
9 Towards Modal Predicate Logic

9.1 Predicate logic recap

In these last two chapters, we are going to add the resources of first-order predicate
logic to those of propositional modal logic. Let’s begin by reviewing the syntax and
semantics of classical, non-modal predicate logic.

The language 𝔏𝑃 of first-order predicate logic consists of predicates 𝐹0, 𝐹1, 𝐹2, … ,
𝐺0, 𝐺1, 𝐺2, …, individual constants (or names) 𝑎, 𝑏, 𝑐, …, individual variables 𝑥, 𝑦, 𝑧, …,
the logical symbols ¬, ∧, ∨, → , ↔, ∀, ∃, and the parentheses (and). Individual
variables and constants are also called (singular) terms.

Atomic sentences of 𝔏𝑃 are formed by conjoining a predicate with zero or more
terms. Each predicate takes a fixed number of terms, as indicated by its numeri-
cal superscript: 𝐹1 is a one-place predicate that combines with one term to form a
sentence, 𝐹2 is two-place, and so on. In practice, we usually omit the superscripts,
because context makes clear what kind of predicate is in play. 𝐹𝑎∨𝐺𝑎𝑏, for example,
is well-formed only if 𝐹 is one-place and 𝐺 two-place.

In English, a predicate is what is what you get when you remove all names from a
sentence. Removing ‘Bob’ from ‘Bob is hungry’ yields the predicate ‘– is hungry’.
From ‘Bob is in Rome’, we get the two-place predicate ‘– is in –’. From ‘Bob saw
Carol’s father in Jerusalem’, we could get the three-place-predicate ‘– saw –’s father
in –’. When we translate from English, we normally translate English names into
𝔏𝑃-names and (logically simple) English predicates into 𝔏𝑃-predicates. ‘Bob is in
Rome’ might become 𝐹𝑎𝑏, where 𝑎 translates ‘Bob’, 𝑏 ‘Rome’, and 𝐹 ‘– is in –’.

From atomic sentences, complex sentences are formed in the usual way by means
of the truth-functional operators ¬, ∧, ∨, → , ↔.

Another way to construct a complex sentence from a simpler sentence is to add a
quantifier in front of the simpler sentence. A quantifier is an expression of the form
∀𝜒 or ∃𝜒, where 𝜒 is some variable. A quantifier is said to bind the variable it
contains: ∀𝑥 binds 𝑥, ∃𝑦 binds 𝑦, and so on.

179

9 Towards Modal Predicate Logic

In English, quantifier expressions are usually restricted to a particular subclass of
the things under discussion: ‘all whales are mammals’, ‘some students went home’.
The 𝔏𝑃-quantifiers ∀𝑥 and ∃𝑥 are unrestricted. They roughly correspond to ‘every-
thing is such that …’ and ‘something is such that …’. We can translate restricted
quantifiers by combining unrestricted quantifiers with truth-functional connectives.
‘All whales are mammals’ is equivalent to ‘Everything is either not a whale or a
mammal’; so it can be translated as ∀𝑥(𝑊𝑥 → 𝑀𝑥). ‘Some students went home’
could be translated as ∃𝑥(𝑆𝑥 ∧ 𝐻𝑥).

Variables are book-keeping devices. They function somewhat like pronouns in
English. ∃𝑥(𝑆𝑥 ∧ 𝐻𝑥) might be read as ‘something is such that it is a student and it
went home’. By using different variables (𝑥, 𝑦, 𝑧, …), we can disambiguate statements
with nested quantifiers. Consider

Every dog barked at a tree.

This can mean that there is a particular tree at which all the dogs barked, but it can
also mean that each dog found some tree to bark at – possibly different trees for
different dogs. The first reading could be translated as

∃𝑦(𝑇𝑦 ∧ ∀𝑥(𝐷𝑥 → 𝐵𝑥𝑦)),

the second as

∀𝑥(𝐷𝑥 → ∃𝑦(𝑇𝑦 ∧ 𝐵𝑥𝑦)).

Some more terminology. Recall that the scope of an operator (token) in a sentence
is the shortest well-formed subsentence in which it occurs. In ∃𝑦(𝑇𝑦∧∀𝑥(𝐹𝑥 → 𝐵𝑥𝑦)),
the scope of the quantifier ∀𝑥 is the subsentence ∀𝑥(𝐹𝑥 → 𝐵𝑥𝑦). If an occurrence of
a variable lies in the scope of a quantifier that binds the variable, then the occurrence
is called bound, otherwise it is free. In ∀𝑥(𝐹𝑥 → 𝐵𝑥𝑦), all occurrences of 𝑥 are bound,
but 𝑦 is free.

A sentence containing free variables is called open. Sentences that aren’t open
are closed. Intuitively, only closed sentences make complete statements. For this
reason, some authors reserve the word ‘sentence’ for closed sentences, referring to
open sentences as ‘formulas’. (Others call every 𝔏𝑃-sentence a ‘formula’.)

180

9 Towards Modal Predicate Logic

Exercise 9.1
Translate the following sentences into 𝔏𝑃.
(a) Keren and Keziah are sisters of Jemima.
(b) All myriapods are oviparous.
(c) Fred has a new car.
(d) Not every student loves logic.
(e) Every student who loves logic loves something.

Like sentences of modal propositional logic, sentences of predicate logic are in-
terpreted relative to a model. A model of predicate logic first of all specifies an
individual domain 𝐷 over which the quantifiers are said to range. If we read ∀𝑥 as
‘everything is such that’ and ∃𝑥 as ‘something is such that’ then the relevant “some-
things” are the members of the domain 𝐷.

The remainder of a model is an interpretation function 𝑉 that assigns

(a) to each name a member of 𝐷,
(b) to each zero-place predicate a truth-value,
(c) to each one-place predicate a subset of 𝐷, and
(d) to each 𝑛-place predicate with 𝑛 > 1 a set of 𝑛-tuples from 𝐷.

