
Logic 2: Modal Logic
Lecture 17

Wolfgang Schwarz
University of Edinburgh



Modal predicate logic



Modal predicate logic

We have added modal operators (□,◊,O,P,O(·/ ·),Ki, F,G,J,�, . . .) to the
language of propositional logic.
Now we will expand the base language to that of first-order predicate logic.

• □Fa
• ◊∀x(Fx→ □Gx)
• ∀x(Fx�KFGx)

1



Predicate logic: language



Predicate logic: language

Atomic sentences of LP consist of a predicate followed by a suitable number of
terms (names or variables):
• Fa
• Gx
• Hxy
• Jaxy

2



Predicate logic: language

• Bob is sitting.
• Sb (b: Bob, S: — is sitting)

• Bob is talking to Carol.
• Tbc (b: Bob, c: Carol, T: — is talking to —)

• Bob is in Rome.
• Ibr (b: Bob, r: Rome, I: — is in —)

• Bob is Carol’s father.
• Fbc (b: Bob, c: Carol, F: — is the father of —)

3



Predicate logic: language

From atomic sentences, we can construct complex sentences with the help of the
truth-functional connectives.
• ¬Sb
• (Sb∧ Tbc)
• (Sb∨ Tbc)
• ((Sb→ Tbc)↔ Fbc)

4



Predicate logic: language

We can also construct complex sentences by adding a quantifier in front of a
simpler sentence.
A quantifier consists of the symbol ∀ or ∃ followed by a variable.
• ∀x, ∀y, ∀z, …
• ∃x, ∃y, ∃z, …

So we can say ∀xSb, ∀xSx, ∃xSx, ∃x(Sx∧ Ixr), etc.
Roughly,
∀x means ‘everything/everyone is such that’;
∃x means ‘something/someone is such that’.

5



Predicate logic: language

• Everyone is sitting.
• Everyone is such that they are sitting.
• ∀xSx (S: — is sitting)

• Bob is talking to someone.
• Someone is such that Bob is talking to them.
• ∃xTbx (T: — is talking to —)

6



Predicate logic: language

• Everyone is talking to someone.
• Everyone is such that someone is such that they are talking to them.
• Everyonex is such that someoney is such that theyx are talking to themy.
• ∀x∃yTxy (T: — is talking to —)

• Everyone is talking to everyone.
• Everyonex is such that everyoney is such that theyx are talking to themy.
• ∀x∀yTxy (T: — is talking to —)

7



Predicate logic: language

Variables x, y, z . . . function like pronouns (‘it’, ‘they’).
Variables are logical expressions.
When translating from English, you cannot give a meaning to a variable.
Wrong:
• Every tiger is sleeping.
• ∀xSx (x: tiger, S: — is sleeping)

8



Predicate logic: language

• Every tiger is sleeping.
• Everything is such that if it is a tiger then it is sleeping.
• ∀x(Tx→ Sx) (T: — is a tiger, S: — is sleeping)

• Some tiger is sleeping.
• Something is such that it is a tiger and it is sleeping.
• ∃x(Tx∧ Sx)

• A car drove by.
• Something is such that it is a car and it drove by.
• ∃x(Cx∧ Dx) (C: — is a car, D: — drove by)

9



Predicate logic: language

Jargon:

In ∀x(Fx∧ Gy)→ Gx,
• ∀x binds x,
• the first two occurrences of x are bound,
• the third is free,
• y only has a free occurrence.

10



Identity



Identity

It is often useful to have a special predicate for identity.
We write a = b instead of = ab, and a ̸= b instead of ¬a = b.
‘=’ is a logical symbol. It always means ‘— is (numerically) identical to —’.

11



Identity

Two classical laws of identity
1. Everything is identical to itself: a = a.
2. “Leibniz’ Law”: If a = b then whatever is true of a is also true of b.

12



Identity

Leibniz’s Law as an inference rule:
a = b
C
C[b/ /a]

a = b
Fa
Fb

13



Identity

Leibniz’s Law as an inference rule:
a = b
C
C[b/ /a]

a = b
Fa∧ Rac
Fa∧ Rbc

14



Identity

Leibniz’s Law as an inference rule:
a = b
C
C[b/ /a]

a = b
□(a = a)
□(a = b)

15



Identity

Identity is useful not just to express claims about identity.
We can also use it to translate statements involving definite descriptions.
• The Russian president is trustworthy.
• There is a trustworthy Russian president and there is no more than one
Russian president.

• ∃x(Px∧ Tx∧∀y(Py→ y=x))

16



Identity

• The Russian president might have been trustworthy.
• ◊∃x(Px∧∀y(Py→ y=x)∧ Tx)
• ∃x(Px∧∀y(Py→ y=x)∧ ◊Tx)

17



Identity

Another thing we can (arguably) express with the identity predicate is existence.
• Bob exists.
• Something is such that it is identical to Bob.
• ∃x(x = b).

