
4 Models and Proofs

4.1 Soundness and completeness

You may find that this chapter is harder and more abstract than the previous chapters.
Feel free to skip or skim it if you’re mostly interested in philosophical applications.

We have introduced several kinds of validity: S5-validity, K-validity, T-validity,
and so on. All of these are defined in terms of models. K-validity means truth at
all worlds in all Kripke models. T-validity means truth at all worlds in all reflexive
Kripke models. S5-validity means truth at all worlds in all universal Kripke models
(equivalently, at all worlds in all “basic” models). And so on.

If you want to show that a sentence is, say, K-valid, you could directly work
through the clauses of definition 3.2, showing that there is no world in any Kripke
model in which the sentence is false. The tree method regiments and simplifies this
process. If you construct a tree for your sentence in accordance with the K-rules and
all branches close, then the sentence is K-valid. If some branch remains open, the
sentence isn’t K-valid.

Or so I claimed. But these claims aren’t obvious. The tree rule for the diamond,
for example, appears to assume that if ♢𝐴 is true at a world then 𝐴 is true at some
accessible world that does not yet occur on the branch. Couldn’t ♢𝐴 be true because
𝐴 is true at an accessible “old” world instead? Also, why do we expand ♢𝐴 nodes
only once? Couldn’t 𝐴 be true at multiple accessible worlds?

In the next two sections, we are going to lay any such worries to rest. We are going
to prove that (1) if all branches on a K-tree close then the target sentence is K-valid;
conversely, (2) if some branch on a fully developed K-tree remains open, then the
target sentence is not K-valid. (1) establishes the soundness of the tree rules for K,
(2) establishes their completeness.

When you use the tree method, you don’t have to think of what you are doing as
exploring Kripke models. I could have introduced the method as a purely syntactic
game. You start the game by writing down the negation of the target sentence, fol-

73



4 Models and Proofs

lowed by ‘(w)’ (and possibly ‘1.’ to the left and ‘(Ass.)’ to the right, although in this
chapter we will mostly ignore these book-keeping annotations.) Then you repeatedly
apply the tree rules until either all branches are closed or no rule can be applied any
more. At no point in the game do you need to think about what any of the symbols
you are writing might mean.

Soundness and completeness link this syntactic game with the “model-theoretic”
concept of validity. Soundness says that if the game leads to a closed tree (a tree
in which all branches are closed) then the target sentence is true at all worlds in all
models. Completeness says that if the game doesn’t lead to a closed tree then the
target sentence is not true at all worlds in all models. This is called completeness
because it implies that every valid sentence can be shown to be valid with the tree
method.

In general, a proof method is called sound if everything that is provable with the
method is valid. A method is complete if everything that is valid is provable. Strictly
speaking, we should say that a method is sound or complete for a given concept of
validity. The tree rules for K are sound and complete for K-validity, but not for
T-validity or S5-validity.

The tree method is not the only method for showing that a sentence is K-valid
(or T-valid, or S5-valid). Instead of constructing a K-tree, you could construct an
axiomatic proof, trying to derive the target sentence from some instances of (Dual)
and (K) by (Nec) and (CPL). This, too, can be done as a purely syntactic exercise,
without attending to the meaning of the relevant sentences. In section 4.4, we will
show that the axiomatic calculus for K is indeed sound and complete for K-validity:
all and only the K-valid sentences can be derived from (Dual) and (K) by (Nec) and
(CPL). The ‘all’ part is completeness, the ‘only’ part soundness. Having shown
soundness and completeness for both the tree method and the axiomatic method, we
will have shown that the two methods are equivalent. Anything that can be shown
with one method can also be shown with the other.

There are other styles of proof besides the axiomatic and the tree format. Two
famous styles that we won’t cover are “natural deduction” methods and “sequence
calculi”. Logicians are liberal about what qualifies as a proof method. The only non-
negotiable condition is that there must be a mechanical way of checking whether
something (usually, some configuration of symbols) is or is not a proof of a given
target sentence.
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Exercise 4.1
What do you think of the following proposals for new proof methods?
(a) In method A, every 𝔏𝑀-sentence is a proof of itself: To prove an 𝔏𝑀-

sentence with this method, you simply write down the sentence.
(b) In method B, every 𝔏𝑀-sentence that is an instance of □(𝐴 ∨ ¬𝐴) is a

proof of itself. Nothing else is a proof in method B.
(c) In method C, a proof of a sentence 𝐴 is a list of 𝔏𝑀-sentences terminating

with 𝐴 and in which every sentence occurs in some logic textbook.
Which of these qualify as genuine proof methods by the criterion I have de-
scribed?

Exercise 4.2
Which, if any, of the methods from the previous exercise are sound for K-
validity? Which, if any, are complete?

4.2 Soundness for trees

We are now going to show that the tree method for K is sound – that every sentence
that can be proved with the method is K-valid. A proof in the tree method is a tree
in which all branches are closed. So this is what we have to show:

Whenever all branches on a K-tree close then the target sentence is K-
valid.

By a K-tree I mean a tree that conforms to the K-rules from the previous chapter.
I’ll first explain the proof idea, then I’ll fill in the details. We will assume that

there is a K-tree for some target sentence 𝐴 on which all branches close. We need
to show that 𝐴 is K-valid. To this end, we suppose for reductio that 𝐴 is not K-valid.
By definition 3.3, a sentence is K-valid iff it is true at all worlds in all Kripke models.
Our supposition that 𝐴 is not K-valid therefore means that 𝐴 is false at some world
in some Kripke model. Let’s call that world ‘𝑤’ and the model ‘𝑀’. Note that the
closed tree begins with

1. ¬𝐴 (𝑤)
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If we take the world variable ‘𝑤’ on the tree to pick out world 𝑤 in 𝑀, then node 1
is a correct statement about 𝑀, insofar as ¬𝐴 is indeed true at 𝑤 in 𝑀. Now we can
show the following:

If all nodes on some branch of a tree are correct statements about 𝑀,
and the branch is extended by the K-rules, then all nodes on at least one
of the resulting branches are still correct statements about 𝑀.