An “𝑛-tuple from 𝐷” is simply a list of length 𝑛, all elements of which are in 𝐷.
Repetitions are allowed, so if Bob is a member of 𝐷, then ⟨Bob, Bob⟩ counts as
a 2-tuple from 𝐷. (2-tuples are more commonly called pairs.) We can subsume
condition (c) under condition (d) by assuming that a 1-tuple from 𝐷 is a member of
𝐷. We can subsume (b) under (d) by identifying the truth-value False with the empty
tuple ∅ and the truth-value True with {∅}. (Don’t worry if you find this confusing
or objectionable. We won’t be using zero-ary predicates.)

Definition 9.1
A (classical) first-order model is a pair ⟨𝐷, 𝑉 ⟩ consisting of
• a non-empty set 𝐷, and
• a function 𝑉 that assigns to each name a member of 𝐷 and to each 𝑛-place

predicate a set of 𝑛-tuples from 𝐷.

181

9 Towards Modal Predicate Logic

As always, the purpose of a model is to represent a conceivable scenario together
with an interpretation of the non-logical vocabulary. The non-logical vocabulary of
𝔏𝑃 are the names and predicates, which is why these are interpreted by 𝑉 .

We assume that in any relevant scenario there are some things we want to talk
about; these things are represented by the domain. The members of 𝐷 are often
called individuals, but this should not be taken to imply anything about their nature.
An individual might be a rock, a person, a symphony, a sentence, a number, or a
possible world. Every 𝔏𝑃-name is assumed to pick out one of these individuals.
(Different names can pick out the same individual, and there can be individuals that
aren’t picked out by any name.)

Intuitively, a predicate expresses a property or relation that may be instantiated by
the individuals in the domain. In order to determine the truth-value of a sentence like
𝐹𝑎 or ∃𝑥𝐹𝑥 in a given scenario, however, we only need to know which individuals in
the domain have the property expressed by 𝐹. Similarly, to determine the truth-value
of sentences like 𝑅𝑎𝑏 or ∀𝑥∃𝑦𝑅𝑥𝑦, we only need to know which pairs of individu-
als stand in the relation expressed by 𝑅. That’s why the interpretation function in
a first-order model simply assigns sets of individuals or 𝑛-tuples of individuals to
predicates. 𝐹𝑎 is true in a given model iff the individual assigned to 𝑎 (in the model)
is a member of the set assigned to 𝐹; that is, iff 𝑉(𝑎) ∈ 𝑉(𝐹). Likewise, 𝑅𝑎𝑏 is true
in a model iff the pair of individuals assigned to 𝑎 and 𝑏 – the pair ⟨𝑉(𝑎), 𝑉(𝑏)⟩ – is
in the set assigned to 𝑅.

In this way, the truth-value of every closed atomic sentences is determined. For
truth-functionally complex sentences, the standard rules apply: a negated sentence
¬𝐴 is true iff the corresponding sentence 𝐴 is not true; 𝐴 ∧ 𝐵 is true iff 𝐴 and 𝐵 are
both true; and so on.

When we turn to quantified sentences, we face a problem. We can’t define the
truth-value of ∀𝑥𝐹𝑥 in terms of the truth-value of 𝐹𝑥, because an open sentence like
𝐹𝑥 doesn’t have a truth-value. Interpretation functions interpret names and predi-
cates; they say nothing about variables. Even if we changed this and said that 𝑥
should also be interpreted as picking out a member of the domain, we would have
to ignore this interpretation if we evaluate ∀𝑥𝐹𝑥. We want ∀𝑥𝐹𝑥 to be true iff 𝐹𝑥
is true no matter which individual is assigned to 𝑥. We therefore define truth not
just relative to a model, but relative to a model and an assignment of individuals to
variables.

To illustrate, consider a model with just two individuals, Alice and Bob, which are

182

9 Towards Modal Predicate Logic

picked out by the names 𝑎 and 𝑏 respectively. Let 𝑉(𝐹) be the set { Alice }, a set that
only contains Alice. So 𝐹𝑎 is true and 𝐹𝑏 false. The sentence 𝐹𝑥 is neither true nor
false, for the variable 𝑥 does not refer to any particular individual. All we can say is
that 𝐹𝑥 is “true of” Alice and “false of” Bob. That is, 𝐹𝑥 is true if we assign Alice to
𝑥 and false if we assign Bob to 𝑥. ∃𝑥𝐹𝑥 is true because there is an individual (Alice)
of which 𝐹𝑥 is true. Equivalently, ∃𝑥𝐹𝑥 is true because there is some assignment of
individuals to variables relative to which 𝐹𝑥 is true. ∀𝑥𝐹𝑥 is false because it is not
the case that every assignment of individuals to variables renders 𝐹𝑥 true.

So we’ll define truth relative to a model 𝑀 = ⟨𝐷, 𝑉 ⟩ and a variable assignment
𝑔. A variable assignment is a function that maps variables to members of 𝐷. If we
have nested quantifiers, as in ∀𝑥∃𝑦𝐺𝑥𝑦, we need to consider variable assignments
that differ from other assignments with respect to a particular variable. ∀𝑥∃𝑦𝐺𝑥𝑦 is
true iff, no matter what individual is assigned to 𝑥, there is some assignment of an
individual to 𝑦 (but holding fixed the assignment to 𝑥) that makes 𝐺𝑥𝑦 true. Equiv-
alently: ∀𝑥∃𝑦𝐺𝑥𝑦 is true iff for every variable assignment 𝑔, there is some variable
assignment 𝑔′ that differs from 𝑔 at most in what it assigns to 𝑦 such that 𝐺𝑥𝑦 is true
relative to 𝑔′.

Let’s say that (for any variable 𝜒) a variable assignment 𝑔′ is an 𝜒-variant of a
variable assignment 𝑔 iff 𝑔′ differs from 𝑔 at most in the value it assigns to 𝜒. Let’s
also introduce [𝜏]𝑀,𝑔 as shorthand for the individual picked out by a term 𝜏 in a
model 𝑀 = ⟨𝐷, 𝑉 ⟩ relative to assignment 𝑔:

[𝜏]𝑀,𝑔 =def

⎧{
⎨{⎩

𝑉(𝜏) if 𝜏 is a name
𝑔(𝜏) if 𝜏 is a variable.

