝑝 →□𝑝 is invalid (and thus 𝑝 |≠ □𝑝), by giving a countermodel.
Explain why this doesn’t contradict the previous exercise.

Exercise 2.8
Show that for any sentences 𝐴, 𝐵, if |= 𝐴 → 𝐵, then also |= □𝐴 →□𝐵.

Earlier in this section, I showed that □𝑝 → 𝑝 and □𝑝 →□□𝑝 are valid. The argu-
ments I gave easily generalise to other sentences in place of 𝑝. So all instances of
the following schemas are valid: □𝐴 → 𝐴 and □𝐴 →□□𝐴.

You may remember these schemas as the schemas (T) and (4) from section 1.5.
You may also remember that I defined the system S5 by stipulating that it contains
all instances of the following schemas:

¬♢𝐴 ↔ □¬𝐴(Dual)
□𝐴 → 𝐴(T)
□(𝐴 → 𝐵) → (□𝐴 →□𝐵)(K)
□𝐴 →□□𝐴(4)
♢𝐴 →□♢𝐴(5)

You can check that all instances of these schemas are valid by the definitions of the
present chapter.

I also specified two rules for S5. The first says that any truth-functional conse-
quence of any sentences in S5 is itself in S5. The second says that whenever a
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sentence 𝐴 is in S5, then so is □𝐴. As we will show chapter 4, these rules preserve
validity (as defined in the previous section). Indeed, you will learn how to show that
the sentences that are valid by our present definitions are precisely the sentences in
S5.

In the meantime, let’s prove a simpler fact to which I have appealed above (as well
as on page 18 in the previous chapter): that replacing logically equivalent sentences
inside a larger sentence never affects the larger sentence’s truth-value at any world.

Observation 2.1: If 𝐴 is an 𝔏𝑀-sentence and 𝐴′ results from 𝐴 by replacing
a subsentence of 𝐴 with a logically equivalent sentence, then 𝐴 and 𝐴′ are
logically equivalent.

Proof. Remember that two sentences are logically equivalent if each entails the
other. By definition 2.4, this means that the two sentences are true at the same
worlds in every model.

Now let 𝐴 be an arbitrary 𝔏𝑀-sentence and assume that 𝐴′ results from 𝐴 by
replacing a subsentence of 𝐴 with a logically equivalent sentence. To show that 𝐴
and 𝐴′ are equivalent, we first show that this holds for the special case where 𝐴 is
a sentence letter. Then we consider different ways in which 𝐴 might be built up
from simpler sentences and show that if the observation holds for those simpler
sentences, then it also holds for 𝐴 itself.

So assume that 𝐴 is a sentence letter. In that case, 𝐴 has no sentences as proper
parts. The observation is vacuously true. (There is no way of turning 𝑝 into a
non-equivalent sentence by replacing a subsentence within 𝑝.)

Next we assume that 𝐴 is a complex sentence and that the observation holds for
all simpler sentences.

To begin, assume that 𝐴 is the negation of another sentence 𝐵. So 𝐴 is ¬𝐵 and 𝐴′

is ¬𝐵′ for some sentence 𝐵′ that is either equivalent to 𝐵 (if 𝐵 is the subsentence
of 𝐴 that has been replaced to yield 𝐴′) or that results from 𝐵 by replacing a sub-
sentence within 𝐵 by an equivalent sentence (if the subsentence of 𝐴 that has been
replaced to yield 𝐴′ isn’t 𝐵). In the latter case, our assumption that the observation
holds for sentences simpler than 𝐴 implies that 𝐵 and 𝐵′ are equivalent. Either
way, then, 𝐵 and 𝐵′ are logically equivalent: they are true at the same worlds in
every model. By clause (b) of definition 2.2, it follows that 𝐴 and 𝐴′ are also true
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at the same worlds in every model.
Essentially the same reasoning applies in the case where 𝐴 is a conjunction 𝐵∧𝐶,

a disjunction 𝐵 ∨ 𝐶, a conditional 𝐵 → 𝐶, a biconditional 𝐵 ↔ 𝐶, a box sentence
□𝐵, and a diamond sentence ♢𝐵. I won’t bore you by going through all of them.
Here is the case for □𝐵.

Assume that 𝐴 has the form □𝐵. So 𝐴 is □𝐵 and 𝐴′ is □𝐵′ for some sentence 𝐵′

that is equivalent to 𝐵 (by the same reasoning as before). By clause (g) of definition
2.2 it follows that 𝐴 and 𝐴′ are also equivalent.

