Logic 2: Modal Logic

Lecture 13

Wolfgang Schwarz

University of Edinburgh

Temporal logic

Temporal logic

F: at some point in the future

P: at some point in the past

Temporal operators:

- F: It will (at some point) be the case that
- P: It was (at some point) the case that
- G: It is always going to be the case that
- H: It has always been the case that

The dashed arrows represent the "next point in time" relation (assuming that time is discrete).

Let's define a new relation that holds between t and s iff t is earlier than s.

This relation is called the precedence relation and usually expressed by '<'.

Temporal Model

A temporal model consists of

- a non-empty set T (of "times"),
- a binary relation < on T (the precedence relation),
- a function V that assigns to each sentence letter of \mathfrak{L}_T a subset of T.

Temporal models are Kripke models.

Standard Temporal Semantics

- (a) $M, t \models \rho$ iff t is in $V(\rho)$.
- (b) $M, t \models \neg A$ iff $M, t \not\models A$.
- (c) $M, t \models A \land B$ iff $M, t \models A$ and $M, t \models B$.
- (d) $M, t \models A \lor B$ iff $M, t \models A$ or $M, t \models B$.
- (e) $M, t \models A \rightarrow B$ iff $M, t \models B$ or $M, t \not\models A$.
- (f) $M, t \models A \leftrightarrow B$ iff $M, t \models (A \rightarrow B)$ and $M, t \models (B \rightarrow A)$.
- (g) $M, t \models FA$ iff $M, s \models A$ for some s in T such that t < s.
- (h) $M, t \models GA$ iff $M, s \models A$ for all s in T such that t < s.
- (i) $M, t \models PA$ iff $M, s \models A$ for some s in T such that s < t.
- (j) $M, t \models HA$ iff $M, s \models A$ for all s in T such that s < t.

Temporal logic

We may want to put constraints on the precedence relation.

- (T) $GA \rightarrow A$ (Reflexivity)
- (D) $GA \rightarrow FA$ (Seriality)
- (B) $A \rightarrow GFA$ (Symmetry)
- (4) $GA \rightarrow GGA$ (Transitivity)
- (5) $FA \rightarrow GFA$ (Euclidity)
- (G) $FGA \rightarrow GFA$ (Convergence)

In this frame, < is

- transitive: if t < s and s < r then t < r.
- asymmetric: if t < s then $s \neq t$.
- irreflexive: for no time, t < t.
- discrete: if t < s then there is an r such that t < r and for no x, t < x < r.
- connected: for every *t*, *s*, either t < s or t = s or s < t.

- Transitivity corresponds to (4): $GA \rightarrow GGA$.
- Asymmetry corresponds to nothing.
- Irreflexivity corresponds to nothing.
- Discreteness corresponds to $(A \land HA) \rightarrow FHA$.
- Connectedness corresponds to nothing but it renders $(FPA \rightarrow (FA \lor A \lor PA)) \land (PFA \rightarrow (PA \lor A \lor FA))$ valid.

- transitive: if t < s and s < r then t < r.
- asymmetric: if t < s then $s \neq t$.
- discrete: if t < s then there is an r such that t < r and for no x, t < x < r.
- left-linear: if t < r and s < r then either t < s or t = s or s < t.
- right-branching: for some r < t and r < s, neither t < s or t = s or s < t.

- Left-linearity corresponds to $FPA \rightarrow (FA \lor A \lor PA)$.
- Right-branchingness corresponds to nothing.

Relativistic time:

Trees

Trees

GA	(ω)	FA	(ω)	HA	(ω)	PA	(ω)
$\omega < \nu$				$\nu < \omega$			
		$\omega < \nu$				$\nu < \omega$	
A	(u)	A	(ν)	A	(ν)	А	(ν)
	î		î		1		Ť
	old		new		old		new
¬GA	(ω)	⊐ FA	(ω)		(ω)		(ω)
		$\omega < \nu$				$\nu < \omega$	
$\omega < \nu$				$\nu < \omega$			
¬Α	(ν)	¬Α	(ν)	$\neg A$	(ν)	$\neg A$	(ν)
	î		î		1		1
	new		old		new		old

Trees

$$\begin{array}{c} A \quad (\omega) \\ \omega = \nu \\ \\ \\ A \quad (\nu) \end{array} \qquad \begin{array}{c} A \quad (\omega) \\ \nu = \omega \\ \\ \\ A \quad (\nu) \end{array}$$

A puzzle

Operators

- PA it was once the case that A
- FA it will once be the case that A

A we can bring it about that A

```
Assumptions
```

```
(i) FA \models PFA
(ii) \neg PA \models \neg \Diamond PA
(iii) If A \models B then \Diamond A \models \Diamond B
```

- 1. Suppose q neither is, nor was, nor will ever be the case.
- 2. So $\neg PFq$.
- 3. Then $\neg \diamond P F q$, by (ii).
- 4. But Fq entails PFq, by (i).
- 5. So $\Diamond Fq$ entails $\Diamond PFq$, by (iii).
- 6. So $\neg \diamond Fq$, by (3), (5), and Modus Tollens.