Logic 2: Modal Logic

Lecture 4

Wolfgang Schwarz

University of Edinburgh

Review

The possible-worlds analysis of \Box and \Diamond :

 $\Box A$ says that A is true at all worlds. A says that A is true at some world.

A (basic) model for \mathfrak{L}_M is a pair of

- a non-empty set W, and
- an interpretation function V that assigns to every sentence letter a subset of W.

A sentence is **valid** iff it is true at all worlds in all models.

Review

A model (M):

- Is $\square \neg (p \rightarrow r)$ true at u in M?
- Is $\square \neg (p \rightarrow r)$ true at all worlds in *M*?
- Is $\square \neg (p \rightarrow r)$ true at all worlds in all models?

The tree method (a.k.a. the method of analytic tableau) is a method for determining whether a sentence is valid or invalid.

Suppose we want to find out whether $p \rightarrow (q \rightarrow (r \lor p))$ is valid (in classical propositional logic).

We start by negating the target sentence:

1.
$$\neg(p \rightarrow (q \rightarrow (r \lor p)))$$
 (Ass.)

If the target sentence is valid then we will derive a contradiction from this assumption.

If the target sentence is invalid then we will construct a countermodel.

We have an assumption of the form $\neg(A \rightarrow B)$. What does this tell us about A and B?

 $A \rightarrow B$ is false only if A is true and B is false.

So our assumption entails n and $\neg(n \rightarrow (r \lor n))$

Target sentence: $p \rightarrow (q \rightarrow (r \lor p))$

1.
$$\neg (p \rightarrow (q \rightarrow (r \lor p)))$$
 (Ass.)
2. p (1)
3. $\neg (q \rightarrow (r \lor p))$ (1)

Line 3 also has the form $\neg(A \rightarrow B)$.

 $A \rightarrow B$ is false only if A is true and B is false.

Target sentence: $p \rightarrow (q \rightarrow (r \lor p))$

1.
$$\neg (p \rightarrow (q \rightarrow (r \lor p)))$$
 (Ass.)
2. p (1)
3. $\neg (q \rightarrow (r \lor p))$ (1)
4. q (3)
5. $\neg (r \lor p)$ (3)

Line 5 has the form $\neg (A \lor B)$.

 $A \lor B$ is false only if A and B are both false.

Target sentence: $p \rightarrow (q \rightarrow (r \lor p))$

$\neg(p \rightarrow$	$(q \rightarrow$	(<i>r</i> ∨	p)))	(Ass.)

$$\exists. \quad \neg(q \to (r \lor p)) \tag{1}$$

5.
$$\neg (r \lor p)$$
 (3)

$$6. \qquad \neg r \qquad (5)$$

Assumption 1 has led to a contradiction: 2 and 7.

Tree construction rules

- 1. To show that a sentence is valid, start the tree with its negation.
- 2. Then expand all nodes on the tree until no more nodes can be expanded.
- 3. To expand a non-negated node, you consider what the truth of the relevant sentence entails for the truth-values of its immediate parts. You then add these consequences to the tree.
- 4. To expand a negated node $\neg A$, you consider what the falsity of A entails for the truth-values of A's immediate parts. You then add these consequences to the tree.

Target sentence:
$$(p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$$

$$1. \neg ((p \to q) \to ((q \to r) \to (p \to r)))$$
 (Ass.)

Target sentence:
$$(p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$$

1.
$$\neg((p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r)))$$
 (Ass.)

2.
$$p \rightarrow q$$
 (1)

3.
$$\neg((q \rightarrow r) \rightarrow (p \rightarrow r))$$
 (1)

Target sentence:
$$(p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$$

1.
$$\neg ((p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r)))$$
 (Ass.)
2. $p \rightarrow q$ (1)
3. $\neg ((q \rightarrow r) \rightarrow (p \rightarrow r))$ (1)
4. $q \rightarrow r$ (3)

5.
$$\neg(p \rightarrow r)$$
 (3)

Target sentence:
$$(p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$$

1.
$$\neg ((p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r)))$$
 (Ass.)
2. $p \rightarrow q$ (1)
3. $\neg ((q \rightarrow r) \rightarrow (p \rightarrow r))$ (1)
4. $q \rightarrow r$ (3)
5. $\neg (p \rightarrow r)$ (3)

7.
$$\neg r$$
 (5)

How do we expand assumptions 2 and 4?