The style of proof I have used here is called an induction on complexity. It is
widely used when reasoning about formal languages. In general, if you want to show
that every sentence of a language has a certain property, it suffices to show that (i)
all atomic sentences of the language have the property, and (ii) if all sentences that
are simpler than a sentence have the property then so does the sentence itself. (In
this context, the assumption that all simpler sentences have the property is called the
induction hypothesis.)

2.5 Trees

I will now introduce a streamlined method for working through definition 2.2 to
check whether a sentence is valid: the method of analytic tableau or tree proofs.
(You may be familiar with this method for non-modal logic. If so, good. If not, no
problem.) It best introduced by example.

Let’s check if ♢𝑝 →□𝑝 is valid. We do this by trying to construct a counter-
model. A countermodel for ♢𝑝 →□𝑝 is a model in which there is some world 𝑤
at which ♢𝑝 →□𝑝 is false. We start our construction by assuming that the negation
of ♢𝑝 →□𝑝 is true at 𝑤. We write this down as follows.

1. ¬(♢𝑝 →□𝑝) (𝑤) (Ass.)

‘1.’ and ‘(Ass.)’ are for book-keeping; ‘Ass.’ is short for ‘Assumption’, since we’re
assuming that ¬(♢𝑝 →□𝑝) is true at 𝑤. Now we unfold this assumption in accor-
dance with definition 2.2. The definition tells us that a conditional 𝐴 → 𝐵 is false at
a world 𝑤 iff the antecedent 𝐴 is true at 𝑤 and the consequent 𝐵 is false at 𝑤. So
the assumption on line 1 implies that ♢𝑝 is true at 𝑤 and that □𝑝 is false at 𝑤. We
expand our “tree” (or “tableau”) by adding these consequences.
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1. ¬(♢𝑝 →□𝑝) (𝑤) (Ass.) ✓
2. ♢𝑝 (𝑤) (1)
3. ¬□𝑝 (𝑤) (1)

I have ticked off line 1 (with ‘✓’) to mark that we won’t need to look at it again. All
the information in line 1 is contained in lines 2 and 3. The parenthetical ‘(1)’ at lines
2 and 3 reminds us that these lines are derived from line 1.

We continue drawing out further consequences. What does the truth of ♢𝑝 at 𝑤
imply for the subsentence 𝑝? By definition 2.2, there must be some world – let’s call
it 𝑣 – at which 𝑝 is true.

1. ¬(♢𝑝 →□𝑝) (𝑤) (Ass.) ✓
2. ♢𝑝 (𝑤) (1) ✓
3. ¬□𝑝 (𝑤) (1)
4. 𝑝 (𝑣) (2)

Line 3 claims that □𝑝 is false at 𝑤. By definition 2.2, □𝑝 is true at 𝑤 iff 𝑝 is true
at all worlds. So if □𝑝 is false at 𝑤, there must be some world at which 𝑝 is false.
Let’s introduce such a world, naming it 𝑢. Our tree looks as follows.

1. ¬(♢𝑝 →□𝑝) (𝑤) (Ass.) ✓
2. ♢𝑝 (𝑤) (1) ✓
3. ¬□𝑝 (𝑤) (1) ✓
4. 𝑝 (𝑣) (2)
5. ¬𝑝 (𝑢) (3)

Now the only unprocessed lines are hypotheses about sentence letters and nega-
tions of sentence letters. Sentence letters don’t have (non-trivial) subsentences, so
we can’t use definition 2.2 to further break down 4 or 5. The tree is complete. We
have found a countermodel for ♢𝑝 →□𝑝.

Let’s read off the countermodel. There are three worlds in our tree: 𝑤, 𝑣, and 𝑢.
So 𝑊 = {𝑤, 𝑢, 𝑣}. By line 4, 𝑝 is true at 𝑣. By line 5, 𝑝 is false at 𝑢. We don’t know
whether 𝑝 is true or false at 𝑤, and it doesn’t matter – otherwise the tree would say.
Let’s assume that 𝑉(𝑝) = {𝑣}. As you can verify, ♢𝑝 →□𝑝 is indeed false at world
𝑤 in this model.
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One more example, before I state the general rules. Let’s try to find a counter-
model for □(𝑝 → 𝑞) → (𝑝 →□𝑞). That’s another conditional, so we begin as before.