Since our closed tree is constructed from node 1 by applying the K-rules, it follows
that all nodes on some branch of the tree are correct statements about 𝑀. But every
branch of a closed tree contains a pair of contradictory statements, which can’t both
be correct statements about 𝑀. This completes the reductio.

Let’s fill in the details. We first define precisely what it means for the nodes on a
tree branch to be correct statements about a model.

Definition 4.1
A tree node is an correct statement about a Kripke model 𝑀 = ⟨𝑀, 𝑅, 𝑉 ⟩
under a function 𝑓 that maps world variables to members of 𝑊 iff either the
node has the form 𝜔𝑅𝜐 and 𝑓 (𝜔)𝑅𝑓 (𝜐), or the node has the form 𝐴 (𝜔) and
𝐴 is true at 𝑓 (𝜔) in 𝑀.
A tree branch correctly describes a model 𝑀 iff there is a function 𝑓 under
which all nodes on the branch are correct statements about 𝑀.

We now prove the italicised statement above:

Soundness Lemma
If some branch 𝛽 on a tree correctly describes a Kripke model 𝑀, and the
branch is extended by applying a K-rule, then at least one of the resulting
branches correctly describes 𝑀.

Proof: We have to go through all the K-rules. In each case we assume that the rule
is applied to some node(s) on a branch 𝛽 that correctly describes 𝑀, so that there
is a function 𝑓 under which all nodes on the branch are correct statements about 𝑀.
We show that once the rule has been applied, at least one of the resulting branches
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still correctly describes 𝑀.

• Suppose 𝛽 contains a node of the form 𝐴 ∧ 𝐵 (𝜔) and the branch is extended by
two new nodes 𝐴 (𝜔) and 𝐵 (𝜔). Since 𝐴∧𝐵 (𝜔) is a correct statement about 𝑀
under 𝑓 , we have 𝑀, 𝑓 (𝜔) |= 𝐴∧𝐵. By clause (c) of definition 3.2, it follows that
𝑀, 𝑓 (𝜔) |= 𝐴 and 𝑀, 𝑓 (𝜔) |= 𝐵. So the extended branch still correctly describes
𝑀.

• Suppose 𝛽 contains a node of the form 𝐴∨𝐵 (𝜔) and the branch is split into two,
with 𝐴 (𝜔) appended to one end and 𝐵 (𝜔) to the other. Since the expanded node
is a correct statement about 𝑀 under 𝑓 , we have 𝑀, 𝑓 (𝜔) |= 𝐴 ∨ 𝐵. By clause (d)
of definition 3.2, it follows that either 𝑀, 𝑓 (𝜔) |= 𝐴 or 𝑀, 𝑓 (𝜔) |= 𝐵. So at least
one of the resulting branches also correctly describes 𝑀.

The proof for the other non-modal rules is similar. Let’s look at the rules for the
modal operators.

• Suppose 𝛽 contains nodes of the form □𝐴 (𝜔) and 𝜔𝑅𝜐, and the branch is
extended by adding 𝐴 (𝜐). Since □𝐴 (𝜔) and 𝜔𝑅𝜐 are correct statement about
𝑀 under 𝑓 , we have 𝑀, 𝑓 (𝜔) |= □𝐴 and 𝑓 (𝜔)𝑅𝑓 (𝜐). By clause (g) of definition
3.2, it follows that 𝑀, 𝑓 (𝜐) |= 𝐴. So the extended branch correctly describes 𝑀.

• Suppose 𝛽 contains a node of the form ♢𝐴 (𝜔) and the branch is extended by
adding nodes 𝜔𝑅𝜐 and 𝐴 (𝜐), where 𝜐 is new on the branch. Since ♢𝐴 (𝜔) is
a correct statement about 𝑀 under 𝑓 , we have 𝑀, 𝑓 (𝜔) |= ♢𝐴. By clause (h) of
definition 3.2, it follows that 𝑀, 𝑣 |= 𝐴 for some 𝑣 in 𝑊 such that 𝑓 (𝜔)𝑅𝑣. Let
𝑓 ′ be the same as 𝑓 except that 𝑓 ′(𝜐) = 𝑣. The newly added nodes are correct
statements about 𝑀 under 𝑓 ′. Since 𝜐 is new on the branch, all earlier nodes on
the branch are also correct statements about 𝑀 under 𝑓 ′. So the expanded branch
correctly describes 𝑀.

The cases for ¬□ and ¬♢ are similar to the previous two cases.

With the help of this lemma, we can prove that the method of K-trees is sound.
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Theorem: Soundness of K-trees
If a K-tree for a target sentence closes, then the target sentence is K-valid.

Proof: Suppose for reductio that some K-tree for some target sentence 𝐴 closes
even though 𝐴 is not K-valid. Then ¬𝐴 is true at some world 𝑤 in some Kripke
model 𝑀. The first node on the tree, ¬𝐴 (𝑤), is a correct statement about 𝑀
under the function that maps the world variable ‘𝑤’ to 𝑤. Since the tree is created
from the first node by applying the K-rules, the Soundness Lemma implies that
some branch 𝛽 on the tree correctly describes 𝑀: all nodes on the tree are correct
statements about 𝑀 under some function 𝑓 . But the tree is closed. This means that
𝛽 contains contradictory nodes of the form

n. 𝐵 (𝜐)
m. ¬𝐵 (𝜐)

If both of these are correct statements about 𝑀 under 𝑓 , then 𝑀, 𝑓 (𝜐) |= 𝐵 and also
𝑀, 𝑓 (𝜐) |= ¬𝐵. This is impossible by definition 3.2.

Exercise 4.3
Spell out the cases for 𝐴 → 𝐵 and ¬♢𝐴 in the proof of the Soundness Lemma.

Exercise 4.4
Draw the K-tree for target sentence □𝑝. The tree has a single open branch.
Does this branch correctly describe the Kripke model in which there is just
one world 𝑤, 𝑤 has access to itself, and all sentence letters are false at 𝑤?