This is a compact way of saying that (1) for any variable 𝜒, [𝜒]𝑀,𝑔 is the individual
assigned to 𝜒 by 𝑔, and (2) for any name 𝜂, [𝜂]𝑀,𝑔 is the individual assigned to 𝜂
by the interpretation function of 𝑀.

Now we can state the standard semantics of first-order predicate logic. (‘𝑀, 𝑔 |= 𝐴’
is pronounced ‘𝐴 is true in 𝑀 relative to 𝑔’).

183

9 Towards Modal Predicate Logic

Definition 9.2: Semantics of first-order predicate logic
If 𝑀 = ⟨𝐷, 𝑉 ⟩ is a first-order model, 𝜙𝑛 is an 𝑛-place predicate (for 𝑛 ≥ 0),
𝜏1, … , 𝜏𝑛 are terms, 𝜒 is a variable, and 𝑔 is a variable assignment, then

(a) 𝑀, 𝑔 |= 𝜙𝑛𝜏1 … 𝜏𝑛 iff ⟨[𝜏1]𝑀,𝑔, … , [𝜏𝑛]𝑀,𝑔 ⟩ ∈ 𝑉(𝜙).
(b) 𝑀, 𝑔 |= ¬𝐴 iff 𝑀, 𝑔 |≠ 𝐴.
(c) 𝑀, 𝑔 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑔 |= 𝐴 and 𝑀, 𝑔 |= 𝐵.
(d) 𝑀, 𝑔 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑔 |= 𝐴 or 𝑀, 𝑔 |= 𝐵.
(e) 𝑀, 𝑔 |= 𝐴 → 𝐵 iff 𝑀, 𝑔 |≠ 𝐴 or 𝑀, 𝑔 |= 𝐵.
(f) 𝑀, 𝑔 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑔 |= 𝐴 → 𝐵 and 𝑀, 𝑔 |= 𝐵 → 𝐴.
(g) 𝑀, 𝑔 |= ∀𝜒𝐴 iff 𝑀, 𝑔′ |= 𝐴 for all 𝜒-variants 𝑔′ of 𝑔.
(h) 𝑀, 𝑔 |= ∃𝜒𝐴 iff 𝑀, 𝑔′ |= 𝐴 for some 𝜒-variant 𝑔′ of 𝑔.

Clause (a) says that, for example, 𝐹𝑎 is true in a model 𝑀 relative to an assign-
ment 𝑔 iff in that model, the predicate 𝐹 applies to the individual picked out by 𝑎.
Clauses (b)-(f) say that the truth-functional operators are interpreted in the standard
fashion. Clauses (g) and (h) tell us how quantified sentences are interpreted. ∃𝑥𝐹𝑥,
for example, is true relative to 𝑀 and 𝑔 iff 𝐹𝑥 is true relative to some assignment
function 𝑔′ that differs from 𝑔 at most in what it assigns to 𝑥.

Definition 9.2 settles the truth-value of every 𝔏𝑃-sentence in every (first-order)
model, relative to any assignment function.

We can also define a concept of truth relative to a model, without reference to an
assignment function. Let’s say that an 𝔏𝑃-sentence is true in a model 𝑀 iff it is true
in 𝑀 relative to every assignment function 𝑔 for 𝑀.

Finally, we say that an 𝔏𝑃-sentence is valid (in classical first-order logic) iff it is
true in all (classical, first-order) models. Equivalently: An 𝔏𝑃 sentence is valid iff it
is true in all models relative to all assignment functions.

On the present definition, 𝐹𝑥 → 𝐹𝑥 is valid, even though it does not make a com-
plete statement, due to the free variable 𝑥. To avoid this, many authors restrict the
concept of validity to closed sentences.

184

9 Towards Modal Predicate Logic

Exercise 9.2
Define a first-order model in which ∃𝑥𝐹𝑥 → ∀𝑥𝐹𝑥 is false. Demonstrate that
the sentence is false in your model by applying all relevant clauses from defi-
nition 9.2.

Exercise 9.3
The definition of truth in a model uses the method of supervaluation that we
met in section 7.4. Give examples to illustrate the following claims.

(a) If a sentence 𝐴 is not true in a model, it does not follow that ¬𝐴 is true
in the model.

(b) A disjunction 𝐴 ∨ 𝐵 can be true in a model even though neither 𝐴 nor 𝐵
is true in the model.

9.2 Modal fragments of predicate logic

Much of the power and complexity of predicate logic comes from its ability to handle
nested quantifiers with different variables. For some applications, these complexities
aren’t needed, and we can simplify the semantics.

Consider a fragment 𝔏1
𝑃 of 𝔏𝑃 with only one variable 𝑥, no names, and only one-

place predicates. In 𝔏1
𝑃, we have sentences like 𝐹𝑥, ∀𝑥𝐺𝑥, ∀𝑥∃𝑥(𝐹𝑥 → 𝐺𝑥), but not

𝐹𝑎 or ∀𝑥∃𝑦(𝐹𝑥 → 𝐺𝑦).
Following definition 9.1, a model for 𝔏1

𝑃 consists of a non-empty set 𝐷 and an
interpretation function 𝑉 that assigns to each predicate a subset of 𝐷. That is, for
𝔏1

𝑃 definition 9.1 can be simplified as follows:

A model of 𝔏1
𝑃 is a pair ⟨𝐷, 𝑉 ⟩ consisting of

• a non-empty set 𝐷, and
• a function 𝑉 that assigns to every 𝔏1

𝑃-predicate a subset of 𝐷.

We can also simplify definition 9.2. Since 𝔏1
𝑃 has only one variable 𝑥, an assign-

ment function for 𝔏1
𝑃 only needs to tell us which individual in 𝐷 is picked out by 𝑥.