1. ¬(□(𝑝 → 𝑞) → (𝑝 →□𝑞)) (𝑤) (Ass.) ✓
2. □(𝑝 → 𝑞) (𝑤) (1)
3. ¬(𝑝 →□𝑞) (𝑤) (1)

Line 1 assumes that the negation of the conditional is true at some world 𝑤. Lines
2 and 3 break down this assumption, using the fact that ¬(𝐴 → 𝐵) is true (at a world)
iff 𝐴 is true and 𝐵 false. We could deal with line 2 next, but it’s better to ignore it for
the moment and process 3 first, which is yet another negated conditional.

4. 𝑝 (𝑤) (3)
5. ¬□𝑞 (𝑤) (3)

Line 5 tells us that □𝑞 is false at 𝑤. We can infer that there is a world – call it 𝑣 –
at which 𝑞 is false.

6. ¬𝑞 (𝑣) (5)

Now we need to return to line 2. What can we infer from the hypothesis that
□(𝑝 → 𝑞) is true at 𝑤 about the subsentence 𝑝 → 𝑞? By definition 2.2, 𝑝 → 𝑞 must be
true at every world. So, in particular, 𝑝 → 𝑞 must be true at 𝑤. Let’s write that down.
We’ll add another line for 𝑣 later, so we don’t check off node 2.

7. 𝑝 → 𝑞 (𝑤) (2)

If you are used to proofs in the natural deduction style, you may now be tempted
to apply modus ponens and infer that 𝑞 is true at 𝑤, from lines 4 and 7. In the tree
method, however, we try not to draw inferences from multiple premises. We simply
look at any lines that can still be processed and check what definition 2.2 tells us
about the immediate subsentences of the sentence on that line. So we process line 7
without looking at line 4.

What can we infer from the truth of 𝑝 → 𝑞 at 𝑤 about the subsentences 𝑝 and 𝑞?
By definition 2.2, 𝑝 → 𝑞 is true at 𝑤 if 𝑝 is false at 𝑤 or 𝑞 is true at 𝑤. We have to
keep track of both possibilities. Our (upside down) tree will branch. Here is the full
tree at its present stage.
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1. ¬(□(𝑝 → 𝑞) → (𝑝 →□𝑞)) (𝑤) (Ass.) ✓
2. □(𝑝 → 𝑞) (𝑤) (1)
3. ¬(𝑝 →□𝑞) (𝑤) (1) ✓
4. 𝑝 (𝑤) (3)
5. ¬□𝑞 (𝑤) (3) ✓
6. ¬𝑞 (𝑣) (5)
7. 𝑝 → 𝑞
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hh
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VV

(𝑤) (2) ✓

8. ¬𝑝
x

(𝑤) (7) 9. 𝑞 (𝑤) (7)

So far, I have called the numbered items on a tree ‘lines’. The proper term is nodes.
Since nodes 8 and 9 are visually on the same line, it would be confusing to call them
lines. While we’re at it, a branch of a tree is series of nodes that extends from the
top (or “root”) node all the way down to a node below which there is no other node.
The present tree has two branches, both of which contain 8 nodes.

What does this tree tell us? Remember that our aim is to construct a model in
which the sentence at node 1 is true at world 𝑤. At this stage, the tree tells us that
this model contains two worlds 𝑤 and 𝑣; nodes 4 and 6 tell us something about the
model’s interpretation function: 𝑝 is true at 𝑤, 𝑞 is false at 𝑣. After node 7, the
tree branches. This means that there are two ways of extending the model we have
construed so far. On the left branch, we explore an extension of the model in which
𝑝 is false at 𝑤. On the right branch, we explore an extension in which 𝑞 is true at 𝑤.
But hold on. We already know that 𝑝 is true at 𝑤 (from node 4). There’s no model in
which 𝑝 is both true and false at 𝑤. So the possibility explored on the left branch is a
dead-end. it doesn’t lead to a countermodel. That’s why I’ve closed the left branch
by drawing a cross below node 8.

