Logic 2: Modal Logic

Lecture 6

Wolfgang Schwarz

University of Edinburgh

Review

Review

Kripke model

A Kripke model of \mathfrak{L}_M is a triple $\langle W, R, V \rangle$ consisting of

- a non-empty set W,
- a binary relation R on W, and
- a function V that assigns to each sentence letter of \mathfrak{L}_M a subset of W.

Kripke semantics

 $\Box A$ is true at *w* iff *A* is true at all worlds accessible from *w*. $\Diamond A$ is true at *w* iff *A* is true at some world accessible from *w*.

K-valid

A sentence is K-valid iff it is true at all worlds in all Kripke models.

S5-valid

A sentence is S5-valid iff it is true at all worlds in all basic models.

Review

Sche	ema	S5	К
(K)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark	\checkmark
(T)	$\Box A \rightarrow A$	\checkmark	_
(D)	$\Box A \to \Diamond A$	\checkmark	—
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	—
(4)	$\Box A \to \Box \Box A$	\checkmark	_
(5)	$\Diamond A \rightarrow \Box \Diamond A$	\checkmark	_
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	_

Tree rules for S5

ΠA	(ω)	\$A	(ω)
A	(u)	A	(u)
	1		Î
	old		new

1.
$$\neg((\Box p \land \Diamond q) \rightarrow \Diamond p)$$
 (w) (Ass.)

1.
$$\neg((\Box p \land \Diamond q) \rightarrow \Diamond p)$$
(w) (Ass.)2. $\Box p \land \Diamond q$ (w) (1)3. $\neg \Diamond p$ (w) (1)

1.	$\neg((\Box p \land \Diamond q) \to \Diamond p)$	(W)	(Ass.)
2.	$\Box p \land \Diamond q$	(W)	(1)
3.	$\neg \Diamond p$	(W)	(1)
4.	$\Box p$	(W)	(2)
5.	$\Diamond q$	(W)	(2)

1.	$\neg((\Box p \land \Diamond q) \to \Diamond p)$	(W)	(Ass.)
2.	$\Box p \land \Diamond q$	(W)	(1)
3.	$\neg \Diamond p$	(W)	(1)
4.	$\Box p$	(W)	(2)
5.	$\Diamond q$	(W)	(2)
6.	wRv		(5)
7.	q	(v)	(5)

1.	$\neg((\Box p \land \Diamond q) \to \Diamond p)$	(W)	(Ass.)
2.	$\Box p \land \Diamond q$	(W)	(1)
3.	$\neg \Diamond p$	(W)	(1)
4.	$\Box p$	(W)	(2)
5.	$\Diamond q$	(W)	(2)
6.	wRv		(5)
7.	q	(v)	(5)
8.	р	(v)	(4,6)

1.	$\neg((\Box p \land \Diamond q) \to \Diamond p)$	(W)	(Ass.)
2.	$\Box p \land \Diamond q$	(W)	(1)
3.	$\neg \Diamond p$	(W)	(1)
4.	$\Box p$	(W)	(2)
5.	\$q	(W)	(2)
6.	wRv		(5)
7.	q	(v)	(5)
8.	p	(v)	(4,6)
8.	$\neg p$	(v)	(3,6)
	Х		

The system T

Let $\Box p$ mean 'you know that p'.

Which of these are valid?

- $\Box p \rightarrow p$
- $\bullet \ \Box p \to \Diamond p$
- $p \to \Box \Diamond p$

Suppose you falsely believe $\neg p$.

- *p* is true.
- You believe that you know $\neg p$.
- You don't believe that you don't know $\neg p$.
- You don't know that you don't know $\neg p$.
- $\Box \neg \Box \neg p$ is false.
- $\Box \Diamond p$ is false.

We want a logic of knowledge with (K), (T), and (D), but not (B).

Sche	ema	S5	К	
(К)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark	\checkmark	
(T)	$\Box A \rightarrow A$	\checkmark	—	
(D)	$\Box A \to \Diamond A$	\checkmark	—	
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	—	
(4)	$\Box A \to \Box \Box A$	\checkmark	—	
(5)	$\Diamond A \to \Box \Diamond A$	\checkmark	—	
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	—	
Sche	ema	S5	K	Т
(K)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark	\checkmark	~

We want a logic of knowledge with (K), (T), and (D), but not (B).