The soundness proof for K-trees is easily adapted to other types of trees. The tree
rules for system T, for example, are all the K-rules plus the Reflexivity rule, which
allows adding 𝜔𝑅𝜔 for every world 𝜔 on the branch. Suppose we want to show that
everything that is provable with the T-rules is T-valid – true at every world in every
reflexive Kripke model. All the clauses in the Soundness Lemma still hold if we
assume that the model 𝑀 is reflexive. We only need to add a further clause for the
Reflexivity rule, to confirm that if a branch correctly describes a reflexive model 𝑀,
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and the branch is extended by adding 𝜔𝑅𝜔, then the resulting branch also correctly
describes 𝑀. This is evidently the case.

Exercise 4.5
How would we need to adjust the soundness proof to show that the tree rules
for K4 are sound with respect to K4-validity?

4.3 Completeness for trees

Let’s now show that the tree rules for K are complete – that whenever a sentence is K-
valid then there is a closed K-tree for that sentence. In fact, we will show something
stronger:

If a sentence is K-valid, then every fully developed K-tree for the sen-
tence is closed.

By a fully developed tree, I mean a tree on which every node on any open branch that
can be expanded (in any way) has been expanded (in this way). A fully developed
tree may be infinite.

We will prove the displayed sentence by proving its contraposition:

If a fully developed K-tree for a sentence does not close, then the sen-
tence is not K-valid.

Assume, then, that some fully developed K-tree for some target sentence has at least
one open branch. We want to show that the target sentence is false at some world in
some Kripke model.

We already know how to read off a countermodel from an open branch. All we
need to do is show that this method for generating countermodels really works. Let’s
first define the method more precisely.

Definition 4.2
The model induced by a tree branch is the Kripke model (𝑊, 𝑅, 𝑉) where

(a) 𝑊 is the set of world variables on the branch,
(b) 𝜔𝑅𝜐 holds in the model iff a node 𝜔𝑅𝜐 occurs on the branch,
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(c) for any sentence letter 𝑃, 𝑉(𝑃) is the set of world variables 𝜔 for which
a node 𝑃 (𝜔) occurs on the branch.

Next we show that all nodes on any open branch on a fully developed tree are
correct statements about the Kripke model induced by the branch.

Completeness Lemma
Let 𝛽 be an open branch on a fully developed K-tree, and let 𝑀 = ⟨𝑊, 𝑅, 𝑉 ⟩
be the model induced by 𝛽. Then 𝑀, 𝜔 |= 𝐴 for all sentences 𝐴 and world
variables 𝜔 for which 𝐴 (𝜔) is on 𝛽.

We have to show that whenever 𝐴 (𝜔) occurs on 𝛽 then 𝑀, 𝜔 |= 𝐴. The proof is
by induction on the length of 𝐴. We first show that the claim holds for sentence
letters and negated sentence letters. Then we show that if the claim holds for all
sentences shorter than 𝐴 (this is our induction hypothesis), then it also holds for 𝐴
itself.

• If 𝐴 is a sentence letter then the claim is true by clause (c) of definition 4.2 and
clause (a) of definition 3.2.

• If 𝐴 is the negation of a sentence letter 𝐵, then 𝐵 (𝜔) does not occur on 𝛽,
otherwise 𝛽 would be closed. By clause (c) of definition 4.2, it follows that 𝜔 is
not in 𝑉(𝐵), and so 𝑀, 𝜔 |= 𝐴 by clauses (a) and (b) of definition 3.2.

• If 𝐴 is a doubly negated sentence ¬¬𝐵, then 𝛽 contains a node 𝐵 (𝜔), because
the tree is fully developed. By induction hypothesis, 𝑀, 𝜔 |= 𝐵. By clause (b)
of definition 3.2, it follows that 𝑀, 𝜔 |= 𝐴.

• If 𝐴 is a conjunction 𝐵∧𝐶, then 𝛽 contains nodes 𝐵 (𝜔) and 𝐶 (𝜔). By induction
hypothesis, 𝑀, 𝜔 |= 𝐵 and 𝑀, 𝜔 |= 𝐶. By clause (c) of definition 3.2, it follows
that 𝑀, 𝜔 |= 𝐴.

• If 𝐴 is a negated conjunction ¬(𝐵∧𝐶), then 𝛽 contains either ¬𝐵 (𝜔) or ¬𝐶 (𝜔).
By induction hypothesis, 𝑀, 𝜔 |= ¬𝐵 or 𝑀, 𝜔 |= ¬𝐶. Either way, clauses (b)
and (c) of definition 3.2 imply that 𝑀, 𝜔 |= 𝐴.
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I will skip the cases where 𝐴 is a disjunction, a conditional, a biconditional, or
a negated disjunction, conditional, or biconditional. The proofs are similar to one
(or both) of the previous two cases.

• If 𝐴 is a box sentence □𝐵, then 𝛽 contains a node 𝐵 (𝜐) for each world variable
𝜐 for which 𝜔𝑅𝜐 is on 𝛽 (because the tree is fully developed). By induction
hypothesis, 𝑀, 𝜐 |= 𝐵, for each such 𝜐. By definition 4.2, it follows that 𝑀, 𝜐 |= 𝐵
for all worlds 𝜐 such that 𝜔𝑅𝜐. By clause (g) of definition 3.2, it follows that
𝑀, 𝜔 |= □𝐵.

• If 𝐴 is a diamond sentence ♢𝐵, then there is a world variable 𝜐 for which 𝜔𝑅𝜐
and 𝐵 (𝜐) are on 𝛽. By induction hypothesis, 𝑀, 𝜐 |= 𝐵. And by definition 4.2,
𝜔𝑅𝜐. By clause (h) of definition 3.2, it follows that 𝑀, 𝜔 |= ♢𝐵.

For the case where 𝐴 has the form ¬□𝐵 or ¬♢𝐵, the proof is similar to one of
the previous two cases.

To establish completeness, we need to verify one more point: that one can always
construct a fully developed tree for any invalid target sentence. Let’s call a K-tree
regular if it is constructed by (i) first applying all rules for the truth-functional con-
nectives until no more of them can be applied (without adding only nodes to a branch
that are already on the branch), then (ii) applying the rules for ♢ and ¬□ until no
more of them can be applied, then (iii) applying the rules for□ and ¬♢ until no more
of them can be applied, then starting over with (i), and so on.

Observation 4.1: Every regular open K-tree is fully developed.