We continue on the right-hand branch. Here we expand node 2 again, this time
for world 𝑣, which leads to another branching.
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1. ¬(□(𝑝 → 𝑞) → (𝑝 →□𝑞)) (𝑤) (Ass.) ✓
2. □(𝑝 → 𝑞) (𝑤) (1)
3. ¬(𝑝 →□𝑞) (𝑤) (1) ✓
4. 𝑝 (𝑤) (3)
5. ¬□𝑞 (𝑤) (3) ✓
6. ¬𝑞 (𝑣) (5)
7. 𝑝 → 𝑞
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(𝑤) (2) ✓

8. ¬𝑝
x

(𝑤) (7) 9. 𝑞 (𝑤) (7)
10. 𝑝 → 𝑞
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(𝑣) (2)

11. ¬𝑝 (𝑣) (10) 12. 𝑞
x

(𝑣) (10)

On the right-most branch, 𝑞 is true at 𝑣 (by node 12) but also false at 𝑣 (by node 6),
so that branch is closed. But the middle possibility is still open, and there are no
more nodes to unfold. We have found a countermodel.

The countermodel is given by all the nodes on the middle branch, the one that
remained open. (The other branches were dead-ends and can be ignored.) We have
two worlds, 𝑊 = {𝑤, 𝑣}. The interpretation function 𝑉 makes 𝑝 true at 𝑤 (node 4)
and false at 𝑣 (node 11); 𝑞 is also true at 𝑤 (node 9) and false at 𝑣 (node 6). Again,
you may verify that the sentence on node 1 is true at world 𝑤 in this model.

Now for the general rules.
In order to find a countermodel for a sentence 𝐴 with the help of the tree method,

you always begin by assuming that the negation of 𝐴 is true at world 𝑤:

1. ¬𝐴 (𝑤) (Ass.)

You then expand this node, and you continue expanding new nodes that appear on
the tree, until no more nodes can be expanded.

To expand a node with a non-negated sentence, you consider what the truth of that
sentence at the node’s world implies for the truth-value of the sentence’s immediate
parts. The result may be added to the end of any open branch containing the node.
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(The immediate parts of a sentence of the form 𝐴 ∧ 𝐵, 𝐴 ∨ 𝐵, 𝐴 → 𝐵, or 𝐴 ↔ 𝐵
are the corresponding sentences 𝐴 and 𝐵; the only immediate part of □𝐴, ♢𝐴, and
¬𝐴 is 𝐴.)

To expand a node with a negation ¬𝐴, you consider what the falsity of the relevant
sentence 𝐴 at the node’s world implies for the immediate parts of 𝐴. The result may
again be added to the end of any open branch containing the node.

The following diagrams summarize how the different kinds of nodes are expanded.
I use ‘𝜔’ and ‘𝜈’ as placeholders for arbitrary world variables.

𝐴 ∧ 𝐵 (𝜔)

𝐴 (𝜔)
𝐵 (𝜔)

𝐴 ∨ 𝐵
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PPP
P

(𝜔)

𝐴 (𝜔) 𝐵 (𝜔)

𝐴 → 𝐵
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nnn

n
PPP

PPP
P

(𝜔)

¬𝐴 (𝜔) 𝐵 (𝜔)

𝐴 ↔ 𝐵

nnn
nnn

n
PPP

PPP
P

(𝜔)

𝐴 (𝜔) ¬𝐴 (𝜔)
𝐵 (𝜔) ¬𝐵 (𝜔)

□𝐴 (𝜔)

𝐴 (𝜈)
↑

old

♢𝐴 (𝜔)

𝐴 (𝜈)
↑

new

¬(𝐴 ∧ 𝐵)

nnn
nnn

n
PPP

PPP
P

(𝜔)

¬𝐴 (𝜔) ¬𝐵 (𝜔)

¬(𝐴 ∨ 𝐵) (𝜔)

¬𝐴 (𝜔)
¬𝐵 (𝜔)

¬(𝐴 → 𝐵) (𝜔)

𝐴 (𝜔)
¬𝐵 (𝜔)
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¬(𝐴 ↔ 𝐵)
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(𝜔)

𝐴 (𝜔) ¬𝐴 (𝜔)
¬𝐵 (𝜔) 𝐵 (𝜔)

¬□𝐴 (𝜔)
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↑
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¬♢𝐴 (𝜔)

¬𝐴 (𝜈)
↑
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¬¬𝐴 (𝜔)

𝐴 (𝜔)

If a branch of a tree contains a sentence 𝐴 as well as its negation ¬𝐴, for the same
world 𝜔, then the branch is closed with an x at the bottom.

