
10 The Unprovability of Consistency

Gödel’s Second Incompleteness Theorem states that no sufficiently strong mathematical
theory can prove its own consistency. In this chapter, we explore how this can be shown
and what it implies for the foundations of mathematics and beyond.

10.1 The Second Incompleteness Theorem

Let’s review some background. As in the previous chapter, we’re going to focus on
axiomatizable theories in the language of arithmetic 𝔏𝐴. A theory is simply a set of
sentences that is closed under logical consequence. A (recursively) axiomatizable theory
is one for which there is a (recursively) decidable set of axioms from which all and only
the members of the theory are deducible.
By coding 𝔏𝐴-strings as numbers, we can use the language of arithmetic to reason

about its own syntax. We use ‘#[𝐴]’ to denote the code (“Gödel number”) of an 𝔏𝐴-
string 𝐴, and ‘⌜𝐴⌝’ to denote the 𝔏𝐴-numeral for #[𝐴], relative to some fixed coding
scheme. (The details of the scheme don’t matter, as long as it is effective.)
Given a recursively axiomatizable theory 𝑇 , let Prf𝑇 be the relation that holds between

numbers 𝑛 and 𝑚 iff 𝑛 codes a deduction of the sentence coded by 𝑚 from some recur-
sively decidable set of axioms for 𝑇 . This relation is recursive. In Chapter 8 we proved
that all recursive functions and relations are representable in any moderately strong the-
ory of arithmetic – in particular, in any extension of Q. That is, if 𝑇 is at least as strong
as Q then there is an 𝔏𝐴-formula PRF𝑇(𝑥, 𝑦) such that
(i) if Prf𝑇(𝑛, 𝑚) holds, then ⊢𝑇 PRF𝑇(⌜𝑛⌝, ⌜𝑚⌝);
(ii) if Prf𝑇(𝑛, 𝑚) doesn’t hold, then ⊢𝑇 ¬PRF𝑇(⌜𝑛⌝, ⌜𝑚⌝).

If 𝑇 is sound, the formula PRF𝑇(𝑥, 𝑦) also defines Prf𝑇 in 𝔏𝐴, so that

𝔄 ⊩ PRF𝑇(⌜𝑛⌝, ⌜𝑚⌝) iff Prf𝑇(𝑛, 𝑚).

From PRF𝑇(𝑥, 𝑦), we can define another formula PROV𝑇(𝑥) as ∃𝑦 PRF𝑇(𝑦, 𝑥). Infor-
mally, PROV𝑇(𝑥) says that the sentence with Gödel number 𝑥 is provable in 𝑇 .

189



10 The Unprovability of Consistency

Now remember that a theory 𝑇 is consistent if it doesn’t prove a contradiction. This
can be spelled out in multiple ways:

(1) There is no sentence 𝐴 such that ⊢𝑇 𝐴 and ⊢𝑇 ¬𝐴;
(2) ⊬𝑇 ⊥;
(3) There is some sentence 𝐴 such that ⊬𝑇 𝐴.

In classical logic, all three conditions are equivalent. Let’s focus on (2), since it is the
shortest. If we have an 𝔏𝐴-formula PROV𝑇(𝑥) that expresses provability in 𝑇 , we can
find another 𝔏𝐴 formula that expresses the consistency of 𝑇 : ¬PROV𝑇(⌜⊥⌝).
(Officially, ‘⊥’ is not part of𝔏𝐴: in Chapter 1, I suggested that it abbreviates ‘¬(𝑝 → 𝑝)’,

but we also don’t have sentence letters in 𝔏𝐴. Let’s say that ⊥ is the sentence ‘¬(0=0)’.
Since 0=0 is provable in first-order logic, ⊥ is refutable in first-order logic, which is all
that matters.)
Now let 𝑇 be some recursively axiomatizable extension of Q. Since the consistency

of 𝑇 can be expressed in 𝑇 ’s language, we might wonder whether 𝑇 can prove it: can an
arithmetical theory prove its own consistency? At the end of the 1931 paper in which
he proved the First Incompleteness Theorem, Gödel gave an answer: he claimed that no
sufficiently strong, recursively axiomatizable, and consistent theory can prove its own
consistency. This is Gödel’s Second Incompleteness Theorem.
Gödel also outlined a proof of this claim. It goes as follows.
Remember that in his proof of the First Incompleteness Theorem, Gödel used the

(Syntactic) Diagonal Lemma to construct a “Gödel sentence” 𝐺 such that

⊢𝑇 𝐺 ↔ ¬PROV𝑇(⌜𝐺⌝). (1)

He then showed that if 𝑇 is consistent then 𝑇 can’t prove 𝐺. He also showed that if 𝑇 is
𝜔-consistent then it can’t prove ¬𝐺. But let’s focus on the first result. Its proof required
no advanced mathematics. (No transfinite ordinals or the Axiom of Choice or anything
like that.) It can be carried out in any moderately strong theory that can reason about
recursivity, representability, and the syntax of 𝑇 . Suppose it can be carried out in 𝑇 itself.
Then the following sentence is provable in 𝑇 :

¬PROV𝑇(⌜⊥⌝) → ¬PROV𝑇(⌜𝐺⌝). (2)

This says in 𝔏𝐴 that if 𝑇 is consistent then 𝑇 can’t prove 𝐺.
Now suppose that 𝑇 can prove its own consistency: it can prove ¬PROV𝑇(⌜⊥⌝). By

Modus Ponens and (2), 𝑇 can infer ¬PROV𝑇(⌜𝐺⌝). By (1), it can then infer 𝐺. But

190



10 The Unprovability of Consistency

we’ve assumed that 𝑇 is a recursively axiomatizable extension of Q. And we know from
Gödel’s First Incompleteness Theorem that no recursively axiomatizable and consistent
extension of Q can prove 𝐺. So 𝑇 must be inconsistent.
In sum, if 𝑇 is a consistent and recursively axiomatizable extension of Q, and (2) is

provable in 𝑇 , then 𝑇 can’t prove its own consistency.
It turns out that (2) isn’t provable in Q. But it is provable in the standard axiomatization

of arithmetic, Peano Arithmetic (PA). The Second Incompleteness Theorem therefore
implies that PA can’t prove its own consistency (assuming it is consistent).
Before we investigate why (2) is provable in PA, let’s think about the significance of

the result. Why should we care whether PA can prove its own consistency?
Note that any inconsistent theory can trivially prove its own consistency (as long as

this is expressible in its language): an inconsistent theory can prove everything. Even
if a consistent theory could prove its own consistency, this would therefore provide no
reason to think that the theory really is consistent.
The significance of the Second Incompleteness Theorem comes from what it implies

about the powers of theories to prove the consistency of other theories. Take a theory
like ZFC in which most of mathematics can be formalized. Hilbert had hoped that one
could prove the consistency of such theories in a much weaker, “finitary” theory that
studies deductions as finite syntactic objects. Gödel’s Second Incompleteness Theorem
implies that this can’t be done. ZFC is certainly strong enough to prove (2). By Gödel’s
Theorem, it follows that ZFC can’t prove its own consistency. But then no weaker theory
can prove the consistency of ZFC either: if something isn’t even provable in ZFC, it can’t
be provable in, say, PA or Q – for anything that’s provable in PA or Q is also provable
(under a suitable translation, see Section 4.3) in ZFC.

Exercise 10.1 The Second Incompleteness Theorem allows that the consistency
of ZFC could be proved in a theory stronger than ZFC. Explain why this would
hardly reassure skeptics who doubt the consistency of ZFC.

To complete the proof of the Second Incompleteness Theorem, we’d need to show
that sufficiently powerful theories like PA prove (2). Fortunately, this doesn’t require
formalizing the entire proof of the First Incompleteness Theorem. It is enough to show
that the formula PROV𝑇(𝑥) satisfies some basic conditions. These conditions are known
as the Hilbert-Bernays-Löb provability conditions, because they were first formulated
explicitly in a 1939 textbook by Hilbert and Bernays and later streamlined by Martin
Löb. They are as follows.

191



10 The Unprovability of Consistency

P1 If ⊢𝑇 𝐴, then ⊢𝑇 PROV𝑇(⌜𝐴⌝).
P2 ⊢𝑇 PROV𝑇(⌜𝐴 → 𝐵⌝) → (PROV𝑇(⌜𝐴⌝) → PROV𝑇(⌜𝐵⌝)).
P3 ⊢𝑇 PROV𝑇(⌜𝐴⌝) → PROV𝑇(⌜PROV𝑇(⌜𝐴⌝)⌝).

We’ll see below how (2) can be derived from P1–P3. First, let’s examine what it takes
to show that, say, PROVPA(𝑥) satisfies the three conditions.
P1 is easy. Assume that 𝐴 is provable in PA. Then there is number 𝑛 that codes a deduc-

tion of 𝐴 from the axioms of PA. Since PRFPA(𝑥, 𝑦) represents PrfPA in PA, we have ⊢PA
PRFPA(𝑛, ⌜𝐴⌝). So we also have ⊢PA ∃𝑦 PRFPA(𝑦, ⌜𝐴⌝) and therefore ⊢PA PROVPA(⌜𝐴⌝).
So PROVPA(𝑥) satisfies P1.
The argument for P2 isn’t much harder. Suppose we have a proof of 𝐴 → 𝐵 and a proof

of 𝐴. From these, we can construct a proof of 𝐵 by concatenating the two proofs and
adding 𝐵 as a final line (applying Modus Ponens). All this can be formalized in PA,
showing that if there are numbers 𝑚 and 𝑛 that code proofs of 𝐴 and 𝐴 → 𝐵, then there is
a number 𝑘 that codes a proof of 𝐵. Which is what P2 says.
The argument for P3 is more involved. It essentially requires formalizing within PA

the proof that PROVPA satisfies P1. This takes about a dozen pages of tedious tinkering.
I’ll spare us the details. (You can find them, for example, in George Boolos, The Logic
of Provability, 1993.) Let’s just accept that PROVPA(𝑥) satisfies P1–P3.

Exercise 10.2 Using the soundness of PA, show that PROVPA(𝑥) also satisfies
the following condition:

CNec If ⊢𝑇 PROV𝑇(⌜𝐴⌝) then ⊢𝑇 𝐴.

Exercise 10.3 Explain why it doesn’t follow from the previous exercise that
PROVPA(𝑥) satisfies this condition:

Ref ⊢𝑇 PROV𝑇(⌜𝐴⌝) → 𝐴.

We can now finish the proof of the Second Incompleteness Theorem, by deriving
(2) from P1–P3. To remove clutter, I’ll abbreviate PROV𝑇(⌜𝐴⌝) as □𝐴. This is a little
misleading because it suggests that the sentence 𝐴 occurs in □𝐴, while in fact only its
Gödel numeral does. But it will make the proof more readable.
With this convention, P1–P3 can be written as follows:

192



10 The Unprovability of Consistency

P1 If ⊢𝑇 𝐴, then ⊢𝑇 □𝐴.
P2 ⊢𝑇 □(𝐴 → 𝐵) → (□𝐴 →□𝐵).
P3 ⊢𝑇 □𝐴 →□□𝐴.

Theorem 10.1: Gödel’s Second Incompleteness Theorem
If 𝑇 is a consistent and recursively axiomatizable theory in which diag is repre-
sentable, and PROV𝑇(𝑥) is a formula that satisfies P1–P3, then 𝑇 cannot prove
¬PROV𝑇(⌜⊥⌝).

Proof. Applying the (Syntactic) Diagonal Lemma to the formula ¬PROV𝑇(𝑥), we get
a sentence 𝐺 such that ⊢𝑇 𝐺 ↔ ¬PROV𝑇(⌜𝐺⌝). Using the fact that PROV𝑇(𝑥) satisfies
P1–P3, we now reason as follows.

1. ⊢𝑇 𝐺 ↔ ¬□𝐺 (Diagonal Lemma)
2. ⊢𝑇 𝐺 → ¬□𝐺 (from 1)
3. ⊢𝑇 𝐺 → (□𝐺 → ⊥) (from 2)
4. ⊢𝑇 □(𝐺 → (□𝐺 → ⊥)) (from 3 by P1)
5. ⊢𝑇 □𝐺 →□(□𝐺 → ⊥) (from 4 by P2)
6. ⊢𝑇 □𝐺 → (□□𝐺 →□⊥) (from 5 by P2)
7. ⊢𝑇 □𝐺 →□□𝐺 (P3)
8. ⊢𝑇 □𝐺 →□⊥ (from 6 and 7)
9. ⊢𝑇 ¬□⊥ → ¬□𝐺 (from 8)

Line 9 is (2) in the box notation. From here, the argument continues as explained
above:

10. ⊢𝑇 ¬□⊥ (Assumption)
11. ⊢𝑇 ¬□𝐺 (from 9 and 10)
12. ⊢𝑇 𝐺 (from 1 and 11)
13. ⊢𝑇 □𝐺 (from 12 by P1)

This shows that if 𝑇 proves its own consistency (line 10) then it is inconsistent: it
proves both PROV𝑇(⌜𝐺⌝) (line 13) and ¬PROV𝑇(⌜𝐺⌝) (line 11). By contraposition: if

193



10 The Unprovability of Consistency

𝑇 is consistent, it can’t prove its own consistency.

Why is this an incompleteness theorem? Because it shows that a certain sentence,
¬PROV𝑇(⌜⊥⌝), is unprovable in any sufficiently strong and consistent theory 𝑇 , even
though it is true. In a way, this form of incompleteness is more striking than the one
established by Gödel’s First Theorem. Here is how Gödel put it in a 1951 lecture:

[The second theorem] makes the incompletability of mathematics partic-
ularly evident. For, it makes it impossible that someone should set up a
certain well-defined system of axioms and rules and consistently make the
following assertion about it: All of these axioms and rules I perceive (with
mathematical certitude) to be correct, and moreover I believe that they con-
tain all of mathematics. If someone makes such a statement he contradicts
himself. For if he perceives the axioms under consideration to be correct,
he also perceives (with the same certainty) that they are consistent. Hence
he has a mathematical insight not derivable from his axioms.

Take the standard axiomatization of set theory, ZFC. Suppose we “perceive” that ZFC
is sound, and therefore consistent. If this “perception” is correct, it goes beyond what
ZFC can prove, although the consistency part can be expressed in the language of ZFC:
we perceive the truth of ¬PROVZFC(⌜⊥⌝). We might propose a strengthened version
of ZFC, with ¬PROVZFC(⌜⊥⌝) as a new axiom. Call this theory ZFC+. The Second
Incompleteness Theorem still applies: ZFC+ can’t prove its own consistency (if it is
consistent). But if ZFC is sound, then so is ZFC+. Our “perception” of the soundness
of ZFC therefore allows us to strengthen ZFC+ by adding another consistency statement,
¬PROVZFC+(⌜⊥⌝). Call this theory ZFC++. The Second Incompleteness Theorem still
applies …. In this way, our perception of the soundness of ZFC allows us to construct
an infinite sequence of ever stronger theories, each of which must be sound. We might
even propose a theory ZFC𝜔 that combines all these theories: the union of ZFC, ZFC+,
ZFC++, etc. This theory is still recursively axiomatizable, so the Second Incompleteness
Theorem still applies: it can’t prove its own consistency (if it is consistent). So we can
keep adding consistency statements, creating ZFC𝜔+1, ZFC𝜔+2, …, ZFC𝜔+𝜔, and so
on, up through the ordinals until we reach a point (the “Church-Kleene ordinal” 𝜔CK

1 )
where the union of the previous theories can no longer be captured in the language of
ZFC.

Exercise 10.4 Formulas that satisfy P1–P3 are often called provability predi-
cates. But this is misleading. Show that the formula SENT(𝑥) that represents (in

194



10 The Unprovability of Consistency

PA) the property of coding an 𝔏𝐴-sentence satisfies P1–P3.

Exercise 10.5 The Second Incompleteness Theorem applies to any predicate sat-
isfying P1–P3: the predicate PROV𝑇(𝑥) that figures in the Theorem doesn’t have to
be defined as ∃𝑦 PRF𝑇(𝑦, 𝑥) from a predicate PRF𝑇(𝑥, 𝑦) that represents the proof
relation of 𝑇 . What do we learn if we apply the Second Incompleteness Theorem
to SENT(𝑥)?

Exercise 10.6 Let PA+ be obtained from PA by adding PROVPA(⌜⊥⌝) as a new
axiom. Is this theory consistent? Is it 𝜔-consistent? (Hint: remember that
PROVPA(⌜⊥⌝) abbreviates ∃𝑦 PRFPA(𝑦, ⌜⊥⌝).)

Exercise 10.7 Using exercise 10.2, explain why PA can’t prove the negation of
¬PROVPA(⌜⊥⌝), unless it is inconsistent.

10.2 Löb’s Theorem

For a suitable theory 𝑇 , the Diagonal Lemma allows us to construct a Gödel sentence 𝐺
that says of itself that it is unprovable in 𝑇 . We can also construct a sentence 𝐻 that says
of itself that it is provable. More formally, if we apply the (Syntactic) Diagonal Lemma
to the formula PROV𝑇(𝑥), we get a sentence 𝐻 such that

⊢𝑇 𝐻 ↔ PROV𝑇(⌜𝐻⌝). (D)

This is called the Henkin sentence for 𝑇 . It’s easy to show that no consistent theory can
prove its Gödel sentence. For the Henkin sentence, the situation is less clear. Is 𝐻 prov-
able in 𝑇? This question was raised by Leon Henkin in 1952, and answered by Martin
Löb in 1955. Löb showed that if 𝑇 is consistent, recursively axiomatizable, and suffi-
ciently strong, and it proves PROV𝑇(⌜𝐴⌝) → 𝐴 for some sentence 𝐴, then it also proves that
sentence 𝐴. This is known as Löb’s Theorem. Since (D) gives us ⊢𝑇 PROV𝑇(⌜𝐻⌝) → 𝐻,
the Theorem entails ⊢𝑇 𝐻. The Henkin sentence 𝐻 is indeed provable in 𝑇 .
The proof of Löb’s Theorem resembles the following proof that Santa Claus exists.
Let 𝑆 be the sentence ‘if 𝑆 is true then Santa Claus exists’. This being a conditional,

we can try to prove it by deriving the consequent from the antecedent. So assume the

195



10 The Unprovability of Consistency

antecedent: 𝑆 is true. So if 𝑆 is true then Santa Claus exists (for this is what 𝑆 says).
Still assuming that 𝑆 is true, we can infer (by Modus Ponens) that Santa Claus exists.
Now we have derived the consequent of 𝑆 from its antecedent. So we’ve proved 𝑆: we’ve
proved that if 𝑆 is true then Santa Claus exists. And since we’ve proved 𝑆, we can infer
by Modus Ponens that Santa Claus exists.
This line of reasoning is known as Curry’s Paradox. It clearly works for any con-

sequent 𝐴 in place of ‘Santa Claus exists’. In the following proof of Löb’s Theorem,
we replace ‘is true’ (which is not expressible in 𝔏𝐴) by ‘is provable’. The assumption
⊢𝑇 PROV𝑇(⌜𝐴⌝) → 𝐴 of Löb’s Theorem gives us one direction of the Tarski biconditional
for 𝐴. In the presence of P1–P3, that’s enough to run a Curry-style argument and show
that ⊢𝑇 𝐴.

Theorem 10.2: (Löb’s Theorem)
If 𝑇 is a consistent, recursively axiomatizable theory inwhich diag is representable,
and PROV𝑇(𝑥) satisfies P1–P3, then the following holds for any sentence 𝐴 in the
language of 𝑇 :

If ⊢𝑇 PROV𝑇(⌜𝐴⌝) → 𝐴 then ⊢𝑇 𝐴.

Assume that ⊢𝑇 PROV𝑇(⌜𝐴⌝) → 𝐴. Applying the Syntactic Diagonal Lemma to the
formula PROV𝑇(𝑥) → 𝐴, we get a sentence 𝑆 such that ⊢𝑇 𝑆 ↔ (PROV𝑇(⌜𝑆⌝) → 𝐴).
Using the box notation, we now reason as follows.

1. ⊢𝑇 𝑆 ↔ (□𝑆 → 𝐴) (Diagonal Lemma)
2. ⊢𝑇 𝑆 → (□𝑆 → 𝐴) (from 1)
3. ⊢𝑇 □(𝑆 → (□𝑆 → 𝐴)) (from 2 by P1)
4. ⊢𝑇 □𝑆 →□(□𝑆 → 𝐴) (from 3 by P2)
5. ⊢𝑇 □𝑆 → (□□𝑆 →□𝐴) (from 4 by P2)
6. ⊢𝑇 □𝑆 →□□𝑆 (P3)
7. ⊢𝑇 □𝑆 →□𝐴 (from 5 and 6)
8. ⊢𝑇 □𝐴 → 𝐴 (assumption)
9. ⊢𝑇 □𝑆 → 𝐴 (from 7 and 8)

10. ⊢𝑇 𝑆 (from 1 and 9)
11. ⊢𝑇 □𝑆 (from 10 by P1)

196



10 The Unprovability of Consistency

12. ⊢𝑇 𝐴 (from 9 and 11)

In line 1 of this proof, the Diagonal Lemma is used to construct the sentence 𝑆 that “says
that” (is provably equivalent to) ‘if 𝑆 is provable then 𝐴’. As in Curry’s Paradox, 𝑇 can
derive that if 𝑆 is provable then 𝐴 (line 9). From this, 𝑇 infers that 𝑆 is true (line 10), and
thereby that 𝑆 provable (line 11), from which it infers 𝐴 by Modus Ponens (line 12).

Exercise 10.8 Prove the converse of Löb’s Theorem: if ⊢𝑇 𝐴, then ⊢𝑇
PROV𝑇(⌜𝐴⌝) → 𝐴.

From Löb’s Theorem, it is a short step to the Second Incompleteness Theorem. As-
sume 𝑇 can prove ¬PROV𝑇(⌜⊥⌝). By propositional logic, this entails PROV𝑇(⌜⊥⌝) → ⊥.
By Löb’s Theorem, it follows that 𝑇 can prove ⊥. So if 𝑇 can prove its own consistency,
then 𝑇 is inconsistent.
Löb’s Theorem also entails a version of Tarski’s Theorem on the undefinability of

truth. Recall that a predicate 𝑊(𝑥) is a truth predicate for a theory 𝑇 if 𝑇 can prove all
the Tarski biconditionals

𝑊(⌜𝐴⌝) ↔ 𝐴.
Suppose that 𝑊(𝑥) is a truth predicate for 𝑇 . Then 𝑊(𝑥) is also a provability predicate
for 𝑇 . Assume that 𝑇 is a recursively axiomatizable theory in which diag is representable.
Since ⊢𝑇 𝑊(⌜𝐴⌝) → 𝐴 for all 𝐴, it follows by Löb’s Theorem that ⊢𝑇 𝐴 for all 𝐴. So 𝑇
is inconsistent.

Exercise 10.9 Explain why a truth predicate for 𝑇 is also a provability predicate
for 𝑇 .

Löb’s Theorem highlights the difference between the formal concept of provability
and the concept of truth. One might have expected that a sufficiently powerful theory
would “know that” whatever it can prove is the case. That is, one might have expected
that PROV𝑇 should satisfy the Reflection principle from exercise 10.3:

Ref ⊢𝑇 PROV𝑇(⌜𝐴⌝) → 𝐴.

(A truth predicate would satisfy both Ref and its converse.) Löb’s Theorem shows
that if 𝑇 is sufficiently strong and consistent then PROV𝑇 satisfies only those instances
of Ref for which 𝐴 is already provable in 𝑇 , in which case PROV𝑇(⌜𝐴⌝) → 𝐴 follows by
propositional logic.

197



10 The Unprovability of Consistency

Exercise 10.10 What’s the difference between the hypothesis ⊢PA 𝐴 and the
arithmetical hypothesis PROVPA(𝐴)? Can one be true without the other?

Exercise 10.11 Return to the theory PA+ axiomatized by adding PROVPA(⌜⊥⌝)
to the axioms of PA. (a) Explain why ⊢PA+ PROVPA+(⌜⊥⌝). (b) Show that there is
a sentence 𝐴 for which ⊢PA+ ¬(PROVPA+(⌜𝐴⌝) → 𝐴).

10.3 The logic of provability

If you are familiar with modal logic, the provability conditions P1–P3 will look familiar,
especially when written with the box operator□. If you aren’t familiar with modal logic,
let me quickly introduce some background.
Propositional modal logic is an extension of classical propositional logic. The lan-

guage 𝔏𝑀 of propositional modal logic is obtained from 𝔏0 by adding the unary sentence
operator ‘□’. Thus whenever 𝐴 is an 𝔏𝑀-sentence, then so is□𝐴. The intended meaning
of the box varies from application to application; often it is used to express some kind
of necessity.
Hilbert-style proof systems for propositional modal logic extend the propositional cal-

culus by axioms and inference rules that govern the behaviour of the box. A well-known
proof system adds one axiom schema and one rule of inference:

K □(𝐴 → 𝐵) → (□𝐴 →□𝐵)
Nec From 𝐴 one may infer □𝐴

This system is known as K. (So ‘K’ names both a proof system and an axiom schema.
The letter stands for Saul Kripke.) Stronger systems can be obtained by adding further
axioms. For example, the systemK4 adds an axiom schema known (for obscure historical
reasons) as ‘4’:

4 □𝐴 →□□𝐴;

the system S4 adds both 4 and Ref (more commonly known as ‘T’):

Ref □𝐴 → 𝐴.

198



10 The Unprovability of Consistency

Any system that can be obtained by adding axiom schemas to K is called a normal
modal logic.
Above I used the “box notation” to simplify sentences of 𝔏𝐴. Sentences in the “box

notation” look just like sentences of 𝔏𝑀 . To make this more explicit, let 𝑡 be a function
that maps each sentence letter 𝑝 of 𝔏𝑀 to an 𝔏𝐴-sentence 𝑡(𝑝). We can extend any such
𝑡 to a mapping from 𝔏𝑀-sentences to 𝔏𝐴-formulas, as follows:

𝑝 𝑡 = 𝑡(𝑝)
¬𝐴 𝑡 = ¬𝐴 𝑡

𝐴 → 𝐵 𝑡 = 𝐴 𝑡 → 𝐵 𝑡

□𝐴 𝑡 = PROV𝑇(⌜𝐴 𝑡⌝)

Here I use ‘𝐴 𝑡
’ to denote the output of the mapping for input 𝐴. For example, assume

that 𝑡(𝑝) is ‘0=0’. Then 𝑝 𝑡 is ‘0=0′, ¬𝑝 𝑡 is ‘¬(0=0)’, and □𝑝 𝑡
is ‘PROV𝑇(⌜0=0⌝)’.

Now assume that PROV𝑇(𝑥) satisfies P1–P3. In “box notation”, P1, P2, and P3 are
Nec, K, and 4, respectively. We might therefore expect that whenever an 𝔏𝑀-sentence 𝐴
is provable in the modal system K4, then 𝐴 𝑡

is provable in 𝑇 . We’ll confirm this below.
The full modal logic of provability isn’t K4, however. It has another axiom schema,

known as GL (for Gödel-Löb):

GL □(□𝐴 → 𝐴) →□𝐴.

The system of modal logic obtained by adding GL to K4 is also called GL. (It turns out
that the 4 schema is redundant: it can be derived from GL.)
GL is the modal translation of a formalized version of Löb’s Theorem. Löb’s Theorem

states that

If ⊢𝑇 PROV𝑇(⌜𝐴⌝) → 𝐴 then ⊢𝑇 𝐴.

The formalized version of Löb’s Theorem lifts this into 𝑇 :

⊢𝑇 PROV𝑇(⌜PROV𝑇(⌜𝐴⌝) → 𝐴⌝) → PROV𝑇(⌜𝐴⌝).

It is easily derivable from Löb’s Theorem itself:

199



10 The Unprovability of Consistency

Lemma 10.1
If 𝑇 is a consistent, recursively axiomatizable theory inwhich diag is representable,
and PROV𝑇(𝑥) satisfies P1–P3, then the following holds for any sentence 𝐴 in the
language of 𝑇 :

⊢𝑇 PROV𝑇(⌜PROV𝑇(⌜𝐴⌝) → 𝐴⌝) → PROV𝑇(⌜𝐴⌝).

Proof. Using the box notation, we need to show that 𝑇 proves □(□𝐴 → 𝐴) →□𝐴. Call
this sentence 𝑆. We show ⊢𝑇 𝑆 by showing ⊢𝑇 □𝑆 → 𝑆, from which ⊢𝑇 𝑆 follows by
Löb’s Theorem.

1. ⊢𝑇 □(□(□𝐴 → 𝐴) →□𝐴) → (□□(□𝐴 → 𝐴) →□□𝐴) (P2)
2. ⊢𝑇 □(□𝐴 → 𝐴) →□□(□𝐴 → 𝐴) (P3)
3. ⊢𝑇 □(□𝐴 → 𝐴) → (□□𝐴 →□𝐴) (P2)
4. ⊢𝑇 □(□(□𝐴 → 𝐴) →□𝐴) → (□(□𝐴 → 𝐴) →□𝐴) (1–3)
5. ⊢𝑇 □(□𝐴 → 𝐴) →□𝐴 (4, Löb’s Thm.)

The following theorem confirms that if PROV𝑇(𝑥) satisfies P1–P3, and an 𝔏𝑀-sentence
𝐴 is provable in the modal logic GL, then 𝐴 𝑡

is provable in 𝑇 .

Theorem 10.3: The Arithmetical Soundness Theorem

If PROV𝑇(𝑥) satisfies P1–P3, then for any 𝔏𝑀-sentence 𝐴, if ⊢GL 𝐴 then ⊢𝑇 𝐴 𝑡
.

Proof. Assume ⊢GL 𝐴. This means that there is a sequence 𝐴1, 𝐴2, … , 𝐴𝑛 of 𝔏𝑀-
sentences such that 𝐴𝑛 is 𝐴 and each 𝐴𝑘 in the sequence is either an axiom of GL,
an instance of the classical propositional axioms A1–A3, or follows from previous
sentences by MP or Nec. We show by induction on 𝑘 that ⊢𝑇 𝐴𝑘

𝑡
.

If 𝐴𝑘 is an instance of A1-A3 then 𝐴𝑘
𝑡
is also an instance of A1-A3, and so ⊢𝑇 𝐴𝑘

𝑡
.

If 𝐴𝑘 is an instance of K then ⊢𝑇 𝐴𝑘
𝑡
by P2,

If 𝐴𝑘 is an instance of 4 then ⊢𝑇 𝐴𝑘
𝑡
by P3.

If 𝐴𝑘 is an instance of GL, then ⊢𝑇 𝐴𝑘
𝑡
by Lemma 10.1.

If 𝐴𝑘 follows by MP from 𝐴𝑖 and 𝐴𝑗 with 𝑖, 𝑗 < 𝑘, then 𝐴𝑘
𝑡
follows by MP from 𝐴𝑖

𝑡

200



10 The Unprovability of Consistency

and 𝐴𝑗
𝑡
. By induction hypothesis, ⊢𝑇 𝐴𝑖

𝑡
and ⊢𝑇 𝐴𝑗

𝑡
. So ⊢𝑇 𝐴𝑘

𝑡
.

Assume 𝐴𝑘 follows by Nec from 𝐴𝑖 with 𝑖 < 𝑘. Then 𝐴𝑘
𝑡
is PROV𝑇(⌜𝐴𝑖

𝑡⌝). By induc-
tion hypothesis, ⊢𝑇 𝐴𝑖

𝑡
. So ⊢𝑇 𝐴𝑘

𝑡
by P1.

The converse of Theorem 10.3 also holds: whenever ⊢𝑇 𝐴 𝑡
, then ⊢GL 𝐴. This arith-

metical completeness theorem was proved by Robert Solovay in 1976. The proof is too
hard to get into here.
Theorem 10.3 shows that we can use propositional modal logic to establish results

about provability in theories like PA. Solovay’s theorem shows that all general facts about
provability in such theories can be established in this way.
For a simple illustration of how this works, here is a GL-proof of a formalized version

of the Second Incompleteness Theorem, showing that if 𝑇 meets the conditions for the
Theorem, then it can prove that if it can prove its own consistency, then it is inconsistent.

1. ⊢𝐺𝐿 ¬□⊥ → (□⊥ → ⊥) (propositional logic)
2. ⊢𝐺𝐿 □(¬□⊥ → (□⊥ → ⊥)) (from 1 by Nec)
3. ⊢𝐺𝐿 □¬□⊥ →□(□⊥ → ⊥) (from 2 by K)
4. ⊢𝐺𝐿 □(□⊥ → ⊥) →□⊥ (GL)
5. ⊢𝐺𝐿 □¬□⊥ →□⊥ (from 3 and 4)

By Theorem 10.3, it follows that ⊢𝑇 PROV𝑇(⌜¬PROV𝑇(⌜⊥⌝)⌝) → PROV𝑇(⌜⊥⌝).
For another illustration, one can show that (for any sentence 𝐴)

⊢𝐺𝐿 □(𝐴 ↔ □¬𝐴) →□(𝐴 ↔ □⊥).

Among other things, this tells us what theories like PA will make of a sentence 𝑁 that
“says of itself” that its negation is provable. We get such a sentence by applying the
Diagonal Lemma to the formula PROV𝑇(⌜¬𝑥⌝):

⊢𝑇 𝑁 ↔ PROV𝑇(⌜¬𝑁⌝).

By P1, this entails
⊢𝑇 PROV𝑇(⌜𝑁 ↔ PROV𝑇(⌜¬𝑁⌝)⌝).

The above result from GL gives us

⊢𝑇 PROV𝑇(⌜𝑁 ↔ PROV𝑇(⌜¬𝑁⌝)⌝) → PROV𝑇(⌜𝑁 ↔ PROV𝑇(⌜⊥⌝)⌝).

201



10 The Unprovability of Consistency

So by Modus Ponens,
⊢𝑇 PROV𝑇(⌜𝑁 ↔ PROV𝑇(⌜⊥⌝)⌝).

If 𝑇 is sound, this entails
⊢𝑇 𝑁 ↔ PROV𝑇(⌜⊥⌝).

So the sentence 𝑁 that says that its negation is provable in PA is equivalent in PA to
the statement that PA is inconsistent. Since PA can neither prove nor disprove its own
consistency (assuming it is consistent), it can neither prove nor disprove 𝑁 .

Exercise 10.12 Show that ⊢𝐺𝐿 □¬□𝐴 →□𝐴.

Exercise 10.13 Let GL+Ref be the system obtained by adding the axiom schema
Ref to GL. Show that □⊥ is provable in GL+Ref. Is GL+Ref consistent?

Exercise 10.14 Show that □⊥ is provable in the system GL+5 obtained by
adding the axiom schema 5 to GL:

5 ¬□𝐴 →□¬□𝐴.

Exercise 10.15 Show that ⊢𝐺𝐿 (𝐺 ↔ ¬□𝐺) → (𝐺 ↔ ¬□⊥). (What does this
tell us about the Gödel sentence 𝐺?)

Exercise 10.16 How should we restrict the Nec rule if we wanted to allow for
deductions from premises in our calculus for normal modal logics?

10.4 Chaitin’s Incompleteness Theorem

In 1974, Gregory Chaitin proved a version of the First Incompleteness Theorem that
connects it to issues of computability and opens a different route to the Second Incom-
pleteness Theorem.
Recall that a Turing machine takes as input a finite pattern of strokes and blanks on

its tape (ignoring the blanks to left of the first stroke and to the right of the last stroke).
Its output, if it halts, is also a finite pattern of strokes and blanks. Every such pattern

202



10 The Unprovability of Consistency

can be produced by a Turing machine. In fact, for every finite pattern of strokes and
blanks, there are infinitely many Turing machines that produce it, starting with a blank
tape. We might be interested in the most efficient way to generate a given pattern: what
is the shortest Turing machine program that produces it?
The program of a Turingmachine is a string that lists all its instructions – all quintuples

like ⟨𝑞0, 𝐵, 1, 𝑅, 𝑞1 ⟩ that specify what machine does if it scans a certain symbol in a
certain state. We’ve seen in Section 6.3 that these instructions can be coded as patterns
of strokes and blanks and fed to a universal Turing machine, which will execute the
program.
Let’s define the complexity of a pattern as the length of the shortest program that

produces it. (This is somewhat imprecise, but the imprecision will do us no harm. The
more precise concept is called Kolmogorov complexity.)
Some patterns can be produced by very short programs, others require very long pro-

grams. As a rule, short and regular patterns can be produced by short programs, while
long and disorderly patterns tend to require long programs: they have high complexity.
It’s easy to see that there is no limit to how complex a pattern can be. For any number

𝑛, only finitely many patterns can be produced by programs of length up to 𝑛; all other
patterns require longer programs: they have greater complexity.
You’d think that for any number 𝑛, we can easily find examples of patterns whose

complexity is demonstrably greater than 𝑛. Chaitin’s Incompleteness Theorem shows
that this is not so. In essence, it says that for any recursively axiomatized and consistent
theory that knows some basic facts about Turing machines, there is a particular number
𝐿 such that the theory can’t prove of any pattern that its complexity is greater than 𝐿.
To state this more precisely, consider the relation 𝐻 that holds between a Turing ma-

chine program𝑀, a pattern of strokes and blanks 𝑆, and a number 𝑡 if𝑀 halts with output
𝑆 after 𝑡 steps. This relation is decidable. (With a concrete coding of programs and pat-
terns, it can easily be shown to be recursive.) So it is representable in any sufficiently
strong arithmetical theory – e.g., in any extension of Q – by some formula H(𝑥, 𝑦, 𝑧).
Let LEN(𝑥, 𝑦) represent the (obviously computable) function that maps each program to
its length. We can now express the claim that the complexity of a pattern 𝑆 exceeds a
number 𝑛 as the claim that there is no program 𝑥 of length ≤ 𝑛 that produces 𝑆 after
some number of steps 𝑡: ∀𝑥∀𝑦∀𝑡 (LEN(𝑥, 𝑦) ∧ 𝑦≤𝑛 → ¬H(𝑥, ⌜𝑆⌝, 𝑡)). Abbreviate this as
COMPEXC(𝑆, 𝑛).

203



10 The Unprovability of Consistency

Theorem 10.4: Chaitin’s Incompleteness Theorem
If 𝑇 is a consistent, recursively axiomatizable extension of Q, there is a number
𝐿 such that for any pattern 𝑆, 𝑇 cannot prove that the complexity of 𝑆 exceeds 𝐿:
⊬𝑇 COMPEXC(𝑆, 𝐿).

Proof sketch. Since 𝑇 is recursively axiomatizable, we can design a Turing machine
𝑀𝑇 that takes a number 𝑘 as input and searches through all proofs in 𝑇 until it finds a
proof of a sentence of the form COMPEXC(𝑆, 𝑘); it then outputs 𝑆 and halts.
We know from section 6.2 that there’s a (fairly simple)machine that doubles the number
of strokes on the tape. For any number 𝑛 > 0, we can therefore design another machine
𝑀𝑛 that (when started on a blank tape)

1. writes a single stroke, then
2. doubles the number of strokes on the tape 𝑛 times, then
3. moves to the left end of all the strokes, then
4. calls 𝑀𝑇 .

This machine writes 2𝑛 strokes on the tape and then calls 𝑀𝑇 . If there is a proof in 𝑇
that the complexity of some pattern 𝑆 is greater than 2𝑛, 𝑀𝑛 will find some such proof;
it will then output 𝑆 and halt. If there is no such proof, 𝑀𝑛 runs forever.
The program for𝑀𝑛 has length 𝑑 ⋅𝑛+𝑐, where 𝑑 is the length of the doubling machine’s
program and 𝑐 is a constant for the length of 𝑀𝑇 ’s program plus whatever is needed
for writing the initial stroke and for moving to the left end of a block of strokes.
Since 𝑑 ⋅ 𝑛 + 𝑐 grows more slowly than 2𝑛, there must be a number 𝑘 such that

𝑑 ⋅ 𝑘 + 𝑐 < 2𝑘.

Now suppose for reductio that there is a pattern 𝑆 for which 𝑇 can prove that its com-
plexity exceeds 𝐿 = 2𝑘. Then 𝑀𝑘 will output some such 𝑆 and halt. Since the program
for 𝑀𝑘 has length 𝑑 ⋅ 𝑘 + 𝑐 and outputs 𝑆, the complexity of 𝑆 is at most 𝑑 ⋅ 𝑘 + 𝑐, which
is less than 𝐿.
Since H represents the halting-with-bound relation, and 𝑀𝑘 produces 𝑆 after some
number of steps 𝑡, 𝑇 proves H(⌜𝑀𝑘⌝, ⌜𝑆⌝, 𝑡). 𝑇 also knows the length of 𝑀𝑘’s pro-
gram: it can prove LEN(⌜𝑀𝑘⌝) = 𝑑 ⋅ 𝑘 + 𝑐. So 𝑇 proves that there is a program of
length 𝑑 ⋅ 𝑘 + 𝑐 that produces 𝑆 within 𝑡 steps. By assumption, however, 𝑇 also proves

204



10 The Unprovability of Consistency

COMPEXC(𝑆, 2𝑘), which states that there is no program of length ≤ 2𝑘 that produces 𝑆
after any number of steps. So 𝑇 is inconsistent.

A nice aspect of this proof is that it works for any reasonable definition of complexity.
(That’s why we didn’t need to be very precise about this.) It also works for programs in
ordinary programming languages like Python or JavaScript, rather than Turing machine
programs, and for data structures that aren’t just patterns of strokes and blanks. Among
other things, it shows that there is a number 𝐿 such that we can’t prove (in, say, ZFC) of
any specific string of bits that it requires a Python program longer than 𝐿 to be produced.
We can estimate the value of 𝐿. One would certainly need a lot of instructions to

program the machine 𝑀𝑇 (in the proof of Theorem 10.4) that takes a number 𝑘 as input
and then searches through all proofs in 𝑇 until it finds a proof of some statement of the
form ