
Logic 2: Modal Logic
Lecture 4

Wolfgang Schwarz
University of Edinburgh



Review



Review

The possible-worlds analysis of □ and ◊:

□A says that A is true at all worlds.
◊A says that A is true at some world.

1



Review

A (basic) model for LM is a pair of
• a non-empty set W, and
• an interpretation function V that assigns to every sentence letter a
subset of W.

p, r
u

p, r
v

p,q
w

A sentence is valid iff it is true at all worlds in all models.

2



Review

A model (M):

p, r
u

p, r
v

p,q
w

• Is ◊□¬(p→ r) true at u in M?
• Is ◊□¬(p→ r) true at all worlds in M?
• Is ◊□¬(p→ r) true at all worlds in all models?

3



The tree method



The tree method

The tree method (a.k.a. the method of analytic tableau) is a method for
determining whether a sentence is valid or invalid.

4



The tree method

Suppose we want to find out whether p→ (q→ (r∨ p)) is valid (in classical
propositional logic).
We start by negating the target sentence:

1. ¬(p→ (q→ (r∨ p))) (Ass.)
If the target sentence is valid then we will derive a contradiction from this
assumption.
If the target sentence is invalid then we will construct a countermodel.
We have an assumption of the form ¬(A→ B). What does this tell us about A
and B?
A→ B is false only if A is true and B is false.
So our assumption entails p and ¬(q→ (r∨ p)).
We add these consequence below line 1.

5



The tree method

Target sentence: p→ (q→ (r∨ p))

1. ¬(p→ (q→ (r∨ p))) (Ass.)
2. p (1)
3. ¬(q→ (r∨ p)) (1)

Line 3 also has the form ¬(A→ B).
A→ B is false only if A is true and B is false.

6



The tree method

Target sentence: p→ (q→ (r∨ p))

1. ¬(p→ (q→ (r∨ p))) (Ass.)
2. p (1)
3. ¬(q→ (r∨ p)) (1)
4. q (3)
5. ¬(r∨ p) (3)

Line 5 has the form ¬(A∨ B).
A∨ B is false only if A and B are both false.

7



The tree method

Target sentence: p→ (q→ (r∨ p))

1. ¬(p→ (q→ (r∨ p))) (Ass.)
2. p (1)
3. ¬(q→ (r∨ p)) (1)
4. q (3)
5. ¬(r∨ p) (3)
6. ¬r (5)
7. ¬p

x
(5)

Assumption 1 has led to a contradiction: 2 and 7.
8



The tree method

Tree construction rules
1. To show that a sentence is valid, start the tree with its negation.
2. Then expand all nodes on the tree until no more nodes can be expanded.
3. To expand a non-negated node, you consider what the truth of the relevant
sentence entails for the truth-values of its immediate parts. You then add
these consequences to the tree.

4. To expand a negated node ¬A, you consider what the falsity of A entails for
the truth-values of A’s immediate parts. You then add these consequences
to the tree.

9



The tree method

Target sentence: (p→ q)→ ((q→ r)→ (p→ r))

1.¬((p→ q)→ ((q→ r)→ (p→ r))) (Ass.)

10



The tree method

Target sentence: (p→ q)→ ((q→ r)→ (p→ r))

1.¬((p→ q)→ ((q→ r)→ (p→ r))) (Ass.)
2. p→ q (1)
3. ¬((q→ r)→ (p→ r)) (1)

11



The tree method

Target sentence: (p→ q)→ ((q→ r)→ (p→ r))

1.¬((p→ q)→ ((q→ r)→ (p→ r))) (Ass.)
2. p→ q (1)
3. ¬((q→ r)→ (p→ r)) (1)
4. q→ r (3)
5. ¬(p→ r) (3)

12



The tree method

Target sentence: (p→ q)→ ((q→ r)→ (p→ r))

1.¬((p→ q)→ ((q→ r)→ (p→ r))) (Ass.)
2. p→ q (1)
3. ¬((q→ r)→ (p→ r)) (1)
4. q→ r (3)
5. ¬(p→ r) (3)
6. p (5)
7. ¬r (5)

How do we expand assumptions 2 and 4?
13



The tree method

2. p→ q (1)

What can we infer from the truth of p→ q about the truth-value of the
immediate parts, p and q?
Either p is false or q is true.
We need to consider both possibilities.

