Logic 2: Modal Logic

Lecture 5

Wolfgang Schwarz

University of Edinburgh

Recap

- We want to formalize reasoning about possibility, obligation, knowledge, past and future, etc.
- We have added new sentence operators □ and ◊ to the language of propositional logic.
- We have interpreted these as quantifiers over possible worlds.

- A basic model of L_M consists of a non-empty set W and an interpretation function V that assigns truth-values to sentence letters at members of W.
- $\Box A$ is true at w in $\langle W, V \rangle$ iff A is true at all $v \in W$.
- A is true at w in $\langle W, V \rangle$ iff A is true at some $v \in W$.
- A sentence is valid if it is true at all worlds in all models.

Recap

All instances of the following schemas come out valid.

```
(\mathbf{K}) \Box (A \to B) \to (\Box A \to \Box B)(\mathbf{T}) \Box A \to A(\mathbf{D}) \Box A \to \Diamond A(\mathbf{B}) A \to \Box \Diamond A(\mathbf{4}) \Box A \to \Box \Box A(\mathbf{5}) \Diamond A \to \Box \Diamond A(\mathbf{G}) \Diamond \Box A \to \Box \Diamond A
```

We don't always want these to be valid.

What is possible often depends on what is actual.

- You can travel from Auckland to Sydney by train.
- Bob might be in his office.
- You may keep the library books for one more week.

Revised possible-worlds analysis

 $\Diamond p$ is true at w iff p is true at a world that's possible relative to w.

Revised possible-worlds analysis

 $\Diamond p$ is true at *w* iff *p* is true at a world that's possible relative to *w*. $\Box p$ is true at *w* iff *p* is true at all worlds that are possible relative to *w*.

(Montague 1955, Meredith and Prior 1956, Kanger 1957, Hintikka 1957, Montague 1960, Hintikka 1960, Hintikka 1961, Prior 1962, **Kripke 1963**.)

Kripke models

Definition: Kripke model

A Kripke model of \mathfrak{L}_M is a triple $\langle W, R, V \rangle$ consisting of

- a non-empty set W (the "worlds"),
- a binary ("accessibility") relation R on W, and
- a function V that assigns to each sentence letter of \mathfrak{L}_M a subset of W.

Intuitively: *wRv* iff *v* is possible relative to *w*.

Kripke models

- $\Diamond p$ is true at w.
- $\Diamond p$ is false at v.
- $\Box p$ is false at w.
- $\Box p$ is true at v. (Think $\neg \Diamond \neg p$.)
- $\Box \neg p$ is true at v. (Think $\neg \Diamond p$.)
- $\Box \Diamond p$ is false at w.
- $\Box \Diamond p$ is true at v.

Kripke models

Where is $\Diamond t$ true? Where is $\Diamond \Box t$ true? Where is $\Diamond p$ true? Where is $\Box \Diamond p$ true? Can you find a sentence that is true only at w_1 ?

The system K

Definition: K-valid

A sentence A is **K-valid** (for short, $\models_{K} A$) iff A is true at every world in every Kripke model.

Definition: S5-valid

A sentence A is **S5-valid** (for short, $\models_{S5} A$) iff A is true at every world in every basic model.

The set of all K-valid sentences is system K.

The set of all S5-valid sentences is system S5.

An axiomatization of S5:

$$(Dual) \neg \Diamond A \leftrightarrow \Box \neg A$$
$$(K) \Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$$
$$(T) \Box A \rightarrow A$$
$$(4) \Box A \rightarrow \Box \Box A$$

$$(5) \Diamond A \to \Box \Diamond A$$

(CPL) Any truth-functional consequence of sentences in the system is in the system.

(Nec) If A is in the system then so is $\Box A$.

An axiomatization of K:

 $(\mathbf{Dual}) \neg \Diamond A \longleftrightarrow \Box \neg A$

- $(\mathbf{K}) \ \Box(A \to B) \to (\Box A \to \Box B)$
- (CPL) Any truth-functional consequence of sentences in the system is in the system.
- (Nec) If A is in the system then so is $\Box A$.

Distinguish:

Schema (K): $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$

System K: The set of sentences that are true at all worlds in all Kripke models

System K contains many sentences that aren't instances of (K).

- $p \lor \neg p$
- $\bullet \ \Box p \to \neg \Diamond \neg p$
- $\Box p \rightarrow \Box (p \lor q)$

Schema		S5	К
(К)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark	\checkmark
(T)	$\Box A \to A$	\checkmark	—
(D)	$\Box A \to \Diamond A$	\checkmark	—
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	—
(4)	$\Box A \to \Box \Box A$	\checkmark	—
(5)	$\Diamond A \to \Box \Diamond A$	\checkmark	—
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	_

Tree rules for S5

$\Box A$	(ω)	\$A	(ω)
A	(u)	A	(u)
	1		î
	old		new

□A	(ω)	\$A	(ω)
ωRν			
		$\omega R \nu$	
А	(u)	А	(u)
	1		1
	old		new

1.
$$\neg((\Box p \land \Diamond q) \rightarrow \Diamond p)$$
 (w) (Ass.)

1.
$$\neg((\Box p \land \Diamond q) \rightarrow \Diamond p)$$
(w) (Ass.)2. $\Box p \land \Diamond q$ (w) (1)3. $\neg \Diamond p$ (w) (1)

1.	$\neg((\Box p \land \Diamond q) \to \Diamond p)$	(W)	(Ass.)
2.	$\Box p \land \Diamond q$	(W)	(1)
3.	$\neg \Diamond p$	(W)	(1)
4.	$\Box p$	(W)	(2)
5.	$\Diamond q$	(W)	(2)

1.	$\neg((\Box p \land \Diamond q) \to \Diamond p)$	(W)	(Ass.)
2.	$\Box p \land \Diamond q$	(W)	(1)
3.	$\neg \Diamond p$	(W)	(1)
4.	$\Box p$	(W)	(2)
5.	$\Diamond q$	(W)	(2)
6.	wRv		(5)
7.	q	(v)	(5)

1.	$\neg((\Box p \land \Diamond q) \to \Diamond p)$	(W)	(Ass.)
2.	$\Box p \land \Diamond q$	(W)	(1)
3.	$\neg \Diamond p$	(W)	(1)
4.	$\Box p$	(W)	(2)
5.	$\Diamond q$	(W)	(2)
6.	wRv		(5)
7.	q	(v)	(5)
8.	р	(v)	(4,6)

1.	$\neg((\Box p \land \Diamond q) \to \Diamond p)$	(W)	(Ass.)
2.	$\Box p \land \Diamond q$	(W)	(1)
3.	$\neg \Diamond p$	(W)	(1)
4.	$\Box p$	(W)	(2)
5.	\$q	(W)	(2)
6.	wRv		(5)
7.	q	(v)	(5)
8.	p	(v)	(4,6)
8.	$\neg p$	(v)	(3,6)
	x		