Proof: When constructing a regular tree, every iteration of (i), (ii), and (iii) only
allows expanding finitely many nodes. So every node on every open branch that
can be expanded in any way is eventually expanded in this way by some iteration
of (i), (ii), and (iii).

Now we have all the ingredients to prove completeness.
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Theorem: Completeness of K-trees
If a sentence is K-valid, then there is a closed K-tree for that sentence.

Proof: Let 𝐴 be any K-valid sentence, and suppose for reductio that there is no
closed K-tree for 𝐴. In particular, then, every regular K-tree for 𝐴 remains open.
Take any such tree. By observation 4.1, the tree is fully expanded. Choose any
open branch on the tree. By the Completeness Lemma, 𝐴 is false at 𝑤 in the model
induced by that branch. So 𝐴 is not true at all worlds in all Kripke models. Con-
tradiction.

Exercise 4.6
Fill in the cases for 𝐵 → 𝐶 and ¬♢𝐵 in the proof of the Completeness Lemma.

Like the soundness proof, the completeness proof for K is easily adapted to other
logics. To show that the T-rules are complete with respect to T-validity, for example,
we merely need check that the model induced by any open branch on a fully devel-
oped T-tree is reflexive. It must be, because an open branch on a fully developed
T-tree contains 𝜔𝑅𝜔 for each world variable 𝜔 on the branch.

Exercise 4.7
What do we need to check to show that the K4-rules are complete with respect
to K4-validity?

Exercise 4.8
A Kripke model is acyclical if you can never return to the same world by fol-
lowing the accessibility relation. Show that if a sentence is true at some world
in some Kripke model, then it is also true at some world in some acyclical
Kripke model.
(Hint: If 𝐴 is true at some world in some Kripke model then ¬𝐴 is K-invalid.
By the soundness theorem, there is a fully developed K-tree for ¬𝐴 with an
open branch. Now consider the model induced by this branch.)
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Exercise 4.9
The S5 tree rules from chapter 2 are sound and complete for S5-validity: all
and only the S5-valid sentences can be proven. Are the rules sound for K-
validity? Are they complete for K-validity?

4.4 Soundness and completeness for axiomatic calculi

Next, we are going to show that the axiomatic calculus for system K is sound and
complete for K-validity. In the axiomatic calculus, a proof is a list of sentences
each of which is either an instance of (Dual) or (K) or can be derived from earlier
sentences on the list by application of (CPL) or (Nec). Expressed as a construction
rule, (Nec) says that whenever a list contains a sentence 𝐴 then one may append
□𝐴. (CPL) says that one may append any truth-functional consequence of sentences
that are already on the list. (This is an acceptable rule because there is a simple
mechanical test – the truth-table method – for checking whether a sentence is a truth-
functional consequence of finitely many other sentences.)

Soundness is easy. We want to show that everything that is derivable from some
instances of (Dual) and (K) by applications of (CPL) and (Nec) is K-valid. We show
this by showing that (1) every instance of (Dual) and (K) is K-valid, and (2) every
sentence that is derived from K-valid sentences by (CPL) or (Nec) is itself K-valid.

Theorem: Soundness of the axiomatic calculus for K
Any sentence that is provable in the axiomatic calculus for K is K-valid.

Proof: We first show that every instance of (Dual) and (K) is K-valid.

1. (Dual) is the schema ¬♢𝐴 ↔ □¬𝐴. By clauses (b), (g), and (h) of definition
3.2, a sentence ¬♢𝐴 is true at a world 𝑤 in a Kripke model 𝑀 iff □¬𝐴 is true
at 𝑤 in 𝑀. It follows by clauses (f) and (e) that all instances of (Dual) are true
at all worlds in all Kripke models.

2. (K) is the schema □(𝐴 → 𝐵) → (□𝐴 →□𝐵). By clause (e) of definition 3.2, a
sentence □(𝐴 → 𝐵) → (□𝐴 →□𝐵) is false at a world 𝑤 in a Kripke model 𝑀
only if □(𝐴 → 𝐵) and □𝐴 are both true at 𝑤 while 𝐵 is false. By clause (g) of
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definition 3.2, □𝐵 is false at 𝑤 only if 𝐵 is false at some world 𝑣 accessible
from 𝑤. But if □(𝐴 → 𝐵) and □𝐴 are both true at 𝑤, then 𝐴 → 𝐵 and 𝐴 are true
at every world accessible from 𝑤, again by clause (g). And there can be no
world at which 𝐴 → 𝐵 and 𝐴 are true while 𝐵 is false, by clause (e) of definition
3.2.

Next we show that (CPL) and (Nec) preserve K-validity.

1. By definition 3.2, the truth-functional operators have their standard truth-
table meaning at every world in every Kripke model. It follows that all truth-
functional consequences of sentences that are true at a world are themselves
true at that world. In particular, if some sentences are true at every world
in every Kripke model, then any truth-functional consequence of these sen-
tences is also true at every world every Kripke model.

2. Let 𝑤 be an arbitrary world in an arbitrary Kripke model. If 𝐴 is true at every
world in every Kripke model, then 𝐴 is true at every world accessible from
𝑤, in which case □𝐴 is true at 𝑤 by clause (g) of definition 3.2. So if 𝐴 is
K-valid, then □𝐴 is also K-valid.

The soundness proof for K is easily extended to other modal systems. Since all
instances of (Dual) and (K) are true at all worlds in all Kripke models, they are also
true at all worlds in any more restricted class of Kripke models. The arguments
for (CPL) and (Nec) also go through if we replace ‘every Kripke model’ by ‘every
Kripke model of such-and-such type’. So if we want to show that, say, the axiomatic
calculus for T is sound with respect to the concept of T-validity – that is, if we want
to show that anything that is derivable from (Dual), (K), and (T) by (CPL) and (Nec)
is true at all worlds in all reflexive Kripke models – all that is left to do is to show that
every instance of the (T)-schema is true at all worlds in all reflexive Kripke model.
(We’ve already shown this: see observation 3.2.)

Exercise 4.10
Outline the soundness proof for the axiomatic calculus for S4, whose axiom
schemas are (Dual), (K), (T), and (4).