2. $p \rightarrow q$ (1)

What can we infer from the truth of $p \rightarrow q$ about the truth-value of the immediate parts, p and q?

Either *p* is false or *q* is true.

We need to consider both possibilities.

16

Tree construction rules

- 1. To show that a sentence is valid, start the tree with its negation.
- 2. Then expand all nodes on the tree until no more nodes can be expanded.
- 3. If a branch of a tree contains a sentence A and its negation $\neg A$, the branch is closed with an 'x'.
- 4. When a node is expanded, the new nodes can be added to all open branches below the expanded node.

To keep your trees small, always expand non-branching nodes first.

Let's show that $\Box p \rightarrow p$ is valid.

Modal sentences are true or false relative to a world.

So our starting assumption is that $\Box p \rightarrow p$ is false at some world w.

1.
$$\neg(\Box p \rightarrow p)$$
 (w) (Ass.)

Our goal is to derive a contradiction from this assumption.

Target: $\Box p \rightarrow p$

1.
$$\neg(\Box p \rightarrow p)$$
 (w) (Ass.)

If $\Box p \rightarrow p$ is false at w, then $\Box p$ is true at w and p is false at w.

Target: $\Box p \rightarrow p$

1.	$\neg(\Box p \rightarrow p)$	(W)	(Ass.)
2.	$\Box p$	(W)	(1)
3.	¬p	(W)	(1)

If $\Box p$ is true at w, then p is true at all worlds, including w.

Target: $\Box p \rightarrow p$

1.	$\neg(\Box p \rightarrow p)$	(W)	(Ass.)
2.	$\Box p$	(W)	(1)
3.	$\neg p$	(W)	(1)
4.	р	(W)	(2)
	Х		

p cannot be both true and false at *w*.

1.
$$\neg(p \rightarrow \Box \Diamond p)$$
 (w) (Ass.)

1.
$$\neg (p \rightarrow \Box \Diamond p)$$
 (w) (Ass.)
2. p (w) (1)
3. $\neg \Box \Diamond p$ (w) (1)

1.
$$\neg (p \rightarrow \Box \Diamond p)$$
 (w) (Ass.)
2. p (w) (1)
3. $\neg \Box \Diamond p$ (w) (1)
4. $\neg \Diamond p$ (v) (3)

1.	$\neg(p \rightarrow \Box \Diamond p)$	(W)	(Ass.)
2.	р	(W)	(1)
3.	$\neg \Box \Diamond p$	(W)	(1)
4.	$\neg \Diamond p$	(v)	(3)
5.	¬p	(v)	(4)

1.	$\neg(p \rightarrow \Box \Diamond p)$	(W)	(Ass.)
2.	р	(W)	(1)
3.	$\neg \Box \Diamond p$	(W)	(1)
4.	$\neg \Diamond p$	(v)	(3)
5.	$\neg p$	(V)	(4)
6.	$\neg p$	(W)	(4)
	х		

Tree construction rules

- 1. To show that a sentence is valid, start the tree with the negation at world w.
- 2. Then expand all nodes on the tree until no more nodes can be expanded.
- 3. If a branch of a tree contains a sentence A and its negation $\neg A$ at the same world, the branch is closed with an 'x'.
- 4. Nodes of type $\Box A$ and $\neg \Diamond A$ can be expanded multiple times, for each world on any branch to which the node belongs.
- 5. When a node of a type other than □A and ¬◊A is expanded, and the new nodes have been added to all open branches below the expanded node, then the node is never expanded again.