The rule for □𝐴 says that from the assumption that □𝐴 is true at a world 𝜔 you
may infer that 𝐴 is true at any world 𝜈 that already occurs on the branch to which
the new node is added. You’re not allowed to introduce a new world variable (‘𝑣’,
‘𝑢’, etc.) when expanding □𝐴 nodes. The same is true for ¬♢𝐴 nodes (which by
duality means the same as □¬𝐴). When you expand a ♢𝐴 node (or a ¬□𝐴 node),
by contrast, you must introduce a new world variable.

Nodes of type □𝐴 and ¬♢𝐴 can be expanded several times, once for every world
variable on any branch containing the node.

If you have expanded a node that is not of type □𝐴 or ¬♢𝐴, and you have added
the new nodes to every open branch containing the node, then you can tick off the
node. You don’t need to look at it again. Nodes of type □𝐴 and ¬♢𝐴 are never ticked
off.

If no more rules can be applied, the tree is complete. Any open branch on a
complete tree defines a countermodel for the target sentence.

Exercise 2.9
Use the tree method to find countermodels for the following sentences. (Spell
out the countermodel, in addition to drawing the tree.)
(a) 𝑝 → 𝑞
(b) 𝑝 →□(𝑝 ∨ 𝑞)
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(c) □𝑝 ∨ □¬𝑝
(d) ♢(𝑝 → 𝑞) → (♢𝑝 →♢𝑞)
(e) □♢𝑝 → 𝑝

What if all branches on a tree close? Then there is no countermodel for the target
sentence. If there is no countermodel for a sentence, then the sentence is valid. This
is how the tree method is used to show that a sentence is valid.

The following tree shows that ♢¬𝑝 ↔ ¬□𝑝 is valid. Make sure you understand
each step. (I’ve omitted the check marks since these are only useful during the con-
struction phase.)

1. ¬(♢¬𝑝 ↔ ¬□𝑝)
hhhh

hhhh
hhhh

hh

VVVV
VVVV

VVVV
VV

(𝑤) (Ass.)

2. ♢¬𝑝 (𝑤) (1) 4. ¬♢¬𝑝 (𝑤) (1)
3. ¬¬□𝑝 (𝑤) (1) 5. ¬□𝑝 (𝑤) (1)
6. □𝑝 (𝑤) (3) 9. ¬𝑝 (𝑣) (5)
7. ¬𝑝 (𝑣) (2) 10. ¬¬𝑝

x
(𝑣) (4)

8. 𝑝
x

(𝑣) (6)

A similar tree could obviously be drawn for ♢¬𝑞 ↔ ¬□𝑞, and for any other
formula of the form ♢¬𝐴 ↔ ¬□𝐴: we would simply replace each occurrence of 𝑝
on the tree with 𝐴.

To show that all instances of a schema are valid, we can also directly draw schematic
trees in which we use schematic variables ‘𝐴’, ‘𝐵’, ‘𝐶’ instead of sentence letters.

Exercise 2.10
Use the tree method to show that all instances of the following schemas are
valid.
(K) □(𝐴 → 𝐵) → (□𝐴 →□𝐵)
(T) □𝐴 → 𝐴
(4) □𝐴 →□□𝐴
(5) ♢𝐴 →□♢𝐴
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Exercise 2.11
For each of the following sentences, either show that it is valid or give a coun-
termodel to show that it is invalid, using the tree method.
(a) 𝑝 →□♢𝑝
(b) ♢♢𝑝 →♢𝑝
(c) ♢(𝑝 ∧ 𝑞) → (♢𝑝 ∧ ♢𝑞)
(d) (♢𝑝 ∧ ♢𝑞) →♢(𝑝 ∧ 𝑞)
(e) ♢(𝑝 ∨ 𝑞) ↔ (♢𝑝 ∨ ♢𝑞)
(f) □♢𝑝 →♢□𝑝

When constructing a tree, you often have a choice of which node to expand next.
In that case, a good idea is to start with any ♢𝐴 or ¬□𝐴 nodes. If there are none,
choose a node of type 𝐴 ∧ 𝐵, ¬(𝐴 ∨ 𝐵) or ¬(𝐴 → 𝐵). Choose a node of another type
only if none of the above are available. This heuristic often helps to keep trees small,
but it is not part of the official tree rules.

Exercise 2.12
Can we use the tree method to show that some premises 𝐴1, … , 𝐴𝑛 entail a
conclusion 𝐵? Can we use it to show that two sentences 𝐴 and 𝐵 are equiva-
lent?

49