14



The tree method

1.¬((p→ q)→ ((q→ r)→ (p→ r))) (Ass.)
2. p→ q (1)
3. ¬(q→ r)→ (p→ r)) (1)
4. q→ r (3)
5. ¬(p→ r) (3)
6. p (5)
7. ¬r

hhhh
hhhh

hhhh
hh

VVVV
VVVV

VVVV
VV

(5)

8. ¬p
x

(2) 9. q (2)

15



The tree method

1.¬((p→ q)→ ((q→ r)→ (p→ r))) (Ass.)
2. p→ q (1)
3. ¬(q→ r)→ (p→ r)) (1)
4. q→ r (3)
5. ¬(p→ r) (3)
6. p (5)
7. ¬r

hhhh
hhhh

hhhh
hh

VVVV
VVVV

VVVV
VV

(5)

8. ¬p
x

9. q
hhhh

hhhh
hhhh

hh

VVVV
VVVV

VVVV
VV

(2)

10. ¬q
x

11. r
x

(4)
16



The tree method

Tree construction rules
1. To show that a sentence is valid, start the tree with its negation.
2. Then expand all nodes on the tree until no more nodes can be expanded.
3. If a branch of a tree contains a sentence A and its negation ¬A, the branch
is closed with an ‘x’.

4. When a node is expanded, the new nodes can be added to all open
branches below the expanded node.

To keep your trees small, always expand non-branching nodes first.

17



The tree method

A∧ B

A
B

A∨ B

nnn
nnn

n
PPP

PPP
P

A B

A→ B

nnn
nnn

n
PPP

PPP
P

¬A B

A↔ B

nnn
nnn

n
PPP

PPP
P

A ¬A
B ¬B

18



The tree method

¬(A∧ B)

nnn
nnn

n
PPP

PPP
P

¬A ¬B

¬(A∨ B)

¬A
¬B

¬(A→ B)

A
¬B

¬(A↔ B)

nnn
nnn

n
PPP

PPP
P

A ¬A
¬B B

¬¬A

A

19



Modal tree rules



Modal tree rules

Let’s show that □p→ p is valid.
Modal sentences are true or false relative to a world.
So our starting assumption is that □p→ p is false at some world w.

1. ¬(□p→ p) (w) (Ass.)

Our goal is to derive a contradiction from this assumption.

20



Modal tree rules

Target: □p→ p

1. ¬(□p→ p) (w) (Ass.)

If □p→ p is false at w, then □p is true at w and p is false at w.

21



Modal tree rules

Target: □p→ p

1. ¬(□p→ p) (w) (Ass.)
2. □p (w) (1)
3. ¬p (w) (1)

If □p is true at w, then p is true at all worlds, including w.

22



Modal tree rules

Target: □p→ p

1. ¬(□p→ p) (w) (Ass.)
2. □p (w) (1)
3. ¬p (w) (1)
4. p

x
(w) (2)

p cannot be both true and false at w.

23



Modal tree rules

Target sentence: p→ □◊p

1. ¬(p→ □◊p) (w) (Ass.)

24



Modal tree rules

Target sentence: p→ □◊p

1. ¬(p→ □◊p) (w) (Ass.)
2. p (w) (1)
3. ¬□◊p (w) (1)

25



Modal tree rules

Target sentence: p→ □◊p

1. ¬(p→ □◊p) (w) (Ass.)
2. p (w) (1)
3. ¬□◊p (w) (1)
4. ¬◊p (v) (3)

26



Modal tree rules

Target sentence: p→ □◊p

1. ¬(p→ □◊p) (w) (Ass.)
2. p (w) (1)
3. ¬□◊p (w) (1)
4. ¬◊p (v) (3)
5. ¬p (v) (4)

27



Modal tree rules

Target sentence: p→ □◊p

1. ¬(p→ □◊p) (w) (Ass.)
2. p (w) (1)
3. ¬□◊p (w) (1)
4. ¬◊p (v) (3)
5. ¬p (v) (4)
6. ¬p

x
(w) (4)

28



Modal tree rules

□A (ω)

A (ν)

↑
old

◊A (ω)

A (ν)

↑
new

¬□A (ω)

¬A (ν)

↑
new

¬◊A (ω)

¬A (ν)

↑
old 29



Modal tree rules

Tree construction rules
1. To show that a sentence is valid, start the tree with the negation at world w.
2. Then expand all nodes on the tree until no more nodes can be expanded.
3. If a branch of a tree contains a sentence A and its negation ¬A at the same
world, the branch is closed with an ‘x’.

4. Nodes of type □A and ¬◊A can be expanded multiple times, for each world
on any branch to which the node belongs.

5. When a node of a type other than □A and ¬◊A is expanded, and the new
nodes have been added to all open branches below the expanded node,
then the node is never expanded again.

30


	Review
	The tree method
	Modal tree rules