185

9 Towards Modal Predicate Logic

So we can represent an entire assignment function for 𝔏1
𝑃 by a member of 𝐷. This

leaves us with the following semantics.

If 𝑀 = ⟨𝐷, 𝑉 ⟩ is a model for 𝔏1
𝑃, 𝑑 is a member of 𝐷, and 𝜙 is an 𝔏1

𝑃-predicate,
then
(a) 𝑀, 𝑑 |= 𝜙𝑥 iff 𝑑 ∈ 𝑉(𝜙).
(b) 𝑀, 𝑑 |= ¬𝐴 iff 𝑀, 𝑑 |≠ 𝐴.
(c) 𝑀, 𝑑 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑑 |= 𝐴 and 𝑀, 𝑑 |= 𝐵.
(d) 𝑀, 𝑑 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑑 |= 𝐴 or 𝑀, 𝑑 |= 𝐵.
(e) 𝑀, 𝑑 |= 𝐴 → 𝐵 iff 𝑀, 𝑑 |≠ 𝐴 or 𝑀, 𝑑 |= 𝐵.
(f) 𝑀, 𝑑 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑑 |= 𝐴 → 𝐵 and 𝑀, 𝑑 |= 𝐵 → 𝐴.
(g) 𝑀, 𝑑 |= ∀𝑥𝐴 iff 𝑀, 𝑑′ |= 𝐴 for all 𝑑′ ∈ 𝐷.
(h) 𝑀, 𝑑 |= ∃𝑥𝐴 iff 𝑀, 𝑑′ |= 𝐴 for some 𝑑′ ∈ 𝐷.

These definitions look a lot like definitions 2.1 and 2.2 from chapter 2. The only
difference is that the sentence letters from chapter 2 are now called predicates and
written in uppercase, the box is written ∀𝑥, the diamond ∃𝑥, and we always append
the letter 𝑥 to sentence letters: we write ∀𝑥𝐹𝑥, not ∀𝑥𝐹. But it doesn’t really matter
how a symbol is called or how it is written.

The upshot is that propositional modal logic, interpreted as in chapter 2, can be
regarded as a disguised fragment of first-order predicate logic. The sentence letters
of 𝔏𝑀 are disguised (one-place) predicates, the box and the diamond are disguised
quantifiers. If we adopted the orthographic convention to write the box as ∀𝑥, the
diamond as ∃𝑥, and to always append the letter 𝑥 to (capitalised) sentence letters, 𝔏𝑀
would look just like 𝔏1

𝑃, and it would have the same semantics.
If we use chapter 3’s Kripke semantics rather than the simple semantics from

chapter 2 to interpret 𝔏𝑀 , we get a different fragment of first-order predicate logic.
The box and the diamond are still disguised quantifiers, but this time they are re-
stricted by the accessibility relation. We could drop the disguise by writing □𝑝 as
∀𝑦(𝑅𝑥𝑦 → 𝑃𝑦) and ♢𝑝 as ∃𝑦(𝑅𝑥𝑦∧𝑃𝑦). The fragment of 𝔏𝑃 that now corresponds to
𝔏𝑀-sentences has two variables 𝑥 and 𝑦 and one two-place predicate ‘𝑅’ in addition
to the one-place predicates; it no longer has unrestricted quantifiers.

What’s the point of the disguise? Why didn’t we write boxes and diamonds as
𝔏𝑃-quantifiers all along? There are several reasons.

186

9 Towards Modal Predicate Logic

One is that we often use the box and the diamond to formalize pre-theoretic con-
cepts of which it is not obvious that they can be understood as a quantifiers over
worlds. Some hold that the correct semantics for obligation and permission, for
example, is not Kripke semantics, but neighbourhood semantics. The language of
modal propositional logic is neutral on this disagreement. Or think of provability
logic, where the box formalizes mathematical provability. As it turns out, one can
give a Kripke semantics for provability, but nobody thinks this somehow reveals
what provability really means. In provability logic, □𝐴 means that 𝐴 is derivable
from the axioms and rules of (say) ZFC; it would not be illuminating to write this as
∀𝑦(𝑅𝑥𝑦 → 𝐴𝑦).

One might also argue that the syntax of modal logic conveniently resembles the
surface form of English statements that we may want to formalize. In ‘Bob knows
that it is raining’, for example, the object of Bob’s knowledge is specified by ‘it is
raining’. It seems appropriate to formalize the sentence in terms of an operator K that
applies to a sentence, 𝑝. If we “dropped the disguise”, the formalization would be
∀𝑦(𝑅𝑥𝑦 → 𝑃𝑦). The sentence ‘it is raining’ would have to be translated by a predicate
𝑃 – a predicate that applies to all and only the worlds at which it is raining.

There is a deeper point here. Sentences of modal logic are interpreted at a world
in a model. Modal logic looks at models “from the inside”, from the perspective of a
particular world. Predicate logic, by contrast, describes models “from the outside”,
from a God’s eye perspective. If we want to say that a particular individual has
a property 𝑃 in predicate logic, we need to pick out that individual among all the
elements of the domain, perhaps by a name. We can then say 𝑃𝑎. In modal logic,
we can simply say 𝑝 to express that the internal point from which we’re looking at
the model has the relevant property.

For many applications, this internal perspective is very natural. If we think about
what is possible or about what the future will bring, our thinking takes place at a
particular time, in a particular world. We are looking at the structure of times and
worlds from the inside. When I say that it is raining, I mean that it is raining here
and now, in this world. I don’t need to pick out the relevant time and place and world
from a God’s eye perspective. I can pick them out simply as the time and place and
world at which I currently find myself.

There are other, more pragmatic reasons to use the modal language 𝔏𝑀 rather
than 𝔏𝑃. The language of boxes and diamonds is simpler than the language of first-
order predicate logic. It has a simpler syntax, a simpler semantics, and allows for

187

9 Towards Modal Predicate Logic

simpler proofs. For almost all the conceptions of validity we have studied (K-validity,
S4-validity, etc.), there are efficient mechanical procedures to determine whether
an arbitrary 𝔏𝑀-sentence is valid or invalid, By contrast, there is no mechanical
procedure at all to determine, for an arbitrary 𝔏𝑃-sentence, whether it is valid or
invalid.

You may wonder how this is possible given that 𝔏𝑀-sentence are just 𝔏𝑃-sentences
in disguise. The reason is that while every 𝔏𝑀-sentence is a disguised 𝔏𝑃-sentence,
not every 𝔏𝑃-sentence can be disguised as an 𝔏𝑀-sentence. There are many things
one can say in 𝔏𝑃 that can’t be said in 𝔏𝑀 . The 𝔏𝑃-sentence ∀𝑥𝑅𝑥𝑥, for example,
states that 𝑅 is reflexive. No sentence of 𝔏𝑀 has this meaning: there is no 𝔏𝑀-
sentence that is true at a world in a model iff the model’s accessibility relation is
reflexive.

That’s why modal propositional logic, interpreted as in chapter 2 or 3, is a dis-
guised fragment of predicate logic. It is a simple and computationally attractive
fragment that takes an “internal” perspective on models.

Exercise 9.4
Since□𝐴 → 𝐴 corresponds to reflexivity, one might think that□𝑝 → 𝑝 is true at
a world in a model iff the model’s accessibility relation is reflexive. (a) Explain
why this is not correct. (b) Can you also show that there is no 𝔏𝑀-sentence
that is true at a world in a model iff the model’s accessibility is reflexive?

9.3 Predicate logic proofs

If we want to know whether a given 𝔏𝑃-sentence is valid or invalid, we could in
principle work through definition 9.2. Various proof systems for classical predicate
logic offer a more streamlined approach.

Let’s look at the tree method for classical predicate logic. Suppose we want to test
whether ∃𝑥(𝐹𝑥 ∧𝐺𝑥) → ∃𝑥𝐹𝑥 is valid. As always, we start the tree with the negation
of the target sentence:

1. ¬(∃𝑥(𝐹𝑥 ∧ 𝐺𝑥) → ∃𝑥𝐹𝑥) (Ass.)

There is no world label because we’re not doing modal logic. Next, we apply the
standard rule for negated conditionals:

188

9 Towards Modal Predicate Logic

2. ∃𝑥(𝐹𝑥 ∧ 𝐺𝑥) (1)
3. ¬∃𝑥𝐹𝑥 (1)

Node 2 says that 𝐹𝑥 ∧ 𝐺𝑥 is true of some individual. To expand this node, we
introduce a new name 𝑎 for that individual, and infer 𝐹𝑎 ∧ 𝐺𝑎.

4. 𝐹𝑎 ∧ 𝐺𝑎 (2)

We expand the conjunction on node 4.

5. 𝐹𝑎 (4)
6. 𝐺𝑎 (4)

Next, we expand node 3, which says that 𝐹𝑥 is true of nothing. In particular then,
𝐹𝑥 can’t be true of 𝑎. So we add ¬𝐹𝑎:

7. ¬𝐹𝑎
x

(3)

The tree is closed because the sentence on node 7 is the negation of the sentence on
node 5. The target sentence is valid.

To state the general rules, we need some more notation. If 𝐴 is a sentence, 𝜒 is a
variable, and 𝜂 is a name, let 𝐴[𝜂/𝜒] be the sentence obtained from 𝐴 by replacing
all free occurrences of 𝜒 with 𝜂. So 𝐹𝑥[𝑎/𝑥] is 𝐹𝑎, but ∀𝑥𝐹𝑥[𝑎/𝑥] is ∀𝑥𝐹𝑥 because
this sentence contains no free occurrences of 𝑥.

The general rule for expanding nodes of type ∃𝜒𝐴 is that you add a node 𝐴[𝜂/𝜒],
where 𝜂 is a “new” name that does not already occur on the relevant branch. If this
node has been added to every open branch below ∃𝜒𝐴 then the ∃𝜒𝐴 node can be
ticked off. ∀𝜒𝐴 nodes can be expanded multiple times, once for each “old” name.
So if ∀𝑥𝐴 occurs on a branch, and the branch contains the names 𝑎 and 𝑏 then we can
add both 𝐴[𝑎/𝑥] and 𝐴[𝑏/𝑥]. If there is no old name on a branch, we are allowed to
expand ∀𝜒𝐴 with a new name. ∀𝜒𝐴 nodes are never ticked off.

Here is a summary of the quantifier rules; ‘old or first’ means that the relevant
name either already occurs on the branch or it is introduced as the first name on the
branch.

189

9 Towards Modal Predicate Logic

∀𝜒𝐴

𝐴[𝜂/𝜒]
↑

old or first

∃𝜒𝐴

𝐴[𝜂/𝜒]
↑
new

¬∀𝜒𝐴

¬𝐴[𝜂/𝜒]
↑
new

¬∃𝜒𝐴

¬𝐴[𝜂/𝜒]
↑

old or first

Exercise 9.5
Give tree proofs for the following sentences.
(a) ∀𝑥𝐹𝑥 → 𝐹𝑎
(b) ∀𝑥(𝐹𝑥 → 𝐺𝑥) → (∀𝑥𝐹𝑥 → ∀𝑥𝐺𝑥)
(c) ∀𝑥(𝐹𝑥 ∧ 𝐺𝑥) ↔ (∀𝑥𝐹𝑥 ∧ ∀𝑥𝐺𝑥)
(d) ∃𝑥∀𝑦𝐺𝑥𝑦 → ∀𝑦∃𝑥𝐺𝑥𝑦
(e) ∃𝑦∀𝑥(𝐹𝑦 → 𝐹𝑥)

There are also axiomatic calculi for predicate logic. We can, for example, use the
following axiom schemas:

¬∃𝜒𝐴 ↔ ∀𝜒¬𝐴(∀∃)
∀𝜒𝐴 → 𝐴[𝜂/𝜒](UI)
∀𝜒(𝐴 → 𝐵) → (𝐴 → ∀𝜒𝐵), if 𝜒 is not free in 𝐴(DI)

To these we would add the following rules. As in earlier chapters, Γ |=𝑃 𝐴 means
that 𝐴 is a truth-functional consequence of (the sentences in) Γ.

If Γ |=𝑃 𝐴 and all members of Γ are on a proof, then one may add 𝐴.(CPL)
If 𝐴 occurs on a proof, then one may add ∀𝜒𝐴[𝜂/𝜒].(Gen)

These axioms and rules are sound and complete: everything that can be proved is
valid, and every valid (closed) sentence can be proved. The above tree rules are also
sound and complete.

190

9 Towards Modal Predicate Logic

Exercise 9.6
The completeness proof for first-order trees (like the proof in chapter 4) shows
that if a sentence is valid then any fully expanded tree for that sentence will
close, provided the tree rules are applied in a sensible order. Why doesn’t this
contradict the claim I made in the previous section. that there is no mechanical
procedure to determine, for an arbitrary 𝔏𝑃-sentence, whether the sentence is
valid? (Tree proofs count as “mechanical”, so that’s not the problem.)

9.4 Modality de dicto and de re

We are now ready to add boxes and diamonds to the language of first-order predicate
logic. This gives us the standard language of first-order modal logic, or 𝔏𝑀𝑃. The
sentences of 𝔏𝑀𝑃 are defined as follows.

1. An 𝑛-place predicate followed by 𝑛 terms is an 𝔏𝑀𝑃-sentence.
2. If 𝐴 is an 𝔏𝑀𝑃-sentence, then so are ¬𝐴, ♢𝐴, and □𝐴.
3. If 𝐴 and 𝐵 are 𝔏𝑀𝑃-sentences, then so are (𝐴 ∧ 𝐵), (𝐴 ∨ 𝐵), (𝐴 → 𝐵) and (𝐴 ↔

𝐵).
4. If 𝐴 is an 𝔏𝑀𝑃-sentence and 𝜒 is a variable, then ∀𝜒𝐴 and ∃𝜒𝐴 are 𝔏𝑀𝑃-

sentence.
5. Nothing else is an 𝔏𝑀𝑃-sentence.

We continue to interpret the box and the diamond as (disguised) quantifiers. So
𝔏𝑀𝑃 effectively has two kinds of quantifiers: overt quantifiers of the form ∀𝜒 and
∃𝜒, and the disguised quantifiers □ and ♢. This is only useful if the two kinds of
quantifiers range over different things. In applications of modal predicate logic, the
box and the diamond usually range over possible worlds or times, while the overt
quantifiers range over things like people, rocks, ghosts, etc., which are assumed to
inhabit the worlds or times.

To illustrate, consider the following inference, in which I’ve written the box as
‘K’.

Bob knows that all humans are mortal. K ∀𝑥(𝐻𝑥 → 𝑀𝑥)
Socrates is human. 𝐻𝑠
Therefore: Socrates is mortal. 𝑀𝑠

191

9 Towards Modal Predicate Logic

The knowledge operator K is a quantifier over the worlds compatible with Bob’s
(implicit) knowledge. K ∀𝑥(𝐻𝑥 → 𝑀𝑥) says that ∀𝑥(𝐻𝑥 → 𝑀𝑥) is true at every world
compatible with Bob’s knowledge. ∀𝑥(𝐻𝑥 → 𝑀𝑥) is assumed to quantify not over
worlds, but over things that exist relative to a world. ∀𝑥(𝐻𝑥 → 𝑀𝑥) is true at a world
𝑤 iff 𝐻𝑥 → 𝑀𝑥 is true of every inhabitant of 𝑤, meaning that every inhabitant of 𝑤 is
either not human or mortal. The inference is valid because the accessibility relation
for knowledge is reflexive.

Imagine a lottery. Let’s read the box as ‘it is certain that’ and 𝑊 as ‘– is a winning
ticket’. Can you see what is expressed by the following two statements?

(1) □∃𝑥𝑊𝑥
(2) ∃𝑥□𝑊𝑥

(1) says that it is certain that some ticket wins: at every epistemically accessible
world there is a winning ticket. (2) says that there is a particular ticket of which
we are sure that it will win: there is an individual such that at every epistemically
accessible world, it is the winning ticket. (2) is only true if we know which ticket is
the (or a) winning ticket.

Sentences like ∃𝑥□𝑊𝑥 are called de re, Latin for ‘of a thing’. Intuitively, ∃𝑥□𝑊𝑥
assert of a particular ticket that it has a modal property, namely the property of
being the certain winner. By contrast, □∃𝑥𝐹𝑥, merely states that the proposition
(Latin, dictum) ∃𝑥𝐹𝑥 is certain. Sentences like this are called de dicto.

In general, an 𝔏𝑀𝑃-sentence is de re whenever it contains a variable that is free
in the scope of some modal operator. To determine whether a sentence 𝐴 is de re,
first identify all subsentences of 𝐴 that constitute the scope of a modal operator. (In
∃𝑥□𝑊𝑥, there is one such subsentence: □𝑊𝑥.) Next, check if at least one of these
subsentences contains a free variable. (□𝑊𝑥 contains the free variable 𝑥.) If yes,
the sentence 𝐴 is de re.

If a sentence contains a modal operator and is not de re, then it is de dicto. So
∀𝑥(𝐹𝑥 →□𝐺𝑥) and ∃𝑦□(∀𝑥𝐹𝑥 → 𝐹𝑦) are de re, but□∀𝑥𝐹𝑥 → 𝐹𝑎 is de dicto. ∀𝑥𝐹𝑥 → 𝐹𝑎
is neither de dicto nor de re, because it isn’t modal.

There is no consensus on how to classify sentences like □𝐹𝑎 that contain a name,
but no free variable, in the scope of a modal operator. One might argue that □𝐹𝑎
is de dicto because it attributes a modal status – say, necessity – to the proposition
𝐹𝑎. But one might also interpret the sentence as attributing a modal property to
the individual 𝑎: the property of being necessarily 𝐹. The sentence should then be

192

9 Towards Modal Predicate Logic

classified as de re. Which of these two perspectives is more adequate depends on the
precise semantics of 𝔏𝑀𝑃. We therefore have to postpone the question until the next
chapter, where we will consider some options for developing a semantics of 𝔏𝑀𝑃.

Many natural-language sentences are ambiguous between a de re reading and a
de dicto reading. Consider ‘something necessarily exists’. This can mean either that
there is an object which could not have failed to exist (∃𝑥□𝐸𝑥); but it can also mean
that it is necessary that something or other exists (□∃𝑥𝐸𝑥). The first reading is de
re, the second de dicto.

Exercise 9.7
Translate the following sentences into modal predicate logic. (Some of them
are ambiguous.)
(a) John must be hungry.
(b) Anyone who is a cyclist must have legs.
(c) Every day might be our last.
(d) If anyone wants to leave early, they should do so quietly.
(e) Everyone who bought a ticket is allowed to enter.

Exercise 9.8
Which of your translations from the previous exercise are de re and which are
de dicto?

On some interpretations of the modal operators, one may question whether de re
sentences are intelligible. Suppose we interpret the box as ‘it is analytic that’ or ‘it is
provable that’. The things that are analytic or provable are sentences or propositions.
That 2+2=4, for example, is provable in ZFC, and ‘all vixens are female foxes’ is
analytic in English. (Remember that a sentence is analytic if it is true in virtue of
its meaning.) It is not clear what it could mean to say that something is provable or
analytic of a particular thing.

To illustrate the problem, let’s introduce the name ‘Julius’ for whoever invented
the zip. The sentence ‘Julius invented the zip’ is analytic. (In fact, ‘Julius invented
the zip’ entails that someone invented the zip, which is not analytic. We should
really use ‘If anyone invented the zip, then Julius invented the zip’. Let’s ignore this

193

9 Towards Modal Predicate Logic

complication.) But is it analytic of the person who invented the zip that they invented
the zip? The problem is that this person has multiple names, and depending on which
name we plug into the schema ‘— invented the zip’, we sometimes get an analytic
truth and sometimes not. For ‘Julius’, the sentence is analytic; for whatever name
the inventor of the zip was given by his or her parents, the sentence is not analytic.

This kind of worry was prominently raised by W.V.O. Quine in the 1940s. It
has since faded, mostly because philosophers have turned their attention away from
analyticity to other interpretations of the box for which the problem is thought not
to arise. But we will return to the matter in section 10.4.

9.5 Identity and descriptions

In applications of modal and non-modal predicate logic, it is often useful to have
a special predicate for identity. Let’s assume that 𝔏𝑃 and 𝔏𝑀𝑃 have the two-place
predicate ‘=’. The identity predicate is conventionally placed between its two argu-
ments: we write ‘𝑎 = 𝑏’, not ‘= 𝑎𝑏’. We also sometimes abbreviate ‘¬𝑎 = 𝑏’ as
‘𝑎 ≠ 𝑏’.

Unlike the other predicates of 𝔏𝑃 and 𝔏𝑀𝑃, the identity predicate counts as a
logical symbol. Its meaning is held fixed. In any model, 𝑎 = 𝑏 means that the
individual picked out by 𝑎 is the very same thing as the individual picked out by 𝑏.
This is reflected by the following clause, which we add to the semantics of predicate
logic:

𝑀, 𝑔 |= 𝜏1 =𝜏2 iff [𝜏1]𝑀,𝑔 = [𝜏2]𝑀,𝑔.

It is easy to see that the sentence 𝑎 = 𝑎 is now valid, because 𝑎 and 𝑎 are guaranteed
to pick out the same individual. More interestingly, since the function of a name in
classical predicate logic is just to pick out an individual, it never matters which of
two names we use if they pick out the same individual. That is, if 𝑎 = 𝑏 is true, then
replacing some or all occurrences of 𝑎 in a sentence with 𝑏 never affects whether
that sentence is true. This principle is known as Leibniz’ Law.

To reflect these facts, the tree method for (non-modal) predicate logic must be
extended by two new rules. First, if 𝜂 is an “old” name (that already occurs on a
branch) then we can always add a node 𝜂 = 𝜂 to the branch. Second, if an identity
statement 𝜂1 = 𝜂2 occurs on a branch, and some sentence 𝐴 on the branch contains

194

9 Towards Modal Predicate Logic

𝜂1, then we may add a new node with the same sentence 𝐴 except that one or more
occurrences of 𝜂1 in 𝐴 are replaced by 𝜂2, or one or more occurrences of 𝜂2 by 𝜂1.
Let 𝐴[𝜂2//𝜂1] stand for any sentence that results from 𝐴 by replacing one or more
occurrences of 𝜂1 by 𝜂2. The new rules can then be summarized as follows.

Self-Identity

𝜂 = 𝜂
↑

old

Leibniz’ Law

𝜂1 = 𝜂2
𝐴

𝐴[𝜂2//𝜂1]

Leibniz’ Law

𝜂1 = 𝜂2
𝐴

𝐴[𝜂1//𝜂2]

Here is a tree for (𝑅𝑎𝑎 ∧ 𝑎=𝑏) → 𝑅𝑎𝑏, using Leibniz’s Law.

1. ¬((𝑅𝑎𝑎 ∧ 𝑎=𝑏) → 𝑅𝑎𝑏) (Ass.)
2. 𝑅𝑎𝑎 ∧ 𝑎=𝑏 (1)
3. ¬𝑅𝑎𝑏 (1)
4. 𝑅𝑎𝑎 (2)
5. 𝑎=𝑏 (2)
6. 𝑅𝑎𝑏

x
(4, 5, LL)

Exercise 9.9
Use the tree method to check which of the following sentences are valid.
(a) ∀𝑥(𝑥 =𝑥)
(b) ∀𝑥∀𝑦(𝑥 =𝑦 → 𝑦=𝑥)
(c) (𝑎 = 𝑏 ∧ 𝑏 = 𝑐) → 𝑎 = 𝑐
(d) 𝑅𝑎𝑏 → ∀𝑥(𝑥 = 𝑎 ↔ 𝑅𝑥𝑏)
(e) ∀𝑥∀𝑦∀𝑧(𝑥 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧 → 𝑥 ≠ 𝑧)

195

9 Towards Modal Predicate Logic

Exercise 9.10
Show that the second version of the Leibniz’ Law rule is redundant: we could
reach 𝐴[𝜂1//𝜂2] from 𝜂1 = 𝜂2 and 𝐴 with the other rules.

In the axiomatic approach, the two facts about identity are often represented by
the following axiom schemas:

𝜂 = 𝜂(SI)
𝜂1 = 𝜂2 → (𝐴 → 𝐴[𝜂2//𝜂1])(LL)

Once we add boxes and diamonds to the language of predicate logic, the seemingly
harmless axioms and rules for identity become problematic. Consider the following
inference:

It is analytic that Julius invented the zip.
Julius = Whitcomb L. Judson.
Therefore: It is analytic that Whitcomb L. Judson invented the zip.

The conclusion clearly doesn’t follow from the premises, but the inference seems to
be licensed by Leibniz’s law. Another well-known example:

Lois Lane believes that Superman can fly.
Superman = Clark Kent.
Therefore: Lois Lane believes that Clark Kent can fly.

Exercise 9.11
(a) Give an axiomatic proof of□∃𝑥 𝑥 = 𝑎, using (SI), (UI), (CPL), (∀∃), (CPL),
and (Nec), in this order. (b) Can you see why we might not want to count
□∃𝑥 𝑥 = 𝑎 as a logical truth in some applications of modal logic? At which
point do you think the proof goes wrong?

We will return to these issues in section 10.4. In the remainder of the present
section, I want to highlight some other things we can do with the identity predicate,
apart from making claims about identity.

You have already encountered one other use in earlier chapters. Suppose we want
to express that some relation 𝑅 is connected, meaning that for any two things, either

196

9 Towards Modal Predicate Logic

the first is 𝑅-related to the second or the second is 𝑅-related to the first. This can’t
be expressed without an identity predicate. With an identity predicate, it is easy:

∀𝑥∀𝑦(𝑅𝑥𝑦 ∨ 𝑥 =𝑦 ∨ 𝑅𝑦𝑥).

We can also use identity to express numerical quantifiers. For example, we can
express ‘there are at least two 𝐹s’ as

∃𝑥(𝐹𝑥 ∧ ∃𝑦(𝐹𝑦 ∧ 𝑥 ≠ 𝑦)).

‘There is exactly one 𝐹’ can be expressed as

∃𝑥(𝐹𝑥 ∧ ∀𝑦(𝐹𝑦 → 𝑥 =𝑦)).

Exercise 9.12
Can you express the following in 𝔏𝑃 with identity?
(a) There are exactly two 𝐹s.
(b) There are no more than three 𝐹s.

Another important use of the identity predicate is to formalise statements involv-
ing definite descriptions. A definite description is a complex noun phrase, typically
of the form ‘the 𝐹’, that purports to pick out a particular object. ‘The current Prime
Minister’, ‘the highest mountain in Scotland’, and ‘Carol’s father’ are definite de-
scriptions.

The standard language of predicate logic does not have a definite article (‘the’).
The only way to pick out an individual in 𝔏𝑃 is by a name. But there are good reasons
not to translate descriptions as names.

One reason is that we would thereby miss logical connections between descrip-
tions and predicates. ‘The current Prime Minister is not Prime Minister’ is a logical
contradiction, but this can’t be brought out if we translate ‘the current Prime Minis-
ter’ as a simple name.

Another reason not to translate descriptions as names is that descriptions often
give rise to a de re/de dicto ambiguity. Consider the following sentence:

The Pope might have been Italian.

197

9 Towards Modal Predicate Logic

This has two readings. It can mean either that the actual Pope, Jorge Mario Bergoglio,
might have been Italian (de re). Alternatively, it can mean that the following might
have been the case: some Italian person is Pope (de dicto). There is no way to
account for these two readings in 𝔏𝑀𝑃 if we translate ‘the Pope’ as a name.

A better translation for statements involving definite descriptions was proposed
by Bertrand Russell in 1905. Russell argued that a statement of the form ‘the 𝐹 is
𝐺’ is true just in case there is exactly one (relevant) 𝐹, and this one 𝐹 is also 𝐺. If
we have an identity predicate, we can easily express this in the language of predicate
logic:

∃𝑥(𝐹𝑥 ∧ ∀𝑦(𝐹𝑦 → 𝑥 =𝑦) ∧ 𝐺𝑥).

Following Russell, we might translate ‘The current Prime Minister is not Prime
Minister’ as

∃𝑥(𝑃𝑥 ∧ ∀𝑦(𝑃𝑦 → 𝑥 =𝑦) ∧ ¬𝑃𝑥).

This is indeed a contradiction: it is true in no model.
We can also account for the two readings of ‘the Pope might have been Italian’.

The de re reading is

∃𝑥(𝑃𝑥 ∧ ∀𝑦(𝑃𝑦 → 𝑥 =𝑦) ∧ ♢𝐼𝑥).

The de dicto reading is

♢∃𝑥(𝑃𝑥 ∧ ∀𝑦(𝑃𝑦 → 𝑥 =𝑦) ∧ 𝐼𝑥).

Exercise 9.13
Give two translations for each of the following sentences, one de re and one
de dicto.
(a) Hillary Clinton might have been the 45th US President.
(b) Smith’s murderer could have been a woman.
(c) Alice believes that the student representative is rude.

198

