
1 Propositional Logic

We are going to introduce formal languages in which one can regiment mathematical
and philosophical reasoning, without the distracting complexities and vagaries of natural
language. In this chapter, we begin with the language of propositional logic, the logic of
the connectives ¬, → , ∧, ∨, etc. This language is woefully inadequate for any serious
applications, but it is a useful prototype to introduce general ideas and techniques that
we’ll also use for more powerful languages.

1.1 Syntax

When talking about language, it is important to distinguish the language that is being
talked about, the object language, from the meta-language in which the talking takes
place. Throughout these notes, the meta-language will be English, with added techni-
cal vocabulary that will be introduced as we go along. Our first object language is the
language of propositional logic, or 𝔏0.

The primitive symbols of 𝔏0 are:

• a non-empty (and countable) set of sentence letters,
• the connectives ‘¬’ and ‘ → ’, and
• the parentheses, ‘(’ and ‘)’.

The sentence letters are classified as non-logical symbols. The other expressions are
logical. (The point of this classification will become clear in section 1.3.)

Definition 1.1
A sentence of 𝔏0 is a finite string of symbols, built up according to the following
formation rules:

(i) Every sentence letter is a sentence.
(ii) If a string 𝐴 is a sentence, then so is ¬𝐴.
(iii) If strings 𝐴 and 𝐵 are sentences, then so is (𝐴 → 𝐵).

1



1 Propositional Logic

In definition 1.1, I use ‘𝐴’ and ‘𝐵’ as metalinguistic variables for strings of symbols
in the object language. Throughout these notes, I will often use capital letters from the
beginning of the alphabet for sentences in the object language. I’ll sometimes use the
lowercase letters ‘𝑝’ and ‘𝑞’ to denote arbitrary sentence letters. I haven’t said what
the sentence letters of 𝔏0 look like. It doesn’t matter (as long as none of them has any
other primitive 𝔏0-symbols as a part, which I hereby stipulate). Strictly speaking, 𝔏0
is therefore not a single language, but a family of languages, with different stocks of
sentence letters.

Unless stated otherwise, metalinguistic variables are to be understood as universally
quantified. Condition (ii) in definition 1.1, for example, doesn’t talk about a particular
string 𝐴, which I failed to specify. Rather, it says that for all strings 𝐴, if 𝐴 is a sentence
then ¬𝐴 is a sentence. Also, by ‘¬𝐴’, I mean the string that results by putting ‘¬’ in front
of whatever string ‘𝐴’ picks out. Similarly for ‘(𝐴 → 𝐵)’ and other such cases.

We introduce ‘∧’, ‘∨’, and ‘↔’ as metalinguistic abbreviations. That is, if 𝐴 and 𝐵
are 𝔏0-sentences, we write

• (𝐴 ∧ 𝐵) for ¬(𝐴 → ¬𝐵);
• (𝐴 ∨ 𝐵) for (¬𝐴 → 𝐵);
• (𝐴 ↔ 𝐵) for ¬((𝐴 → 𝐵) → ¬(𝐵 → 𝐴)).

We could have added ‘∧’, ‘∨’, and ‘↔’ as primitive symbols; you’ll soon understand
why we didn’t. At any rate, you should remember that nothing is lost by restricting the
primitive connectives to ‘¬’ and ‘ → ’: in classical propositional logic, all connectives
can be defined in terms of these two.

It is convenient to also have a zero-ary connective ⊤ that is always true, and a dual ⊥
that is always false. We introduce these as further metalinguistic abbreviations. Where
𝑝 is an arbitrary sentence letter (say, the first in some alphabetical order), we write

• ⊤ for 𝑝 → 𝑝;
• ⊥ for ¬(𝑝 → 𝑝).

Where no ambiguity threatens, I’ll often omit parentheses and quotation marks. For
example, I might write 𝐴 → 𝐵 instead of ‘(𝐴 → 𝐵)’.

Exercise 1.1 How many sentences are there in 𝔏0?

2



1 Propositional Logic

Exercise 1.2 Why did I say that no sentence letter of 𝔏0 must have any other
primitive 𝔏0-symbol as a part? What could go wrong otherwise?

Suppose we want to show that every 𝔏0-sentence has some property. The standard
method for doing this is called proof by induction on complexity. (This sense of ‘induc-
tion’ is only loosely related to the kind of “inductive inference” that is often contrasted
with deduction.)

Proofs by induction on complexity are based on the fact that every 𝔏0-sentence is
built up from sentence letters by finitely many applications of the formation rules in
definition 1.1. The complexity of a sentence is the number of applications of these rules.
Thus a sentence letter has complexity 0; ¬𝑝 has complexity 1; (𝑝 → ¬𝑞) has complexity
2; and so on. To show that every 𝔏0-sentence has some property, it suffices to show two
things:

(i) Every sentence of complexity 0 has the property.
(ii) If every sentence of complexity 𝑛 has the property then so does every sentence of

complexity 𝑛 + 1.

Step (i) is called the base case of the proof; step (ii) the inductive step. The antecedent
of (ii), that every sentence of complexity 𝑛 has the property, is called the induction hy-
pothesis.

As an example, let’s prove that every 𝔏0-sentence has an even number of parentheses.

Proposition 1.1
Every 𝔏0-sentence has an even number of parentheses.

Proof by induction on complexity.

Base case. We need to show that every sentence letter has an even number of paren-
theses. A sentence letter has zero parentheses. Zero is even.

Inductive step. We need to show that if some sentences have an even number of paren-
theses then so does every sentence generated from these sentences by a single applica-
tion of a formation rule from definition 1.1. We need to consider two cases, because
there are two formation rules.

First, we need to show that if 𝐴 has an even number of parentheses, then so does ¬𝐴.
This is true because ¬𝐴 has the same number of parentheses as 𝐴. Second, we need to

3



1 Propositional Logic

show that if 𝐴 and 𝐵 have an even number of parentheses, then so does (𝐴 → 𝐵). This
is true because (𝐴 → 𝐵) has two more parentheses than 𝐴 and 𝐵 together, and the sum
of two even numbers plus two is always even.