 $(\mathsf{T}) \Box A \to A$

 $\Box A \rightarrow A$ is false at a world w in a Kripke model iff

- A is false at w
- $\Box A$ is true at w
- A is true at all worlds accessible from w

This can't happen if *w* is accessible from itself.

Definition: K-valid

A sentence A is **K-valid** (for short, $\models_{\kappa} A$) iff A is true at every world in every Kripke model.

Definition: T-valid

A sentence A is **T-valid** (for short, $\models_T A$) iff A is true at every world in every Kripke model in which each world has access to itself.

The set of all T-valid sentences is system T.

A relation *R* on a set *W* is called **reflexive** if every member of *W* is *R*-related to itself.

Definition: T-valid

A sentence A is **T-valid** (for short, $\models_T A$) iff A is true at every world in every Kripke model in which each world has access to itself.

Definition: T-valid

A sentence A is **T-valid** (for short, $\models_T A$) iff A is true at every world in every Kripke model with a reflexive accessibility relation.

The system T

Sche	ema	S5	К	Т
(K)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark	\checkmark	\checkmark
(T)	$\Box A \rightarrow A$	\checkmark	—	\checkmark
(D)	$\Box A \to \Diamond A$	\checkmark	—	\checkmark
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	—	—
(4)	$\Box A \to \Box \Box A$	\checkmark	—	—
(5)	$A \to \Box A$	\checkmark	—	—
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	_	—

New tree rule for system T:

ωRω ↑ old

The system T

Target sentence: $\Box p \rightarrow p$

1.
$$\neg(\Box p \rightarrow p)$$
 (w) (Ass.)
2. $\Box p$ (w) (1)
3. $\neg p$ (w) (1)

The system T

Target sentence: $\Box p \rightarrow p$

1.	$\neg(\Box p \rightarrow p)$	(W)	(Ass.)
2.	$\Box p$	(W)	(1)
3.	$\neg p$	(W)	(1)
4.	wRw		(Ref.)
5.	p	(W)	(2,4)
	X		

The system S4

Let $\Box p$ mean 'you know that p'.

- $\Box p \rightarrow p$ is plausibly valid.
- $\Box p \rightarrow \Diamond p$ is plausibly valid.
- $p \rightarrow \Box \Diamond p$ is not.
- What about $\Box p \rightarrow \Box \Box p$?

The system S4

Schema		S5	К	Т	S4
(К)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark	\checkmark	\checkmark	\checkmark
(T)	$\Box A \rightarrow A$	\checkmark	—	\checkmark	\checkmark
(D)	$\Box A \to \Diamond A$	\checkmark	—	\checkmark	\checkmark
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	—	—	—
(4)	$\Box A \to \Box \Box A$	\checkmark	_	_	\checkmark
(5)	$\Diamond A \rightarrow \Box \Diamond A$	\checkmark	—	—	_
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	_	_	—

How can we define a concept of validity that makes (4) valid but not (B)?

 $(4) \Box A \to \Box \Box A$

 $\Box A \rightarrow \Box \Box A$ is false at a world *w* in a Kripke model iff

- $\Box A$ is true at w
- $\Box\Box A$ is false at w
- Wherever you go in one step from *w*, A is true.
- It is not the case that wherever you go in two steps from *w*, A is true.

This can't happen if any world that can be reached in two steps can be reached in one step.

Definition: S4-valid

A sentence A is **S4-valid** (for short, $\models_{S4} A$) iff A is true at every world in every Kripke model in which

(a) each world has access to itself, and

(b) if a world *w* has access to some world *v*, and *v* has access to a world *u*, then *w* has access to *u*.

The set of all S4-valid sentences is system S4.

A relation R on a set W is called **transitive** if whenever wRv and vRu, then wRu.

Definition: S4-valid

A sentence A is **S4-valid** (for short, $\models_{S4} A$) iff A is true at every world in every Kripke model in which

(a) each world has access to itself, and

(b) if a world *w* has access to some world *v*, and *v* has access to a world *u*, then *w* has access to *u*.

