Logic 2: Modal Logic

Lecture 17

Wolfgang Schwarz

University of Edinburgh

Modal predicate logic

We have added modal operators $(\Box, \Diamond, O, P, O(\cdot/\cdot), K_i, F, G, \neg, \Box \rightarrow, ...)$ to the language of propositional logic.

Now we will expand the base language to that of first-order predicate logic.

- □Fa
- $\Diamond \forall x (Fx \rightarrow \Box Gx)$
- $\forall x(Fx \square K F Gx)$

Predicate logic: language

Atomic sentences of \mathfrak{L}_P consist of a predicate followed by a suitable number of terms (names or variables):

- Fa
- Gx
- Hxy
- Jaxy

Predicate logic: language

- Bob is sitting.
- Sb (b: Bob, S: is sitting)
- Bob is talking to Carol.
- *Tbc* (*b*: Bob, *c*: Carol, *T*: is talking to —)
- Bob is in Rome.
- *Ibr* (*b*: Bob, *r*: Rome, *I*: is in —)
- Bob is Carol's father.
- *Fbc* (*b*: Bob, *c*: Carol, *F*: is the father of —)

From atomic sentences, we can construct complex sentences with the help of the truth-functional connectives.

- ¬Sb
- $(Sb \land Tbc)$
- $(Sb \lor Tbc)$
- $((Sb \rightarrow Tbc) \leftrightarrow Fbc)$

We can also construct complex sentences by adding a quantifier in front of a simpler sentence.

A **quantifier** consists of the symbol \forall or \exists followed by a variable.

- $\forall x, \forall y, \forall z, \dots$
- $\exists x, \exists y, \exists z, \dots$

So we can say $\forall xSb$, $\forall xSx$, $\exists xSx$, $\exists x(Sx \land Ixr)$, etc.

Roughly,

 $\forall x \text{ means 'everything/everyone is such that';}$ $\exists x \text{ means 'something/someone is such that'.}$

Predicate logic: language

- Everyone is sitting.
- Everyone is such that they are sitting.
- $\forall xSx$ (S: is sitting)
- Bob is talking to someone.
- Someone is such that Bob is talking to them.
- $\exists x T b x$ (T: is talking to -)

Predicate logic: language

- Everyone is talking to someone.
- Everyone is such that someone is such that they are talking to them.
- Everyone_x is such that someone_y is such that they_x are talking to them_y.
- $\forall x \exists y Txy$ (T: is talking to -)
- Everyone is talking to everyone.
- Everyone_x is such that everyone_y is such that they_x are talking to them_y.
- $\forall x \forall y Txy$ (T: is talking to -)

Variables x, y, z... function like pronouns ('it', 'they').

Variables are logical expressions.

When translating from English, you cannot give a meaning to a variable.

Wrong:

- Every tiger is sleeping.
- $\forall xSx$ (x: tiger, S: is sleeping)

Predicate logic: language

- Every tiger is sleeping.
- Everything is such that if it is a tiger then it is sleeping.
- $\forall x(Tx \rightarrow Sx)$ (T: is a tiger, S: is sleeping)
- Some tiger is sleeping.
- Something is such that it is a tiger and it is sleeping.
- $\exists x(Tx \land Sx)$
- A car drove by.
- Something is such that it is a car and it drove by.
- $\exists x(Cx \land Dx)$ (C: is a car, D: drove by)

Jargon:

- $\ln \forall x(Fx \wedge Gy) \to Gx,$
 - $\forall x \text{ binds } x$,
 - the first two occurrences of *x* are **bound**,
 - the third is free,
 - *y* only has a **free** occurrence.

It is often useful to have a special predicate for identity.

We write a = b instead of = ab, and $a \neq b$ instead of $\neg a = b$.

'=' is a logical symbol. It always means '- is (numerically) identical to -'.

Two classical laws of identity

- 1. Everything is identical to itself: a = a.
- 2. "Leibniz' Law": If a = b then whatever is true of a is also true of b.

Leibniz's Law as an inference rule:

 $\frac{a=b}{C}$

a = b

Fa

Fb

Leibniz's Law as an inference rule:

a = b

С

C[b//a]

a = bFa \land Rac

Fa ∧ Rbc

Leibniz's Law as an inference rule:

a = b C

C[b//a]

a = b $\Box(a = a)$

 $\square(a=b)$

Identity is useful not just to express claims about identity.

We can also use it to translate statements involving definite descriptions.

- The Russian president is trustworthy.
- There is a trustworthy Russian president and there is no more than one Russian president.
- $\exists x(Px \land Tx \land \forall y(Py \rightarrow y=x))$

- The Russian president might have been trustworthy.
- $\Diamond \exists x (Px \land \forall y (Py \rightarrow y = x) \land Tx)$
- $\exists x(Px \land \forall y(Py \rightarrow y=x) \land \Diamond Tx)$

Another thing we can (arguably) express with the identity predicate is existence.

- Bob exists.
- Something is such that it is identical to Bob.
- $\exists x(x = b)$.

A problematic proof:

- 1. b = b (Self-Identity)
- 2. $\exists x(x = b)$ (Existential Generalisation)
- 3. $\Box \exists x(x = b)$ (Necessitation)

Target:
$$\forall x \neg Fx \rightarrow \neg \exists x (Fx \land Gx)$$

1.
$$\neg(\forall x \neg Fx \rightarrow \neg \exists x(Fx \land Gx))$$
 (Ass.)

Target:
$$\forall x \neg Fx \rightarrow \neg \exists x (Fx \land Gx)$$

1.
$$\neg (\forall x \neg Fx \rightarrow \neg \exists x (Fx \land Gx))$$
 (Ass.)
2. $\forall x \neg Fx$ (1)

3.
$$\neg \neg \exists x (Fx \land Gx)$$
 (1)

Target:
$$\forall x \neg Fx \rightarrow \neg \exists x (Fx \land Gx)$$

1.
$$\neg (\forall x \neg Fx \rightarrow \neg \exists x(Fx \land Gx))$$
 (Ass.)
2. $\forall x \neg Fx$ (1)
3. $\neg \neg \exists x(Fx \land Gx)$ (1)
4. $\exists x(Fx \land Gx)$ (3)

Target:
$$\forall x \neg Fx \rightarrow \neg \exists x (Fx \land Gx)$$

1.
$$\neg(\forall x \neg Fx \rightarrow \neg \exists x(Fx \land Gx))$$
 (Ass.)
2. $\forall x \neg Fx$ (1)
3. $\neg \neg \exists x(Fx \land Gx)$ (1)
4. $\exists x(Fx \land Gx)$ (3)
5. $Fa \land Ga$ (4)

Target:
$$\forall x \neg Fx \rightarrow \neg \exists x (Fx \land Gx)$$

1.
$$\neg (\forall x \neg Fx \rightarrow \neg \exists x(Fx \land Gx))$$
(Ass.)2. $\forall x \neg Fx$ (1)3. $\neg \neg \exists x(Fx \land Gx)$ (1)4. $\exists x(Fx \land Gx)$ (3)5. $Fa \land Ga$ (4)6. Fa (5)7. Ga (5)

Target:
$$\forall x \neg Fx \rightarrow \neg \exists x (Fx \land Gx)$$

1.	$\neg(\forall x \neg Fx \rightarrow \neg \exists x(Fx \land Gx))$	(Ass.)
2.	$\forall x \neg Fx$	(1)
3.	$\neg \neg \exists x(Fx \land Gx)$	(1)
4.	$\exists x(Fx \wedge Gx)$	(3)
5.	Fa ∧ Ga	(4)
6.	Fa	(5)
7.	Ga	(5)
8.	¬Fa	(2)
	х	

Self-Identity: Leibniz' Law:

$$b = c$$

$$c = c$$

$$\uparrow$$

$$A[c//b]$$

1.
$$\neg \forall x \forall y ((Rxy \land x = y) \rightarrow Rxx)$$
 (Ass.)

1.
$$\neg \forall x \forall y ((Rxy \land x = y) \rightarrow Rxx)$$
 (Ass.)

2.
$$\neg \forall y ((Ray \land a = y) \rightarrow Raa)$$
 (1)

1.
$$\neg \forall x \forall y ((Rxy \land x = y) \rightarrow Rxx)$$
 (Ass.)

2.
$$\neg \forall y ((Ray \land a = y) \rightarrow Raa)$$
 (1)

3.
$$\neg((Rab \land a = b) \rightarrow Raa)$$
 (2)

1.
$$\neg \forall x \forall y ((Rxy \land x = y) \rightarrow Rxx)$$
 (Ass.)

2.
$$\neg \forall y ((Ray \land a = y) \rightarrow Raa)$$
 (1)

3.
$$\neg((Rab \land a = b) \rightarrow Raa)$$
 (2)

4.
$$Rab \wedge a = b$$
 (3)

5.
$$\neg Raa$$
 (3)

1.	$\neg \forall x \forall y ((Rxy \land x = y) \rightarrow Rxx)$	(Ass.)
2.	$\neg \forall y ((Ray \land a = y) \rightarrow Raa)$	(1)
3.	$\neg((Rab \land a = b) \rightarrow Raa)$	(2)
4.	$Rab \land a = b$	(3)
5.	¬Raa	(3)
6.	Rab	(4)
7.	a = b	(4)

1.	$\neg \forall x \forall y ((Rxy \land x = y) \rightarrow Rxx)$	(Ass.)
2.	$\neg \forall y ((Ray \land a = y) \rightarrow Raa)$	(1)
3.	$\neg((Rab \land a = b) \rightarrow Raa)$	(2)
4.	$Rab \land a = b$	(3)
5.	¬Raa	(3)
6.	Rab	(4)
7.	a = b	(4)
8.	Raa	(6,7,LL)
	Х	