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Recap

We have introduced a formal language (LM) to reason about possibility,
necessity, knowledge, belief, norms, time, and other non-truth-functional
matters.

For each application, we need to clarify which LM-sentences are valid, or
entailed by which others.
• □p |= p?
• □p |= ◊p?
• □p |= □□p?
• p |= □◊p?
• ◊□p |= □◊p?
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Recap

Many non-truth-functional operators can be analysed as (restricted) quantifiers
over worlds or times.
It is historically necessary that p⇔ p is true at every possible world that we can
bring about.
I know that p⇔ p is true at every possible world that is compatible with my
evidence.
It is required that p⇔ p is true at every possible world in which the
requirements are met.
It is always going to be the case that p⇔ p is true at every time after the
present.
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Recap

Many non-truth-functional operators can be analysed as (restricted) quantifiers
over worlds or times.
□p is true at w⇔ p is true at every world/time that is accessible from w.

p
w

p
v u
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Recap

We can define a logic by specifying formal properties of the accessibility relation.

If every world is accessible from itself then □p |= p.
If □p |= p then every world is accessible from itself.
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Recap

Schema Condition On R
(T) □A→ A R is reflexive: every world in W is accessible from itself
(D) □A→ ◊A R is serial: every world in W can access some world in W
(B) A→ □◊A R is symmetric: whenever wRv then vRw
(4) □A→ □□A R is transitive: whenever wRv and vRu, then wRu
(5) ◊A→ □◊A R is euclidean: whenever wRv and wRu, then vRu
(G) ◊□A→ □◊A R is convergent: whenever wRv and wRu, then there is

some t such that vRt and uRt
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Recap

Some aspects of the logic are the same no matter what we say about
accessibility.
• □A,□(A→ B) |= □B
• □(A∧ B) |= □B
• ◊(A∨ B) |= ◊A∨ ◊B
• A∧ B |= A
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Proofs

Once we have specified a class of Kripke models (or frames), we have specified a
logic.
But we haven’t yet specified a method of proof for the logic.

7



Proofs

What is a proof of a sentence A?
• “A proof is list of sentences each of which is either an axiom or can be
deduced from earlier sentences by one of the rules. A proof of A is such a
list that ends with A.”

• “A proof is a configuration of nodes – consisting of either an LM-sentence
with a world label or a sentence of the form ωRν – that conforms to the
tree construction rules. A proof of A is such a configuration with starting
node ¬A (w) and in which all terminal nodes are marked as closed.”

• …
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Proofs
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Proofs
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Proofs

11



Proofs

A proof is a finite syntactic object conforming to strict and mechanically testable
rules.

Whatever method we use, we want it to have the following properties:
• Soundness: If a sentence is provable, then it is valid.
• Completeness: If a sentence is valid, then it is provable.
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Soundness of K-trees

We have many concepts of validity, and different trees rules for each.

K-valid K-rules
T-valid K-rules + Reflexivity
D-valid K-rules + Seriality
K4-valid K-rules + Transitivity
S4-valid K-rules + Reflexivity + Transitivity
S4.2-valid K-rules + Reflexivity + Transitivity + Convergence
S5-valid S5-rules
… …
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Soundness of K-trees

Let’s show that the K-rules are sound for K-validity:

If a K-tree for a target sentence closes, then that sentence is K-valid.

How could we show this?
Let’s try a conditional proof:
• We assume there is a closed K-tree for some sentence A.
• We want to infer that A is K-valid.
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Soundness of K-trees

• We assume there is a closed K-tree for some sentence A.
• We want to infer that A is K-valid. We want to infer that A is true at all
worlds in all Kripke models.
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Soundness of K-trees

• We assume there is a closed K-tree for some sentence A.
• We suppose that A is false at some world w in some Kripke model M.
• We want to derive a contradiction.

1. ¬A (w)

The first node on the tree is a correct statement about M.
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Soundness of K-trees

• We assume there is a closed K-tree for some sentence A.
• We suppose that A is false at some world w in some Kripke model M.
• We want to derive a contradiction.

1. ¬(B→ C) (w)
2. B (w) (1)
3. ¬C (w) (1)

After the first node is expanded, the new nodes are also correct statement about
M.
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Soundness of K-trees

• We assume there is a closed K-tree for some sentence A.
• We suppose that A is false at some world w in some Kripke model M.
• We want to derive a contradiction.

i. B∨ C
jjjj

jjjj
jjjj

TTTT
TTTT

TTTT
(w)

j. B (w) k. C (w)

After node i is expanded, the new node on at least one branch is also correct
statement about M.
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Soundness of K-trees

• We assume there is a closed K-tree for some sentence A.
• We suppose that A is false at some world w in some Kripke model M.
• We want to derive a contradiction.

i. ◊A (w)
j. wRv (1)
k. A (v) (1)

After node i is expanded with the help of node j, the new node k is also a correct
statement about M (on some way of assigning the worlds in M the labels ‘w’ and
‘v’).
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Soundness of K-trees

• We assume there is a closed K-tree for some sentence A.
• We suppose that A is false at some world w in some Kripke model M.
• We want to derive a contradiction.

In general, we can show this:
If all nodes on some branch of a tree are correct statements about M, and
the branch is extended by the K-rules, then all nodes on at least one of
the resulting branches are still correct statements about M.

It follows that all nodes on some branch of the tree for A are correct statements
about M.

20



Soundness of K-trees

• We assume there is a closed K-tree for some sentence A.
• We suppose that A is false at some world w in some Kripke model M.
• We want to derive a contradiction.
• The first node on the tree is a correct statement about M.
• Whenever a node on the tree is expanded, all nodes on at least one branch
are all correct statements about M.

• But the tree is closed: every branch on the tree contains a contradictory pair
n. B (υ)

m. ¬B (υ)

These two nodes can’t both be correct statements about M.
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Completeness of K-trees

We have shown

Soundness
If a K-tree for a target sentence closes, then that sentence is K-valid.

Now we want to show

Completeness
If a sentence is K-valid, then there is a closed K-tree for the sentence.
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Completeness of K-trees

Completeness
If a sentence is K-valid, then there is a closed K-tree for the sentence.

We will prove something even stronger:
• If a sentence is K-valid, then any fully expanded K-tree for the sentence is
closed.

Equivalently:
• If a fully expanded K-tree does not close, then the target sentence is not
K-valid.
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Completeness of K-trees

If a fully expanded K-tree does not close, then the target sentence is not
K-valid.

• We assume that a fully expanded K-tree for a target sentence A has an open
branch.

• We want to infer that A is false at some world in some model.
We already know how to construct such a model: we can read it off from any
open branch!
All we need to show is that our method for reading off a model from open
branches always provides a countermodel for the target sentence.
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Completeness of K-trees

Suppose there is an open branch on a fully expanded tree.
Let M be the model we read off from that branch.
We show that every node on the branch is a correct statement about M.
• The claim is obvious for sentence letters and negated sentence letters.
• Suppose p∧ q (w) is on the branch.
• Then p (w) and q (w) are on the branch.
• So p is true at w and q at w in M.
• So p∧ q is true at w in M.
• And so on.
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Completeness of K-trees

Completeness
If a sentence is K-valid, then there is a closed K-tree for the sentence.

• We show that if there is a fully expanded but open K-tree for a sentence,
then that sentence is not valid.

• We do this by showing that the model we can read off from an open branch
on a fully expanded K-tree is always a countermodel for the target sentence.
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