We’ll use this method again and again, not just when we talk about sentences of 𝔏0.
Whenever a set of objects is generated from some base objects by finitely many appli-
cations of some operations, we can use the method to show that all of the objects have
some property.

By the way: Now you can see why it is useful to have only two primitive connectives.
If we had ‘∧’, ‘∨’, and ‘↔’ as well, we would have to check three more cases in every
proof by induction on complexity.

Exercise 1.3 Prove by induction on complexity that the initial symbol of any 𝔏0-
sentence 𝐴 never belongs to an 𝔏0-sentence that is a proper part of 𝐴. (A proper
part of a string is a substring that is not the whole string itself.)

Exercise 1.4 Prove by induction on 𝑛 that for every natural number 𝑛, 0 + 1 +
… + 𝑛 = 𝑛(𝑛 + 1)/2. That is, first show that the claim holds for 𝑛 = 0; then show
that if it holds for some 𝑛 then it also holds for 𝑛 + 1.

1.2 The propositional calculus

Next, let’s explain how one may reason in 𝔏0. We’ll start with the ancient idea that to
prove a statement means to derive it from some axioms. On this conception, a proof
system consists of some axioms and some rules for deriving new sentences from old
ones.

The first complete proof system for propositional logic, using this approach, was pro-
posed by Gottlob Frege in 1879. I’ll present a slightly simplified version, due to Jan
Łukasiewicz and John von Neumann. We have three axiom schemas, meaning that ev-
ery instance of these schemas is an axiom:

A1 𝐴 → (𝐵 → 𝐴)
A2 (𝐴 → (𝐵 → 𝐶)) → ((𝐴 → 𝐵) → (𝐴 → 𝐶))
A3 (¬𝐴 → ¬𝐵) → (𝐵 → 𝐴)

The only rule of inference is modus ponens, which in this context is also known as de-
tachment:

4



1 Propositional Logic

MP From 𝐴 and 𝐴 → 𝐵 one may infer 𝐵.

I’ll call this proof system the propositional calculus, although it is really only one of
many equivalent calculi, all of which could be given that name.

Definition 1.2
A proof in the propositional calculus is a finite sequence of 𝔏0-sentences
𝐴1, 𝐴2, … 𝐴𝑛, each of which is either an instance of A1–A3 or follows from earlier
sentences in the sequence by MP. A proof is of an 𝔏0-sentence 𝐴 if 𝐴 is the last
sentence in the sequence.

We write ‘⊢0 𝐴’ to express that there is a proof of 𝐴 in the propositional calculus.
Here is a proof of 𝑝 → 𝑝, showing that ⊢0 𝑝 → 𝑝:

1. 𝑝 → ((𝑝 → 𝑝) → 𝑝) Instance of A1
2. (𝑝 → ((𝑝 → 𝑝) → 𝑝)) → ((𝑝 → (𝑝 → 𝑝)) → (𝑝 → 𝑝)) Instance of A2
3. (𝑝 → (𝑝 → 𝑝)) → (𝑝 → 𝑝) From 1, 2 by MP
4. 𝑝 → (𝑝 → 𝑝) Instance of A1
5. 𝑝 → 𝑝 From 3, 4 by MP

The result can be generalized. If we replace the sentence letter 𝑝 by any sentence
𝐴 throughout the proof, we still get a proof that conforms to definition 1.2. So we’ve
effectively shown that ⊢0 𝐴 → 𝐴 for any sentence 𝐴.

Proof systems like our propositional calculus are called axiomatic calculi or Hilbert-
style calculi. As the example illustrates, they tend to be difficult to use. They are also
unnatural in that they focus on establishing logical truths. More often than not, when
we turn to logic, we’re interested in consequence: we want to know whether a certain
conclusion follows from some premises, where these premises aren’t logical truths. In
a strict axiomatic calculus, any question about consequence must be reformulated as a
question about logical truth: to test whether 𝐵 is a logical consequence of 𝐴1, ..., 𝐴𝑛, one
would check whether (𝐴1 ∧ ... ∧ 𝐴𝑛) → 𝐵 is a logical truth.

We can, however, also extend our calculus to handle deductions from non-logical
premises.

5



1 Propositional Logic

Definition 1.3
A deduction of an 𝔏0-sentence 𝐴 from a set Γ (”gamma”) of 𝔏0-sentences in the
propositional calculus is a finite sequence of sentences 𝐴1, 𝐴2, … 𝐴𝑛, with 𝐴𝑛 = 𝐴,
each of which is either an instance of A1–A3, an element of Γ, or follows from
previous sentences by MP.

We write ‘Γ ⊢0 𝐴’ to express that there is a deduction of 𝐴 from Γ. For example,
‘{𝑝, 𝑞} ⊢0 𝑝’ is a sentence in our metalanguage saying that 𝑝 is deducible from the set
containing 𝑝 and 𝑞. We’ll usually omit the set braces and simply write ‘𝑝, 𝑞 ⊢0 𝑞’.

The following structural principles about the ⊢0 relation immediately follow from
definition 1.3.

Id 𝐴 ⊢0 𝐴
Mon If Γ ⊢0 𝐴 then Γ, 𝐵 ⊢0 𝐴
Cut If Γ ⊢0 𝐴 and Δ, 𝐴 ⊢0 𝐵 then Γ, Δ ⊢0 𝐵

Here, ‘Id’ stands for ‘Identity’, ‘Mon’ for ‘Monotonicity’. As usual, ‘𝐴’ and ‘𝐵’ range
over arbitrary 𝔏0-sentences; ‘Γ’ and ‘Δ’ (‘delta’) range over arbitrary sets of 𝔏0-sentences;
‘Γ, 𝐵’ is shorthand for ‘Γ ∪ {𝐵}’, the union of Γ and {𝐵}. (The union of two sets is the
set that contains all and only the elements that are in either of the two sets.)

Exercise 1.5 Explain why Id, Mon, and Cut follow from definition 1.3, without
invoking A1–A3 or MP.

A proof (in the sense of definition 1.2) is a special case of a deduction (in the sense
of definition 1.3), with an empty set of premises Γ. The following theorem shows that
every deduction can be converted into a proof.

Theorem 1.1: The Deduction Theorem (DT)
If Γ, 𝐴 ⊢0 𝐵 then Γ ⊢0 𝐴 → 𝐵.

Suppose there is a deduction of 𝐵 from Γ. Being finite, this deduction must use only
finitely many premises from Γ. Call them 𝐴1, … , 𝐴𝑛. So we have

𝐴1, … , 𝐴𝑛 ⊢0 𝐵.

6



1 Propositional Logic

By the Deduction Theorem, we can infer that

𝐴1, … , 𝐴𝑛−1 ⊢0 𝐴𝑛 → 𝐵.

Applying the theorem again, we get

𝐴1, … , 𝐴𝑛−2 ⊢0 𝐴𝑛−1 → (𝐴𝑛 → 𝐵).

Continuing in this way, we can move all the premises to the right, until we get

⊢0 𝐴1 → (𝐴2 → (… (𝐴𝑛 → 𝐵) …)).

(𝐴1 → (𝐴2 → (… (𝐴𝑛 → 𝐵) …)) is provably equivalent to (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) → 𝐵, so we
also get ⊢0 (𝐴1 ∧ 𝐴2 ∧ … ∧ 𝐴𝑛) → 𝐵.)

To prove the Deduction Theorem, we use a method called strong induction. With
strong induction, we would show that all natural numbers 0, 1, 2, 3, … have a certain
property by showing that whenever all numbers smaller than a given number 𝑛 have the
property, then so does 𝑛 itself.

Why does this entail that all numbers have the property? Well, 0 must have the prop-
erty: there are no natural numbers smaller than 0, so it is vacuously true that all numbers
smaller than 0 have the property. Given that 0 has the property, 1 must have it as well;
given that 0 and 1 have it, 2 must have it; and so on.

Proof of the Deduction Theorem.

Let 𝐵1, 𝐵2, … , 𝐵𝑛 be a deduction of 𝐵 from Γ∪{𝐴}. We shall prove by strong induction
on 𝑘 that Γ ⊢0 𝐴 → 𝐵𝑘 for all 𝑘 = 1, 2, … , 𝑛. Since 𝐵𝑘 = 𝐵, this will establish the
theorem.

We need to show that if Γ ⊢0 𝐴 → 𝐵𝑖 for all 𝑖 < 𝑘, then Γ ⊢0 𝐴 → 𝐵𝑘. We distin-
guish three cases, corresponding to the ways in which 𝐵𝑘 can appear in the deduction,
according to definition 1.3.

Case 1. 𝐵𝑘 is an axiom. By A1, 𝐵𝑘 → (𝐴 → 𝐵𝑘) is also an axiom. By MP, we can derive
𝐴 → 𝐵𝑘. So ⊢0 𝐴 → 𝐵𝑘, and so Γ ⊢0 𝐴 → 𝐵𝑘 by Mon.

Case 2. 𝐵𝑘 is an element of Γ ∪ {𝐴}. We need to consider two subcases.

Subcase 2a. 𝐵𝑘 is in Γ. Then Γ ⊢0 𝐵𝑘 by Id and Mon. As in case 1, we also have
⊢0 𝐵𝑘 → (𝐴 → 𝐵𝑘) by A1, so we get Γ ⊢0 𝐴 → 𝐵𝑘 by Mon and MP.

7



1 Propositional Logic

Subcase 2b. 𝐵𝑘 is 𝐴. Then 𝐴 → 𝐵𝑘 is 𝐴 → 𝐴. We’ve just proved above that ⊢0 𝐴 → 𝐴.
By Mon, we have Γ ⊢0 𝐴 → 𝐴.

Case 3. 𝐵𝑘 follows by MP from two previous lines 𝐵𝑖 and 𝐵𝑖 → 𝐵𝑘 in the deduction.
By induction hypothesis, one can deduce 𝐴 → 𝐵𝑖 and 𝐴 → (𝐵𝑖 → 𝐵𝑘) from Γ. Axiom
A2 gives us

(𝐴 → (𝐵𝑖 → 𝐵𝑘)) → ((𝐴 → 𝐵𝑖) → (𝐴 → 𝐵𝑘)).
Using A2, the deduction of 𝐴 → 𝐵𝑖 and 𝐴 → (𝐵𝑖 → 𝐵𝑘) from Γ can therefore be extended
by MP to a deduction of (𝐴 → 𝐵𝑖) → (𝐴 → 𝐵𝑘) and from there to 𝐴 → 𝐵𝑘.

The proof uses axioms A1 and A2. If we’re interested in what can and can’t be deduced
in the propositional calculus, we never need to invoke A1 and A2 again: if needed, they
can be recovered from DT and MP. Here is how we can recover A1 (𝐴 → (𝐵 → 𝐴)):

1. 𝐴 ⊢0 𝐴 (Id)
2. 𝐴, 𝐵 ⊢0 𝐴 (Mon)
3. 𝐴 ⊢0 𝐵 → 𝐴 (2, DT)
4. ⊢0 𝐴 → (𝐵 → 𝐴) (3, DT)

Note that this is not a proof in the propositional calculus. It is a metalinguistic argument
showing that a certain proof in the propositional calculus exists.

Exercise 1.6 Show in the same way that A2 can be derived from DT
and MP. That is, show from the structural rules, DT, and MP that ⊢0
(𝐴 → (𝐵 → 𝐶)) → ((𝐴 → 𝐵) → (𝐴 → 𝐶)).

Exercise 1.7 Is the converse of the DT true as well? How is it related to MP?

Now for some facts about negation.

Theorem 1.2: Ex Falso Quodlibet (EFQ)
If Γ ⊢0 𝐴 and Γ ⊢0 ¬𝐴, then Γ ⊢0 𝐵

8



1 Propositional Logic

Proof.

1. Γ ⊢0 𝐴 (Assumption)
2. Γ ⊢0 ¬𝐴 (Assumption)
3. Γ, ¬𝐵 ⊢0 ¬𝐴 (2, Mon)
4. Γ ⊢0 ¬𝐵 → ¬𝐴 (3, DT)
5. ⊢0 (¬𝐵 → ¬𝐴) → (𝐴 → 𝐵) (A3)
6. Γ ⊢0 𝐴 → 𝐵 (4, 5, MP)
7. Γ ⊢0 𝐵 (1, 6, MP)

Theorem 1.3: Double Negation Elimination (DNE)
If Γ ⊢0 ¬¬𝐴 then Γ ⊢0 𝐴.

Proof.

1. Γ ⊢0 ¬¬𝐴 (Assumption)
2. Γ, ¬𝐴 ⊢0 ¬¬𝐴 (1, Mon)
3. Γ, ¬𝐴 ⊢0 ¬𝐴 (Id)
4. Γ, ¬𝐴 ⊢0 𝐴 (2, 3, EFQ)
5. Γ ⊢0 ¬𝐴 → 𝐴 (4, DT)
6. Γ, ¬𝐴 ⊢0 ¬(¬𝐴 → 𝐴) (3, 4, EFQ)
7. Γ ⊢0 ¬𝐴 → ¬(¬𝐴 → 𝐴) (6, DT)
8. ⊢0 (¬𝐴 → ¬(¬𝐴 → 𝐴)) → ((¬𝐴 → 𝐴) → 𝐴) (A3 with 𝐵 = (¬𝐴 → 𝐴))
9. Γ ⊢0 (¬𝐴 → 𝐴) → 𝐴 (7, 8, MP)

10. Γ ⊢0 𝐴 (5, 9, MP)

Theorem 1.4: Reductio Ad Absurdum (RAA)
If Γ, 𝐴 ⊢0 𝐵 and Γ, 𝐴 ⊢0 ¬𝐵, then Γ ⊢0 ¬𝐴.

9



1 Propositional Logic

Proof.

1. Γ, 𝐴 ⊢0 𝐵 (Assumption)
2. Γ, 𝐴 ⊢0 ¬𝐵 (Assumption)
3. Γ, 𝐴 ⊢0 ¬𝐴 (1, 2, EFQ)
4. Γ, ¬¬𝐴 ⊢0 ¬¬𝐴 (Id, Mon)
5. Γ, ¬¬𝐴 ⊢0 𝐴 (4, DNE)
6. Γ, ¬¬𝐴 ⊢0 ¬𝐴 (3, 5, Cut)
7. Γ ⊢0 ¬¬𝐴 → ¬𝐴 (6, DT)
8. Γ, ¬¬𝐴 ⊢0 ¬(¬¬𝐴 → ¬𝐴) (5, 6, EFQ)
9. Γ ⊢0 ¬¬𝐴 → ¬(¬¬𝐴 → ¬𝐴) (8, DT)

10. Γ ⊢0 (¬¬𝐴 → ¬(¬¬𝐴 → ¬𝐴)) → ((¬¬𝐴 → ¬𝐴) → ¬𝐴) (A3)
11. Γ ⊢0 (¬¬𝐴 → ¬𝐴) → ¬𝐴 (9, 10, MP)
12. Γ ⊢0 ¬𝐴 (7, 11, MP)

We needed A3 in the derivation of these facts. As in the case of A1 and A2, we won’t
need A3 any more, now that we have EFQ, DNE, and RAA. The relation ⊢0 is fully
characterized by the structural rules Id, Mon, Cut, together with MP, DT, EFQ, DNE,
and RAA.

We could have used different axioms, or a different combination of axioms and in-
ference rules to obtain the same result. Frege’s original calculus, for example, has six
axioms and an additional rule of substitution. But it is equivalent to the calculus I’ve
introduced, since it determines the same relation ⊢0,

Exercise 1.8 Show that Γ ⊢0 ⊥ iff there is a sentence 𝐴 for which Γ ⊢0 𝐴 and
Γ ⊢0 ¬𝐴.

Exercise 1.9 Show: (a) ¬𝐴 ⊢0 𝐴 → 𝐵. (b) 𝐵 ⊢0 𝐴 → 𝐵. (c) 𝐴 → ¬𝐴 ⊢0 ¬𝐴;

Exercise 1.10 Show, by first expanding the definition of ∧:

(a) If Γ ⊢0 𝐴 and Γ ⊢0 𝐵 then Γ ⊢0 𝐴 ∧ 𝐵
(b) If Γ ⊢0 𝐴 ∧ 𝐵 then Γ ⊢0 𝐴 and Γ ⊢0 𝐵

10



1 Propositional Logic

We can also design different types of proof systems that are equivalent to the proposi-
tional calculus. For example, you will have noticed that our metalinguistic proofs, using
Id, Mon, Cut, MP, DT, etc., are generally much simpler than proofs in our official cal-
culus. We can turn these proofs into their own calculus. Each line of a proof, in this
calculus, is a sequent Γ ⊢0 𝐴. There are no axioms. Instead, we have the rules Id, Mon,
Cut, MP, etc. to operate on sequents. To show that 𝐴 follows from Γ, one tries to derive
the sequent Γ ⊢0 𝐴.

I’ve introduced ‘Γ ⊢0 𝐴’ to mean ‘there is a deduction of 𝐴 from Γ in the propositional
calculus’. We don’t want the lines in our new calculus to refer to deductions in another
calculus. So we should replace ‘⊢0’ by a different symbol. The standard choice is‘⇒’.
Also, it turns out that we can drop Mon and Cut in favour of a slightly strengthened form
of Id:

Id+ Γ, 𝐴 ⇒ 𝐴

We can also drop EFQ, as it is derivable from RAA. The remaining rules of our new
calculus are:

MP From Γ ⇒ 𝐴 and Γ ⇒ 𝐴 → 𝐵, infer Γ ⇒ 𝐵.
DT From Γ, 𝐴 ⇒ 𝐵, infer Γ ⇒ 𝐴 → 𝐵.
RAA From Γ, 𝐴 ⇒ 𝐵 and Γ, 𝐴 ⇒ ¬𝐵, infer Γ ⇒ ¬𝐴.
DNE From Γ ⇒ ¬¬𝐴, infer Γ ⇒ 𝐴.

This is a stripped-down version of the sequent calculus invented by Gerhard Gentzen
in the 1930s. It determines the same proof relation as our propositional calculus: a
sequence Γ ⇒ 𝐴 is provable in the sequent calculus iff there is a deduction of 𝐴 from Γ
in the propositional calculus.

Here is a simple schematic proof in the sequent calculus to show that 𝐴 → 𝐵 and 𝐵 → 𝐶
together entail 𝐴 → 𝐶.

1. 𝐴→𝐵, 𝐵→𝐶, 𝐴 ⇒ 𝐴→𝐵 Id+

2. 𝐴→𝐵, 𝐵→𝐶, 𝐴 ⇒ 𝐵→𝐶 Id+

3. 𝐴→𝐵, 𝐵→𝐶, 𝐴 ⇒ 𝐴 Id+

4. 𝐴→𝐵, 𝐵→𝐶, 𝐴 ⇒ 𝐵 1, 3, MP
5. 𝐴→𝐵, 𝐵→𝐶, 𝐴 ⇒ 𝐶 2, 4, MP
6. 𝐴→𝐵, 𝐵→𝐶 ⇒ 𝐴→𝐶 5, DT

11



1 Propositional Logic

When writing out proofs like this, one often needs to repeat the same sentences on the
left of ‘⇒’ again and again. So-called natural deduction calculi introduce shortcuts to
avoid these repetitions, dropping the ‘⇒’ symbol and using lines or boxes to indicate the
sentences to its left. You may have encountered such a calculus in your intro logic course.
If so, you may want to write down a natural-deduction proof of the above entailment and
compare it with the sequent-calculus proof. (Can you see how the two are related?) You
may also have come across tableau calculi or tree proof calculi. These are, in effect,
upside-down sequent proofs in which all sentences are pushed to the left of the arrow.

All these calculi are much easier to use than our propositional calculus. On the flip
side, proofs in the propositional calculus are easier to describe than proofs in the other
calculi: a proof is simply a list of 𝔏0-sentences, each of which is either an instance of A1–
A3 or follows from earlier sentences by MP. This makes it easier to prove metatheorems
about what is or is not provable in the calculus. Since all the calculi are equivalent, and
we’re mostly interested in metatheorems, we’ll take the propositional calculus to be the
official calculus of classical propositional logic.

In this course, we’ll focus on classical logic. But it is worth mentioning that there
are also non-classical logics for 𝔏0. These always drop one or more of the principles
Id, Mon, Cut, MP, DT, EFQ, DNE, and RAA, and sometimes replace them by other
principles. For example, intuitionistic logic drops DNE. This has the possibly attractive
consequence that the rules for negation become self-contained in the sense that they don’t
allow proving any negation-free sentences that can’t already be proved without them.

Exercise 1.11 Give a sequent calculus proof of Peirce’s Law: 𝑝 → ((𝑝 → 𝑞) → 𝑝).
The proof requires DNE, although the sentence doesn’t contain any negation.

1.3 Semantics

You may have noticed that I have introduced 𝔏0 without saying anything about what the
expressions of the language mean. Introductory logic texts often suggest that ’¬’ and
’ → ’ have roughly the same meaning as ‘not’ and ‘if …then’ in English. But we haven’t
built this tenuous connection to English into the formal language. In this section, we’re
going to study a more rigorous theory of meaning for 𝔏0.

The status of this kind of theory is controversial. Some hold that the meaning of a
logical expression is given by the rules for reasoning with the expression, which we’ve
already described. This approach to meaning is sometimes called inferential role seman-
tics. (Semantics is the study of meaning.)

12



1 Propositional Logic

The kind of theory we’re going to study instead belongs to the tradition of truth-
conditional semantics. The guiding idea of truth-conditional semantics is that the mean-
ing of a sentence can be given by stating what (typically non-linguistic) conditions must
be satisfied for the sentence to be true. The German sentence ’Schnee ist weiss’, for
example, is true iff snow is white, and arguably this information captures the core of its
meaning. On the truth-conditional approach, the meaning of sub-sentential expressions
like ’weiss’ or ’¬’ is determined by their contribution to the truth-conditions of sentences
in which they occur.

If we apply this approach to 𝔏0, we first need to assign truth-conditions to the sentence
letters. To a first approximation, this might look as follows:

𝑝: snow is white.
𝑞: grass is purple.
…

Here I give the truth-conditions by using English sentences. This is not ideal, because
English sentences may not have fully precise and determinate truth-conditions. (It isn’t
clear what, exactly, must be the case for ’snow is white’ to be true.) Fortunately, we’ll
see in a moment that we don’t need to worry about this problem because we won’t really
need to assign a meaning to the sentence letters after all.

Moving on, we need to explain how the logical operators contribute to the truth-
conditions of sentences in which they occur. This is the important part. We do this
inductively, as follows:

(i) ¬𝐴 is true iff 𝐴 is not true.
(ii) 𝐴 → 𝐵 is true iff 𝐴 is not true or 𝐵 is true.

To see what this is saying, let’s pretend that I managed to assign precise truth-conditions
to the sentence letter 𝑝. We thereby know in what kinds of scenarios 𝑝 is true and in what
kinds of scenarios it is false. The above statement about ¬ now tells us ¬𝑝 is true in pre-
cisely those scenarios in which 𝑝 is not true. In general, it tells us how to determine the
conditions under which ¬𝐴 is true based on the conditions under which 𝐴 is true. Simi-
larly, the statement about → tells us how to determine the conditions under which 𝐴 → 𝐵
is true based on the conditions under which 𝐴 and 𝐵 are true.

The truth-conditional conception of meaning is useful in logic because it ties in with
a natural conception of entailment. Intuitively, some premises entail a conclusion iff the
truth of the premises guarantee the truth of the conclusion; that is, there is no conceivable
scenario in which the premises are true while the conclusion is false. If that’s right then

13



1 Propositional Logic

knowledge of truth-conditions is exactly what we need if we want to know whether some
premises entail some conclusion.

In fact, logic is about a particular type of entailment. Suppose we give the following
truth-conditions to 𝑝 and 𝑞:

𝑝: Snow is white.
𝑞: Snow is purple.

Then 𝑝 entails ¬𝑞: there is no scenario in which snow is white and also purple. The
inference from 𝑝 to ¬𝑞 is valid, but it is not logically valid. That’s because it depends
on the meaning of the non-logical expression 𝑝 and 𝑞. Logic abstracts away from the
interpretation of non-logical expressions. Some premises logically entail a conclusion
iff there’s no conceivable scenario in which the premises are true and conclusion false,
on any interpretation of the non-logical expressions.

Here we need a distinction between “logical” and “non-logical” expressions. This is
best seen as a matter of choice. In epistemic logic, for example, a regimented version of
’it is known that’ counts as logical. Since propositional logic is the logic of the Boolean
connectives, ‘¬’ and ‘ → ’ here count as logical; the sentence letters are non-logical.

We now have this preliminary account of logical entailment:

Some premises Γ logically entail a sentence 𝐴 iff every scenario and in-
terpretation of the sentence letters that makes the sentences in Γ true also
makes 𝐴 true.

We can render this simpler and more precise. Think of what you need to know about
a pair of a scenario 𝑆 and an interpretation 𝐼 of the sentence letters in order to determine
whether an arbitrary 𝔏0-sentence – say, ¬𝑝 – is true. I could tell you that 𝑝 means that
snow is purple, and that the scenario is one in which snow is red. You could then figure
out that ¬𝑝 is true (relative to 𝑆 and 𝐼), using the interpretation rule for negation and the
information I gave you. But you don’t need all that information. It would be enough if I
merely told you that 𝑝 means something that isn’t true in 𝑆. By the interpretation rule for
negation, you could infer that ¬𝑝 is true in 𝑆 under 𝐼 . Generalizing, all the information we
need about a pair of a scenario 𝑆 and an interpretation 𝐼 to determine whether an arbitrary
𝔏0-sentence is true in 𝑆 under 𝐼 is which sentence letters are true and which are false in
𝑆 under 𝐼 . This means that instead of quantifying over scenarios and interpretations,
we can simply quantify over assignments of truth-values to the sentence letters. Such
assignments are often called ‘interpretations’, but this jargon is misleading. We’ll call
them ‘models’.

14



1 Propositional Logic

Definition 1.4: Model
A model for 𝔏0 is an assignment 𝜎 (“sigma”) of truth-values to the sentence letters
of 𝔏0.

That is, a model is a function 𝜎 that assigns to each sentence letter 𝑝 one of the two
truth values, which I’ll label ‘𝑇 ’ and ‘𝐹’. We use standard function notation here, using
‘𝜎(𝑝) = 𝑇 ’ to express that 𝜎 assigns the value 𝑇 to 𝑝 and ‘𝜎(𝑝) = 𝐹’ to express that 𝜎
assigns 𝐹 to 𝑝.

Next, we explain how an assignment of truth-values to sentence letters determines an
assignment of truth-values to all sentences of 𝔏0, in accordance with our above interpre-
tation rules for ’¬’ and ’ → ’. We write ‘𝜎 ⊩ 𝐴’ (read: “𝜎 satisfies A”) to mean that 𝐴
is true in the model 𝜎, and ‘𝜎 ⊮ 𝐴’ to mean that 𝐴 is not true in 𝜎. The satisfaction
relation ⊩ is defined as follows:

Definition 1.5
Let 𝜎 be a model for 𝔏0. For any sentence letter 𝑝 and sentences 𝐴 and 𝐵:

(i) 𝜎 ⊩ 𝑝 iff 𝜎(𝑝) = 𝑇 .
(ii) 𝜎 ⊩ ¬𝐴 iff 𝜎 ⊮ 𝐴.
(iii) 𝜎 ⊩ 𝐴 → 𝐵 iff 𝜎 ⊮ 𝐴 or 𝜎 ⊩ 𝐵.

For example, if 𝜎(𝑝) = 𝑇 and 𝜎(𝑞) = 𝐹, then 𝜎 ⊩ 𝑝 → (𝑞 → ¬𝑞), as you can confirm
by working through definition 1.5.

We can now define logical entailment, as already announced:

Definition 1.6
Sentences Γ (logically) entail a sentence 𝐴 (for short, Γ ⊨ 𝐴) iff every model that
satisfies every sentence in Γ also satisfies 𝐴.

We allow Γ to be infinite, and to be empty. If something is (logically) entailed by the
empty set of premises, it is called (logically) valid. Since our topic is logic, I’ll drop
‘logically’ when talking about validity and entailment from now on.

15



1 Propositional Logic

Definition 1.7
𝐴 is valid (for short, ⊨ 𝐴) iff every model satisfies 𝐴.

Exercise 1.12 Explain why, if Γ ⊨ 𝐴 by definition 1.6, then Γ entails 𝐴 accord-
ing to the earlier, informal definition.

Exercise 1.13 Show that 𝐴 is valid iff 𝐴 is entailed by ∅.

Exercise 1.14 Show that all instances of A1–A3 are valid.

Exercise 1.15 We have now introduced five arrow-like symbols: → , ⊢0, ⇒, ⊩,
and ⊨. Explain what each of them means and to which language it belongs. (For
the record: we will never use ⇒ again.)

1.4 Soundness and Completeness

We have explored two perspectives on logic. The first was proof-theoretic. We studied
proofs and deductions as arrangements of symbols conforming to certain rules, without
any extrinsic concern for what the symbols might mean. We then turned to a model-
theoretic perspective, defining notions of validity and entailment in purely semantic
terms.

Ideally, we’d like the two perspectives to harmonize: a sentence should be provable
iff it is valid. More generally, we should have Γ ⊢0 𝐴 iff Γ ⊨ 𝐴. In this section, we will
show that this is indeed the case.

We have two directions to check. We first show that if Γ ⊢0 𝐴 then Γ ⊨ 𝐴. This
shows that the propositional calculus, and all the calculi equivalent to it, are sound with
respect to the model-theoretic conception of entailment: anything that can be deduced
from some premises in the calculus is entailed by the premises.

Afterwards, we’ll show the converse, that if Γ ⊨ 𝐴 then Γ ⊢0 𝐴. This shows that
the calculus is complete: whenever something is entailed by some premises, it can be
deduced from the premises.

The soundness proof is straightforward.

16



1 Propositional Logic

Theorem 1.5: Soundness of the propositional calculus
If Γ ⊢0 𝐴, then Γ ⊨ 𝐴.

Suppose Γ ⊢0 𝐴. This means that there is a sequence 𝐴1, 𝐴2, … , 𝐴𝑛 such that 𝐴𝑛 = 𝐴
and each 𝐴𝑘 in the sequence is either an axiom, a member of Γ, or follows from previous
sentences by MP. We show by strong induction on 𝑘 that Γ ⊨ 𝐴𝑘. The theorem then
follows by taking 𝑘 = 𝑛.

Case 1. 𝐴𝑘 is an axiom. Then Γ ⊨ 𝐴𝑘 by exercise 1.14.

Case 2. 𝐴𝑘 is a member of Γ. Then Γ ⊨ 𝐴𝑘 holds trivially.

Case 3. 𝐴𝑘 follows from previous sentences 𝐴𝑖 and 𝐴𝑖 → 𝐴𝑘 by MP. By induction hy-
pothesis, Γ ⊨ 𝐴𝑖 and Γ ⊨ 𝐴𝑖 → 𝐴𝑘. It follows by clause (iii) of definition 1.5 that
Γ ⊨ 𝐴𝑘.

Completeness is harder. The first completeness proof for a propositional calculus was
given by Paul Bernays in 1918. We’re going to use a different technique, due to Leon
Henkin (1949), that works for a wide range of logics. We’ll use it again in chapter 3 to
prove completeness for first-order logic.

Before we start, we need to define two key concepts. Let Γ be a set of 𝔏0-sentences.
We’ll say that Γ is consistent if one can’t deduce a contradiction from it: there is no
sentence 𝐴 such that Γ ⊢0 𝐴 and Γ ⊢0 ¬𝐴; equivalently, by exercise 1.8: Γ ⊬0 ⊥. We
say that Γ is satisfiable if there is some model that satisfies every sentence in Γ.

The following lemmas allow us to reformulate completeness in terms of consistency
and satisfiability.

Lemma 1.1
Γ ∪ {¬𝐴} is satisfiable iff Γ ⊭ 𝐴.

Proof. Immediate from definitions 1.5 and 1.6.

Lemma 1.2
Γ ⊬0 𝐴 iff Γ ∪ {¬𝐴} is consistent.

17



1 Propositional Logic

Proof. Suppose Γ ∪ {¬𝐴} is inconsistent. Then Γ ⊢0 ¬¬𝐴 by RAA and so Γ ⊢0 𝐴 by
DNE. Contraposing, this means that if Γ ⊬0 𝐴 then Γ∪{¬𝐴} is consistent. Conversely,
suppose Γ ⊢0 𝐴. Then Γ, ¬𝐴 ⊢0 𝐴 by Mon and Γ, ¬𝐴 ⊢0 ¬𝐴 by Id. So Γ ∪ {¬𝐴} is
inconsistent.
Now, completeness requires that whenever Γ ⊨ 𝐴 then Γ ⊢0 𝐴. Equivalently, by

contraposition: Whenever Γ ⊬0 𝐴 then Γ ⊭ 𝐴. By lemma 1.2, Γ ⊬0 𝐴 iff Γ ∪ {¬𝐴}
is consistent. By lemma 1.1, Γ ⊭ 𝐴 iff Γ ∪ {¬𝐴} is satisfiable. So what remains to be
shown to establish completeness is this: Every consistent set of sentences is satisfiable.

We are going to prove this in two steps. First, we show that every consistent set can
be extended to a maximal consistent set. A set is maximal consistent if it is consistent
and contains either 𝐴 or ¬𝐴, for each 𝔏0-sentence 𝐴. Then we show that every maximal
consistent set is satisfied by a model that makes true all and only the sentence letters in
the set.

En route to the first step, we start with an easy observation.

Lemma 1.3
If Γ is consistent, then for any sentence 𝐴, either Γ∪{𝐴} or Γ∪{¬𝐴} is consistent.

Proof. Suppose for reductio that Γ ∪ {𝐴} is inconsistent, and so is Γ ∪ {¬𝐴}. By RAA,
it follows from the first assumption that Γ ⊢0 ¬𝐴, and from the second that Γ ⊢0 ¬¬𝐴.
So Γ is inconsistent.
Now the first step:

Lemma 1.4: Lindenbaum’s Lemma
Every consistent set is a subset of some maximal consistent set.

Let Γ0 be some consistent set of sentences. Let 𝑆1, 𝑆2, … be a list of all 𝔏0-sentences
(in some arbitrary order). For every number 𝑖 ≥ 0, define

Γ𝑖+1 =
⎧{
⎨{⎩
Γ𝑖 ∪ {𝑆𝑖} if Γ𝑖 ∪ {𝑆𝑖} is consistent
Γ𝑖 ∪ {¬𝑆𝑖} otherwise.

This gives us an infinite list of sets Γ0, Γ1, Γ2, …. We show by induction that each set
in the list is consistent.

18



1 Propositional Logic

Base case. Γ0 is consistent by assumption.

Inductive step. We assume that some set Γ𝑖 in the list is consistent, and show that Γ𝑖+1
is consistent. By lemma 1.3, either Γ𝑖 ∪ {𝑆𝑖} or Γ𝑖 ∪ {¬𝑆𝑖} is consistent. If Γ𝑖 ∪ {𝑆𝑖} is
consistent, then Γ𝑖+1 is Γ𝑖 ∪ {𝑆𝑖} (by construction), so Γ𝑖+1 is consistent. If Γ𝑖 ∪ {𝑆𝑖}
is not consistent, then Γ𝑖+1 is Γ𝑖 ∪ {¬𝑆𝑖}, so again Γ𝑖+1 is consistent.

So all of Γ0, Γ1, Γ2, … are consistent. Now let Γ be the set of sentences that occur in at
least one of the sets Γ0, Γ1, Γ2, Γ3 …. (That is, let Γ be the union of Γ0, Γ1, Γ2, Γ3, ….)
Evidently, Γ is maximal and Γ0 is a subset of Γ. It remains to show that Γ is consistent.

Suppose not (for reductio). Then there are sentences 𝐴1, … , 𝐴𝑛 in Γ from which ⊥ is
deducible. All of these sentences have to occur somewhere on the list 𝑆1, 𝑆2, …. Let
𝑆𝑗 be the first sentence from 𝑆1, 𝑆2, … that occurs after all the 𝐴1, … , 𝐴𝑛. Since all
𝐴1, … , 𝐴𝑛 are in Γ, they have to be in Γ𝑗. So Γ𝑗 is inconsistent. But we’ve seen that
all of Γ0, Γ1, Γ2, … are consistent.

For the second step, we also need a preliminary observation:

Lemma 1.5
If Γ is maximal consistent and Γ ⊢0 𝐴, then 𝐴 ∈ Γ.

Proof. If 𝐴 ∉ Γ, then ¬𝐴 ∈ Γ by maximality. We then have Γ ⊢0 𝐴 and Γ ⊢0 ¬𝐴,
contradicting consistency.

Here comes step 2.

Lemma 1.6: Truth Lemma
Every maximal consistent set Γ is satisfied by the model 𝜎Γ that assigns T to every
sentence letter in Γ and F to every other sentence letter.

Proof. We show that for every 𝔏0-sentence 𝐴, 𝜎Γ ⊩ 𝐴 iff 𝐴 ∈ Γ. The proof is by
induction on the complexity of 𝐴.

Base case: 𝐴 is a sentence letter. Then the claim directly follows from the construction
of 𝜎Γ.

Inductive step. We consider the two cases for complex sentences. Assume first that
𝐴 is ¬𝐵, for some sentence 𝐵. We have to show that 𝜎Γ ⊩ ¬𝐵 iff ¬𝐵 ∈ Γ. Left to

19



1 Propositional Logic

right: Assume 𝜎Γ ⊩ ¬𝐵. Then 𝜎Γ ⊮ 𝐵 by definition 1.5. By induction hypothesis,
it follows that 𝐵 ∉ Γ. Then ¬𝐵 ∈ Γ because Γ is maximal. Right to left: Assume
¬𝐵 ∈ Γ. Then 𝐵 ∉ Γ because Γ is consistent. By induction hypothesis, it follows that
𝜎Γ ⊮ 𝐵. So 𝜎Γ ⊩ ¬𝐵 by definition 1.5.

Now assume that 𝐴 is 𝐵 → 𝐶, for some sentences 𝐵 and 𝐶. We show that 𝜎Γ ⊩ 𝐵 → 𝐶
iff 𝐵 → 𝐶 ∈ Γ. Left to right: Assume 𝜎Γ ⊩ 𝐵 → 𝐶. Then 𝜎Γ ⊮ 𝐵 or 𝜎Γ ⊩ 𝐶
by definition 1.5. If 𝜎Γ ⊮ 𝐵 then 𝐵 ∉ Γ by induction hypothesis; so ¬𝐵 ∈ Γ by
maximality and so 𝐵 → 𝐶 ∈ Γ by lemma 1.5 and exercise 1.9(a). If 𝜎Γ ⊩ 𝐶 then
𝐶 ∈ Γ by induction hypothesis, and so 𝐵 → 𝐶 ∈ Γ by lemma 1.5 and exercise 1.9(b).
Right to left: Assume 𝐵 → 𝐶 ∈ Γ. Assume first that 𝐵 is also in Γ. Then 𝐶 ∈ Γ
by lemma 1.5 and MP. By induction hypothesis, 𝜎Γ ⊩ 𝐶, and so 𝜎Γ ⊩ 𝐵 → 𝐶 by
definition 1.5. Assume, alternatively, that 𝐵 is not in Γ. By induction hypothesis, then
𝜎Γ ⊮ 𝐵, and again 𝜎Γ ⊩ 𝐵 → 𝐶 by definition 1.5.

Let’s put the pieces together:

Theorem 1.6: Completeness of the propositional calculus
If Γ ⊨ 𝐴 then Γ ⊢0 𝐴.

Proof by contraposition. Assume Γ ⊬0 𝐴. Then Γ ∪ {¬𝐴} is consistent by lemma 1.2.
By lemma 1.4, Γ ∪ {¬𝐴} is contained in a maximal consistent set Γ+. By lemma 1.6,
there is a model 𝜎Γ+ that satisfies Γ+ and hence Γ ∪ {¬𝐴}. So Γ ⊭ 𝐴.

Exercise 1.16 Suppose we have two proof systems ⊢1 and ⊢2 such that whenever
Γ ⊢1 𝐴 then Γ ⊢2 𝐴. Does the soundness of one system imply the soundness of
the other? If so, in which direction? How about completeness?

Exercise 1.17 Someone might worry that the propositional calculus is inconsis-
tent in the sense that it allows proving ⊥ (from no premises). Can you allay this
worry?

Exercise 1.18 Show that if we add any further axiom schema to A1–A3 that
is not already provable in the propositional calculus, then we get an inconsistent

20



1 Propositional Logic

calculus. (This means that the calculus is Post-complete, after Emil Post, who first
proved the present fact in 1921.)
Hint: By the completeness theorem, any schema that isn’t provable in the calculus
has invalid instances. Can you see why a schema with invalid instances must have
inconsistent instances?

21


	Propositional Logic
	Syntax
	The propositional calculus
	Semantics
	Soundness and Completeness