Definition: S4-valid

A sentence A is **S4-valid** (for short, $\models_{S4} A$) iff A is true at every world in every Kripke model whose accessibility relation is reflexive and transitive.

The system S4

Schema		S5	К	Т	S4
(К)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark	\checkmark	\checkmark	\checkmark
(T)	$\Box A \rightarrow A$	\checkmark	—	\checkmark	\checkmark
(D)	$\Box A \to \Diamond A$	\checkmark	—	\checkmark	\checkmark
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	_	_	—
(4)	$\Box A \to \Box \Box A$	\checkmark	_	_	\checkmark
(5)	$\Diamond A \rightarrow \Box \Diamond A$	\checkmark	_	_	_
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	_	_	—

New tree rule for system S4:

ωRν νRυ ωRυ Target sentence: $\Box A \rightarrow \Box \Box A$

1.	$\neg(\Box A \to \Box \Box A)$	(W)	(Ass.)
2.	□A	(W)	(1)
3.		(W)	(1)
4.	wRv		(3)
5.	$\neg \Box A$	(V)	(3)
6.	vRu		(5)
7.	$\neg A$	(<i>u</i>)	(5)
8.	wRu		(4,6,Tr.)
5.	A	(<i>u</i>)	(2,8)
	Х		

Further systems

Definition: K4-valid

A sentence A is **K4-valid** (for short, $\models_{K4} A$) iff A is true at every world in every Kripke model whose accessibility relation is transitive.

Further systems

Schema		S5	К	Т	S4	K4
(К)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
(T)	$\Box A \rightarrow A$	\checkmark	—	\checkmark	\checkmark	—
(D)	$\Box A \to \Diamond A$	\checkmark	—	\checkmark	\checkmark	—
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	—	—	—	—
(4)	$\Box A \to \Box \Box A$	\checkmark	_	_	\checkmark	\checkmark
(5)	$\Diamond A \rightarrow \Box \Diamond A$	\checkmark	_	_	_	—
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	_	_	_	—

Can you think of a requirement on the accessibility relation that makes $\Box A \rightarrow \Diamond A$ valid?

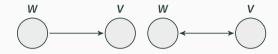
A relation *R* on a set *W* is called **serial** if every member of *W* is *R*-related to some member of *W*. ("No dead ends")

Definition: D-valid

A sentence A is **D-valid** (for short, $\models_D A$) iff A is true at every world in every Kripke model whose accessibility relation is serial.

Schema		S5	К	Т	S4	K4	D
(К)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
(T)	$\Box A \rightarrow A$	\checkmark	—	\checkmark	\checkmark	_	_
(D)	$\Box A \to \Diamond A$	\checkmark	—	\checkmark	\checkmark	—	\checkmark
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	—	—	—	—	—
(4)	$\Box A \to \Box \Box A$	\checkmark	—	_	\checkmark	\checkmark	_
(5)	$A \to \Box A$	\checkmark	_	_	_	_	_
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	_	—	_	_	_

A relation *R* on a set *W* is called **symmetric** if whenever *wRv* then *vRw*.



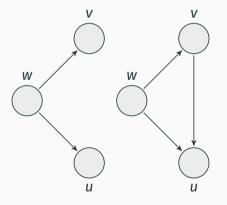
A relation *R* on a set *W* is called **symmetric** if whenever *wRv* then *vRw*.

Definition: B-valid

A sentence A is **B-valid** (for short, $\models_B A$) iff A is true at every world in every Kripke model whose accessibility relation is reflexive and symmetric.

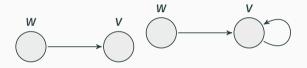
Schema		S5	К	Т	S4	К4	D	В
(К)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark						
(T)	$\Box A \rightarrow A$	\checkmark	—	\checkmark	\checkmark	_	_	\checkmark
(D)	$\Box A \to \Diamond A$	\checkmark	—	\checkmark	\checkmark	—	\checkmark	\checkmark
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	—	—	_	_	—	\checkmark
(4)	$\Box A \to \Box \Box A$	\checkmark	_	_	\checkmark	\checkmark	_	_
(5)	$A \to \Box A$	\checkmark	—	—	_	_	_	_
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	_	—	—	_	—	—

A relation R on a set W is called **euclidean** if whenever wRv and wRu, then vRu.