Let’s turn to completeness. We are going to show that every K-valid sentence is

84



4 Models and Proofs

derivable from some instances of (Dual) and (K) by (CPL) and (Nec). As in section
4.3, we argue by contraposition. We will show that any sentence that cannot be
derived from (Dual) and (K) by (CPL) and (Nec) is not K-valid. To show that a
sentence is not K-valid, we will give a countermodel – a Kripke model in which
the sentence is false at some world. In fact, we will give the same countermodel for
every sentence that isn’t derivable in the calculus. You might think we need different
countermodels for different sentences, but it turns out that there is a particular model
in which every K-invalid sentence is false at some world. This model is called the
canonical model for K.

In order to define the canonical model, let’s introduce some shorthand terminol-
ogy. We’ll say that an 𝔏𝑀-sentence is K-provable if it can be proved in the axiomatic
calculus for K. A set of 𝔏𝑀-sentences is K-inconsistent if it contains a finite number
of sentences 𝐴1, … , 𝐴𝑛 such that ¬(𝐴1 ∧…∧𝐴𝑛) is K-provable. A set is K-consistent
if it is not K-inconsistent.

(For example, the set {□(𝑝∧𝑞), 𝑞 → 𝑝, ¬□𝑞} is K-inconsistent, because it contains
two sentences, □(𝑝 ∧ 𝑞) and ¬□𝑞 whose conjunction is refutable in K, in the sense
that the negation ¬(□(𝑝 ∧ 𝑞) ∧ ¬□𝑞) of their conjunction is derivable from some
instances of (Dual) and (K) by (CPL) and (Nec).)

A set of 𝔏𝑀-sentences is called maximal if it contains either 𝐴 or ¬𝐴 for every
𝔏𝑀-sentence 𝐴. A set is maximal K-consistent if it is both maximal and K-consistent.

Exercise 4.11
Which, if any, of these sets are K-consistent? (a) {𝑝}, (b) {¬𝑝}, (c) the set of
all sentence letters, (d) the set of all 𝔏𝑀-sentences.

Now here’s the canonical model for K.

Definition 4.3
The canonical model 𝑀𝐾 for K is the Kripke model ⟨𝑊, 𝑅, 𝑉 ⟩, where

• 𝑊 is the set of all maximal K-consistent sets of 𝔏𝑀-sentences,
• 𝑤𝑅𝑣 iff 𝑣 contains every sentence 𝐴 for which 𝑤 contains □𝐴,
• for every sentence letter 𝑃, 𝑉(𝑃) is the set of all members of 𝑊 that con-

tain 𝑃.
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The “worlds” in the canonical model are sets of 𝔏𝑀-sentences. The interpretation
function makes a sentence letter true at a world iff the letter is a member of the world.
As we are going to see, this generalizes to arbitrary sentences:

(1) A world 𝑤 in 𝑀𝐾 contains all and only the sentences that are true at 𝑤 in 𝑀𝐾 .

We will also prove the following:

(2) If some sentence cannot be proved in the axiomatic calculus for K, then its
negation is a member of some world in 𝑀𝐾 .

Together, these two lemmas will establish completeness for the axiomatic calculus.
Fact (2) tells us that if a sentence 𝐴 isn’t K-provable, then ¬𝐴 is a member of some
world 𝑤 in the canonical model 𝑀𝐾 . By fact (1), we can infer that ¬𝐴 is true at 𝑤 in
𝑀𝐾 , which means that 𝐴 is false at 𝑤 in 𝑀𝐾 . So any sentence that isn’t K-provable
isn’t K-valid.

We are going to prove (2) first. We’ll need the following observation.

Observation 4.2: If a set Γ is K-consistent, then for any sentence 𝐴, either
Γ ∪ {𝐴} or Γ ∪ {¬𝐴} is K-consistent.

(Γ ∪ {𝐴}, called the union of Γ and {𝐴}, is the smallest set that contains all members
of Γ as well as 𝐴.)

Proof : Let Γ be any K-consistent set and 𝐴 any sentence. Suppose for reductio
that Γ ∪ {𝐴} and Γ ∪ {¬𝐴} are both K-inconsistent.

That Γ ∪ {𝐴} is K-inconsistent means there are sentences 𝐴1, … , 𝐴𝑛 in Γ ∪ {𝐴}
such that ¬(𝐴1 ∧ … ∧ 𝐴𝑛) is K-provable. Since Γ itself is K-consistent, one of the
sentences 𝐴1, … , 𝐴𝑛 must be 𝐴. Let 𝐵 be the conjunction of the other sentences in
𝐴1, … , 𝐴𝑛, all of which are in Γ. So ¬(𝐵 ∧ 𝐴) is K-provable.

That Γ ∪ {¬𝐴} is K-inconsistent means that there are sentences 𝐴1, … , 𝐴𝑛 in
Γ∪{¬𝐴} such that ¬(𝐴1∧…∧𝐴𝑛) is K-provable. As before, one of these sentences
must be ¬𝐴. Let 𝐶 be the conjunction of the others, all of which are in Γ. So
¬(𝐶 ∧ ¬𝐴) is K-provable.

If ¬(𝐵 ∧ 𝐴) and ¬(𝐶 ∧ ¬𝐴) are both K-provable, then so is ¬(𝐵 ∧ 𝐶), because
it is a truth-functional consequence of ¬(𝐵 ∧ 𝐴) and ¬(𝐶 ∧ ¬𝐴). But 𝐵 ∧ 𝐶 is a
conjunction of sentences from Γ. So Γ itself is K-inconsistent, contradicting our
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assumption.

Now we can prove fact (2).

Lindenbaum’s Lemma
Every K-consistent set is a subset of some maximal K-consistent set.

Proof : Let 𝑆0 be some K-consistent set of sentences. Let 𝐴1, 𝐴2, … be a list of all
𝔏𝑀-sentences in some arbitrary order. For every number 𝑖 ≥ 0, define

𝑆𝑖+1 =
⎧{
⎨{⎩
𝑆𝑖 ∪ {𝐴𝑖} if 𝑆𝑖 ∪ {𝐴𝑖} is K-consistent
𝑆𝑖 ∪ {¬𝐴𝑖} otherwise.

This gives us an infinite list of sets 𝑆0, 𝑆1, 𝑆2, …. Each set in the list is K-consistent:
𝑆0 is K-consistent by assumption. And if some set 𝑆𝑖 in the list is K-consistent, then
either 𝑆𝑖 ∪ {𝐴𝑖} is K-consistent, in which case 𝑆𝑖+1 = 𝑆𝑖 ∪ {𝐴𝑖} is K-consistent, or
𝑆𝑖 ∪{𝐴𝑖} is not K-consistent, in which case 𝑆𝑖+1 is 𝑆𝑖 ∪{¬𝐴𝑖}, which is K-consistent
by observation 4.2. So if any set in the list is consistent, then the next set in the list
is also consistent. It follows that 𝑆0, 𝑆1, 𝑆2, … are all K-consistent.

Now let 𝑆 be the set of sentences that occur in at least one of the sets 𝑆0, 𝑆1, 𝑆2, 𝑆3 ….
(That is, let 𝑆 be the union of 𝑆0, 𝑆1, 𝑆2, 𝑆3, ….) Evidently, 𝑆0 a subset of 𝑆. And
𝑆 is maximal. Moreover, 𝑆 is K-consistent. For if 𝑆 were not K-consistent, then it
would contain some sentences 𝐵1, … , 𝐵𝑛 such that ¬(𝐵1 ∧ … ∧ 𝐵𝑛) is K-provable.
All of these sentences would have to occur somewhere on the list 𝐴1, 𝐴2, …. Let
𝐴𝑗 be a sentence from 𝐴1, 𝐴2, … that occurs after all the 𝐵1, … , 𝐵𝑛. If 𝐵1, … , 𝐵𝑛
are in 𝑆, they would have to be in 𝑆𝑗 already, so 𝑆𝑗 would be K-inconsistent. But
we’ve seen that all of 𝑆0, 𝑆1, 𝑆2, … are K-consistent.

Notice that the proof of Lindenbaum’s Lemma does not turn on any assumptions
about the axiomatic calculus for K except that (CPL) is one of its rules. The lemma
holds for every calculus with (CPL) as a (possibly derived) rule.

To prove fact (1), we need another observation, which relies on the presence of
(K) and (Nec), besides (CPL).
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Observation 4.3: If Γ is a maximal K-consistent set of sentences that does
not contain □𝐴, and Γ− is the set of all sentences 𝐵 for which □𝐵 is in Γ, then
Γ− ∪ {¬𝐴} is K-consistent.

Proof: We show that if Γ−∪{¬𝐴} is not K-consistent, then neither is Γ. If Γ−∪{¬𝐴}
is not K-consistent, then there are sentences 𝐵1, … , 𝐵𝑛 in Γ− such that ¬(𝐵1 ∧…∧
𝐵𝑛 ∧ ¬𝐴) is K-provable. And then (𝐵1 ∧ … ∧ 𝐵𝑛) → 𝐴 is K-provable, because it is
a truth-functional consequence of ¬(𝐵1 ∧ … ∧ 𝐵𝑛 ∧ ¬𝐴). By repeated application
of (Nec), (K), and (CPL), one can derive (□𝐵1 ∧… ∧□𝐵𝑛) →□𝐴 from (𝐵1 ∧… ∧
𝐵𝑛) → 𝐴. Another application of (CPL) yields ¬(□𝐵1 ∧ … ∧ □𝐵𝑛 ∧ ¬□𝐴). So
{□𝐵1, … ,□𝐵𝑛, ¬□𝐴} is K-inconsistent. But □𝐵1, … ,□𝐵𝑛 are in Γ−. And since
□𝐴 is not in Γ and Γ is maximal, ¬□𝐴 is in Γ. So {□𝐵1, … ,□𝐵𝑛, ¬□𝐴} is a
subset of Γ. And so Γ is K-inconsistent.
Here, then, is fact (1):

Canonical Model Lemma
For any world 𝑤 in 𝑀𝐾 and any sentence 𝐴, 𝐴 is in 𝑤 iff 𝑀𝐾 , 𝑤 |= 𝐴.

Proof: The proof is by induction on complexity of 𝐴. We first show that the claim
(that 𝐴 is in 𝑤 iff 𝑀𝐾 , 𝑤 |= 𝐴) holds for sentence letters. Then we show that if the
claim holds for the immediate parts of a complex sentence (this is our induction
hypothesis), then the claim also holds for the sentence itself.
• Suppose 𝐴 is a sentence letter. By definition 4.3, 𝑤 ∈ 𝑉(𝐴) iff 𝐴 ∈ 𝑤. So by

clause (a) of definition 3.2, 𝑀𝐾 , 𝑤 |= 𝐴 iff 𝐴 ∈ 𝑤. (‘∈’ means ‘is a member of
the set’.)

• Suppose 𝐴 is a negation ¬𝐵. By clause (b) of definition 3.2, 𝑀𝐾 , 𝑤 |= ¬𝐵 iff
𝑀𝐾 , 𝑤 |≠ 𝐵. By induction hypothesis, 𝑀𝐾 , 𝑤 |≠ 𝐵 iff 𝐵 ∉ 𝑤. Since 𝑤 is maximal
K-consistent, 𝐵 ∉ 𝑤 iff ¬𝐵 ∈ 𝑤. So 𝑀𝐾 , 𝑤 |= ¬𝐵 iff ¬𝐵 ∈ 𝑤.

• Suppose 𝐴 is a conjunction 𝐵∧𝐶. By clause (c) of definition 3.2, 𝑀𝐾 , 𝑤 |= 𝐵∧𝐶
iff 𝑀𝐾 , 𝑤 |= 𝐵 and 𝑀𝐾 , 𝑤 |= 𝐶. By induction hypothesis, 𝑀𝐾 , 𝑤 |= 𝐵 iff 𝐵 ∈ 𝑤,
and 𝑀𝐾 , 𝑤 |= 𝐶 iff 𝐶 ∈ 𝑤. Since 𝑤 is maximal K-consistent, 𝐵 and 𝐶 are in 𝑤
iff 𝐵 ∧ 𝐶 is in 𝑤. So 𝑀𝐾 , 𝑤 |= 𝐵 ∧ 𝐶 iff 𝐵 ∧ 𝐶 ∈ 𝑤.
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The cases for the other truth-functional connectives are similar.

• Suppose 𝐴 is a box sentence □𝐵, and that □𝐵 ∈ 𝑤. By definition 4.3, it follows
that 𝐵 ∈ 𝑣 for all 𝑣 with 𝑤𝑅𝑣. By induction hypothesis, this means that 𝑀𝐾 , 𝑣 |=
𝐵 for all 𝑣 with 𝑤𝑅𝑣. And then 𝑀𝐾 , 𝑤 |= □𝐵, by clause (g) of definition 3.2.

For the converse direction, suppose□𝐵 ∉ 𝑤. Let Γ− be the set of all sentences 𝐶
for which□𝐶 ∈ 𝑤. By observation 4.3, Γ−∪{¬𝐵} is K-consistent. By definition
4.3 and Lindenbaum’s Lemma, it follows that there is some 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣
and ¬𝐵 ∈ 𝑣. Since 𝑣 is K-consistent, 𝐵 ∉ 𝑣. By induction hypothesis, it follows
that 𝑀𝐾 , 𝑣 |≠ 𝐵. And so 𝑀𝐾 , 𝑤 |≠ □𝐵, by clause (g) of definition 3.2.

• Suppose 𝐴 is a diamond sentence ♢𝐵, and that ♢𝐵 ∈ 𝑤. By (Dual) and (CPL),
any set that contains both ♢𝐵 and □¬𝐵 is K-inconsistent. So □¬𝐵 ∉ 𝑤. By
observation 4.3 and Lindenbaum’s Lemma (as in the previous case), it follows
that there is some 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣 and 𝐵 ∈ 𝑣. By induction hypothesis,
𝑀, 𝑣 |= 𝐵. So 𝑀𝐾 , 𝑤 |= ♢𝐵, by clause (h) of definition 3.2.

For the converse direction, suppose ♢𝐵 ∉ 𝑤. Then □¬𝐵 ∈ 𝑤, by (Dual), (CPL),
and the fact that 𝑤 is maximal K-consistent. By definition 4.3, it follows that
¬𝐵 ∈ 𝑣 for all 𝑣 with 𝑤𝑅𝑣. Since all such 𝑣 are maximal K-consistent, none of
them contain 𝐵. By induction hypothesis, 𝐵 is not true at any of them. By clause
(h) of definition 3.2, it follows that 𝑀𝐾 , 𝑤 |≠ ♢𝐵.

The completeness of the axiomatic calculus for K follows immediately from the
previous two lemmas, as foreshadowed above:

Theorem: Completeness of the axiomatic calculus for K
If 𝐴 is K-valid, then 𝐴 is provable in the axiomatic calculus for K.

Proof : We show that if a sentence is not K-provable then it is not K-valid. Sup-
pose 𝐴 is not K-provable. Then {¬𝐴} is K-consistent. It follows by Lindenbaum’s
Lemma that {¬𝐴} is included in some maximal K-consistent set 𝑆. By definition
4.3, that set is a world in 𝑀𝐾 . Since ¬𝐴 is in 𝑆, it follows from the Canonical
Model Lemma that 𝑀𝐾 , 𝑆 |= ¬𝐴. So 𝑀𝐾 , 𝑆 |≠ 𝐴. So 𝐴 is not true at all worlds in
all Kripke models.

Done!
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Once again, the proof is easily adjusted to many axiomatic calculi for logics
stronger than K. All we have assumed about the K-calculus is that it contains (Dual),
(K), (Nec), and (CPL). So if we’re interested in, say, whether the axiomatic calculus
for T is complete, we can simply replace ‘K-consistent’ by ‘T-consistent’ throughout
the proof, and almost everything goes through as before. We only have to add a
small step at the end.

By adapting the argument for K, we can show that if a sentence 𝐴 is not T-provable
then 𝐴 is false at some world in the canonical model for T. This shows that 𝐴 is not
K-valid. But we want to show that 𝐴 is not T-valid – meaning that 𝐴 is not true at all
worlds in all reflexive Kripke models. To complete the proof, we need to show that
the canonical model 𝑀𝑇 for T is reflexive.

This isn’t hard. Given how accessibility in canonical models is defined, a world
𝑤 in a canonical model is accessible from itself iff whenever □𝐴 ∈ 𝑤 then 𝐴 ∈ 𝑤.
Since the worlds in 𝑀𝑇 are maximal T-consistent sets of sentences, and every such
set contains every instance of the (T) schema □𝐴 → 𝐴, there is no world in 𝑀𝑇 that
contains □𝐴 but not 𝐴. So every world in 𝑀𝑇 has access to itself.

In general, to show that a calculus that extends the K-calculus by further axiom
schemas is complete, we only need to show that the canonical model for the calculus
satisfies the frame conditions that correspond to the added axiom schemas. This is
usually the case. But not always. Sometimes, an axiomatic calculus is sound and
complete with respect to some class of Kripke models, but the canonical model of
the calculus is not a member of that class. (An example is the calculus for the system
GL, which I will describe at the very end of this chapter.) Completeness must then
be established by some other means.

Exercise 4.12
Outline the completeness proof for the axiomatic calculus for S5.

Exercise 4.13
The set of all 𝔏𝑀-sentences is a system of modal logic. Let’s call this system
𝑋 (for “explosion”). (a) Describe a sound and complete proof method for 𝑋.
(b) Explain why 𝑋 does not have a canonical model.
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4.5 Loose ends

You will remember from observation 1.1 in chapter 1 that claims about entailment
can be converted into claims about validity. 𝐴 entails 𝐵 iff 𝐴 → 𝐵 is valid; 𝐴1 and
𝐴2 together entail 𝐵 iff 𝐴1 → (𝐴2 → 𝐵) – equivalently, (𝐴1 ∧ 𝐴2) → 𝐵 – is valid; and
so on. But what if there are infinitely many premises 𝐴1, 𝐴2, 𝐴3, …? Sentences of
𝔏𝑀 are always finite, so we can’t convert the claim that 𝐴1, 𝐴2, 𝐴3, … entail 𝐵 into a
claim that some 𝔏𝑀-sentence is valid.

We also can’t use the tree method or the axiomatic method to directly show that
a conclusion follows from infinitely many premises. A proof in either method is a
finite object that can only invoke finitely many sentences.

As it turns out, this is not a serious limitation. In many logics – including classical
propositional and predicate logic and all the modal logics we have so far encountered
– a sentence is entailed by infinitely many premises only if it is entailed by a finite
subset of these premises. Logics with this property are called compact.

Let’s show that K is compact. To this end, I’ll say that a sentence 𝐵 is K-derivable
from a (possibly infinite) set of sentences Γ if there are finitely many members
𝐴1, … , 𝐴𝑛 of Γ for which (𝐴1 ∧ … ∧ 𝐴𝑛) → 𝐵 is provable in the axiomatic calcu-
lus for K. Now we first show that whenever Γ |=𝐾 𝐵 then 𝐵 is K-derivable from Γ.
This is called strong completeness because it is stronger than the (“weak”) kind of
completeness that we have established in the previous section.

Theorem: Strong completeness of the axiomatic calculus for K
Whenever Γ |=𝐾 𝐵 then 𝐵 is K-derivable from Γ.

Proof : Suppose 𝐵 is not K-derivable from Γ. Then there are no 𝐴1, … , 𝐴𝑛 in
Γ such that (𝐴1 ∧ … ∧ 𝐴𝑛) → 𝐵 is K-provable. This means that Γ ∪ {¬𝐵} is K-
consistent. By Lindenbaum’s Lemma, it follows that Γ∪{¬𝐵} is included in some
maximal K-consistent set and thereby in some world in the canonical model 𝑀𝐾 for
K. (Lindenbaum’s lemma says that every K-consistent set of 𝔏𝑀-sentences, even
if it is infinite, is included in a maximal K-consistent set.) By the Canonical Model
Lemma, 𝑀𝐾 , 𝑤 |=𝐾 𝐴 for all 𝐴 in Γ, and 𝑀𝐾 , 𝑤 |≠𝐾 𝐵. Thus Γ |≠𝐾 𝐵.
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Theorem: Compactness of K
If a sentence 𝐵 is K-entailed by some sentences Γ, then 𝐵 is K-entailed by a
finite subset of Γ.

Proof: Suppose Γ |=𝐾 𝐵. By strong completeness, it follows that there are finitely
many sentences 𝐴1, … , 𝐴𝑛 in Γ for which (𝐴1 ∧ … ∧ 𝐴𝑛) → 𝐵 is K-provable. By
the soundness of the K-calculus, (𝐴1 ∧ … ∧ 𝐴𝑛) → 𝐵 is valid. So 𝐴1, … , 𝐴𝑛 |=𝐾 𝐵,
by observation 1.1.

Compactness is surprising. It is easy to think of cases in which a conclusion is
entailed by infinitely many premises, but not by any finite subset of these premises.
For example, suppose I like the number 0, I like the number 1, I like the number
2, and so on, for all natural numbers 0,1,2,3,…. Together, these assumptions entail
that I like every natural number. But no finite subset of the assumptions has this
consequence.

Exercise 4.14
A set of sentences Γ is called K-satisfiable if there is a world in some Kripke
model at which all members of Γ are true. Show that an infinite set of sen-
tences Γ is K-satisfiable iff every finite subset of Γ is K-satisfiable.

Our proofs of soundness, completeness, compactness, etc. were informal. We
have not translated the relevant claims into a formal language, nor have we used
a formal method of proof. In principle, however, this can be done. All our proofs
could be formalized in an axiomatic calculus for predicate logic with a few additional
axioms about sets. A well-known calculus of that kind is ZFC (named after Ernst
Zermelo, Abraham Fraenkel, and the Axiom of Choice). ZFC is strong enough to
prove not just soundness and completeness in modal logic, but practically everything
that can be proved in any branch of maths.

An interesting feature of ZFC is that it can not only prove facts about what’s prov-
able in simpler axiomatic calculi; it can also prove facts about what’s provable in
ZFC itself. For example, one can prove in ZFC that one can prove in ZFC that
2+2=4.

This gives us an interesting application of modal logic. Let’s read the box as ‘it is
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mathematically provable that’, which we understand as provability in ZFC. One can
easily show (in ZFC) that this operator has all the properties of the box in the basic
logic K. For example, all instances of the (K)-schema are provable in ZFC. (The
language of ZFC doesn’t have a box symbol. But one can encode the (K)-schema
into a schema of ZFC, given the present reading of the box, and all instances of that
schema are ZFC-provable.)

So the logic of mathematical provability is at least as strong as K. In fact, it is
stronger. One can prove in ZFC that whenever a sentence is ZFC-provable then it
is ZFC-provable that the sentence is ZFC-provable. This gives us the (4)-schema
□𝐴 →□□𝐴.

You might expect that we also have the (T)-schema □𝐴 → 𝐴 or the (D)-schema
□𝐴 →♢𝐴. The latter says that if something is provable then its negation isn’t prov-
able (since ♢𝐴 means ¬□¬𝐴). And surely ZFC can’t prove both a sentence and its
negation – which would make ZFC inconsistent. I say ‘surely’, but can we prove (in
ZFC) that ZFC is consistent? The answer is no. More precisely, one can prove that if
one can prove that ZFC is consistent then ZFC is inconsistent. This bizarre fact is a
consequence of Gödel’s second incompleteness theorem, established by Kurt Gödel
in 1931. It is reflected by the following schema (named after Gödel and Martin Löb),
all whose instances are provable in ZFC:

(GL) □(□𝐴 → 𝐴) →□𝐴

The system GL, which is axiomatized by (K), (GL), (Nec), and (CPL), completely
captures what ZFC can prove about provability in ZFC. (Schema (4) isn’t needed as
a separate axiom schema because it can be derived.)

Exercise 4.15
Suppose ZFC can prove its own consistency, so that there is a proof of ¬□(𝑝∧
¬𝑝). Explain how this proof could be extended to a proof of □(𝑝 ∧ ¬𝑝),
showing that ZFC is inconsistent. You need each of (GL), (Nec), and (CPL).
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