A problematic proof:
1. b = b (Self-Identity)
2. ∃x(x = b) (Existential Generalisation)
3. □∃x(x = b) (Necessitation)

18



Trees for first-order predicate logic



Trees for first-order predicate logic

Target: ∀x¬Fx→ ¬∃x(Fx∧ Gx)
1. ¬(∀x¬Fx→ ¬∃x(Fx∧ Gx)) (Ass.)

19



Trees for first-order predicate logic

Target: ∀x¬Fx→ ¬∃x(Fx∧ Gx)
1. ¬(∀x¬Fx→ ¬∃x(Fx∧ Gx)) (Ass.)
2. ∀x¬Fx (1)
3. ¬¬∃x(Fx∧ Gx) (1)

20



Trees for first-order predicate logic

Target: ∀x¬Fx→ ¬∃x(Fx∧ Gx)
1. ¬(∀x¬Fx→ ¬∃x(Fx∧ Gx)) (Ass.)
2. ∀x¬Fx (1)
3. ¬¬∃x(Fx∧ Gx) (1)
4. ∃x(Fx∧ Gx) (3)

21



Trees for first-order predicate logic

Target: ∀x¬Fx→ ¬∃x(Fx∧ Gx)
1. ¬(∀x¬Fx→ ¬∃x(Fx∧ Gx)) (Ass.)
2. ∀x¬Fx (1)
3. ¬¬∃x(Fx∧ Gx) (1)
4. ∃x(Fx∧ Gx) (3)
5. Fa∧ Ga (4)

22



Trees for first-order predicate logic

Target: ∀x¬Fx→ ¬∃x(Fx∧ Gx)
1. ¬(∀x¬Fx→ ¬∃x(Fx∧ Gx)) (Ass.)
2. ∀x¬Fx (1)
3. ¬¬∃x(Fx∧ Gx) (1)
4. ∃x(Fx∧ Gx) (3)
5. Fa∧ Ga (4)
6. Fa (5)
7. Ga (5)

23



Trees for first-order predicate logic

Target: ∀x¬Fx→ ¬∃x(Fx∧ Gx)
1. ¬(∀x¬Fx→ ¬∃x(Fx∧ Gx)) (Ass.)
2. ∀x¬Fx (1)
3. ¬¬∃x(Fx∧ Gx) (1)
4. ∃x(Fx∧ Gx) (3)
5. Fa∧ Ga (4)
6. Fa (5)
7. Ga (5)
8. ¬Fa

x
(2)

24



Trees for first-order predicate logic

∀xA

A[c/x]
↑

old or first

∃xA

A[c/x]
↑
new

¬∀xA

¬A[c/x]
↑
new

¬∃xA

¬A[c/x]
↑

old or first

Self-Identity:

c = c
↑
old

Leibniz’ Law:

b = c
A

A[c/ /b]
25



Trees for first-order predicate logic

Target: ∀x∀y((Rxy∧ x=y)→ Rxx)
1. ¬∀x∀y((Rxy∧ x=y)→ Rxx) (Ass.)

26



Trees for first-order predicate logic

Target: ∀x∀y((Rxy∧ x=y)→ Rxx)
1. ¬∀x∀y((Rxy∧ x=y)→ Rxx) (Ass.)
2. ¬∀y((Ray∧ a=y)→ Raa) (1)

27



Trees for first-order predicate logic

Target: ∀x∀y((Rxy∧ x=y)→ Rxx)
1. ¬∀x∀y((Rxy∧ x=y)→ Rxx) (Ass.)
2. ¬∀y((Ray∧ a=y)→ Raa) (1)
3. ¬((Rab∧ a=b)→ Raa) (2)

28



Trees for first-order predicate logic

Target: ∀x∀y((Rxy∧ x=y)→ Rxx)
1. ¬∀x∀y((Rxy∧ x=y)→ Rxx) (Ass.)
2. ¬∀y((Ray∧ a=y)→ Raa) (1)
3. ¬((Rab∧ a=b)→ Raa) (2)
4. Rab∧ a=b (3)
5. ¬Raa (3)

29



Trees for first-order predicate logic

Target: ∀x∀y((Rxy∧ x=y)→ Rxx)
1. ¬∀x∀y((Rxy∧ x=y)→ Rxx) (Ass.)
2. ¬∀y((Ray∧ a=y)→ Raa) (1)
3. ¬((Rab∧ a=b)→ Raa) (2)
4. Rab∧ a=b (3)
5. ¬Raa (3)
6. Rab (4)
7. a=b (4)

30



Trees for first-order predicate logic

Target: ∀x∀y((Rxy∧ x=y)→ Rxx)
1. ¬∀x∀y((Rxy∧ x=y)→ Rxx) (Ass.)
2. ¬∀y((Ray∧ a=y)→ Raa) (1)
3. ¬((Rab∧ a=b)→ Raa) (2)
4. Rab∧ a=b (3)
5. ¬Raa (3)
6. Rab (4)
7. a=b (4)
8. Raa

x
(6,7,LL)

31


	Modal predicate logic
	Predicate logic: language
	Identity
	Trees for first-order predicate logic