A relation *R* is called **euclidean** if whenever *wRv* and *wRu*, then *vRu*.

Note: w, v, and u need not be distinct worlds! $\forall x \forall y \forall z (xRy \land xRz \rightarrow yRz)$.



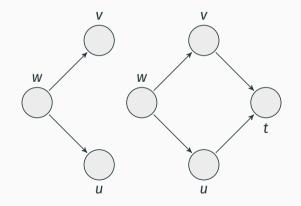
A relation R on a set W is called **euclidean** if whenever wRv and wRu, then vRu.

Definition

A sentence A is **K45-valid** (for short, \models_{K45} A) iff A is true at every world in every Kripke model whose accessibility relation is transitive and euclidean.

Schema		S5	К	Т	S4	К4	D	В	K45
(К)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark							
(T)	$\Box A \rightarrow A$	\checkmark	—	\checkmark	\checkmark	—	—	\checkmark	—
(D)	$\Box A \to \Diamond A$	\checkmark	_	\checkmark	\checkmark	—	\checkmark	\checkmark	—
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	—	—	—	_	—	\checkmark	—
(4)	$\Box A \to \Box \Box A$	\checkmark	_	_	\checkmark	\checkmark	_	_	\checkmark
(5)	$A \to \Box A$	\checkmark	_	_	_	_	_	_	\checkmark
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	_	—	—	_	_	_	—

A relation *R* on a set *W* is called **convergent** if whenever *wRv* and *wRu*, then there is some *t* such that *wRt* and *vRt*.



A relation *R* on a set *W* is called **convergent** if whenever *wRv* and *wRu*, then there is some *t* such that *wRt* and *vRt*.

Definition

A sentence A is **S4.2-valid** (for short, $\models_{S4.2} A$) iff A is true at every world in every Kripke model whose accessibility relation is reflexive, transitive, and convergent.

Schema		S5	К	Т	S4	К4	D	В	K45	S4.2
(К)	$\Box(A \to B) \to (\Box A \to \Box B)$	\checkmark								
(T)	$\Box A \rightarrow A$	\checkmark	—	\checkmark	\checkmark	—	—	\checkmark	—	\checkmark
(D)	$\Box A \to \Diamond A$	\checkmark	_	\checkmark	\checkmark	_	\checkmark	\checkmark	—	\checkmark
(B)	$A \rightarrow \Box \Diamond A$	\checkmark	_	_	_	_	_	\checkmark	—	—
(4)	$\Box A \to \Box \Box A$	\checkmark	_	_	\checkmark	\checkmark	_	_	\checkmark	\checkmark
(5)	$\Diamond A \rightarrow \Box \Diamond A$	\checkmark	_	_	_	_	_	_	\checkmark	_
(G)	$\Diamond \Box A \to \Box \Diamond A$	\checkmark	_	_	_	_	_	_	_	\checkmark

Schema		Condition On R							
(4) (5)	$\Box A \to A$ $\Box A \to \Diamond A$ $A \to \Box \Diamond A$ $A \to \Box \Box A$ $\Diamond A \to \Box \Diamond A$ $\Diamond \Box A \to \Box \Diamond A$	R is reflexive: every world in W is accessible from itself R is serial: every world in W can access some world in W R is symmetric: whenever wRv then vRw R is transitive: whenever wRv and vRu, then wRu R is euclidean: whenever wRv and wRu, then vRu R is convergent: whenever wRv and wRu, then there is some t such that vRt and uRt							

- К
- T R is reflexive
- D R is serial
- K4 *R* is transitive
- K45 *R* is transitive and euclidean
- B *R* is reflexive and symmetric
- S4 *R* is reflexive and transitive
- S4.2 R is reflexive, transitive, and convergent
- S5 *R* is reflexive, transitive, and symmetric
- S5 *R* is universal

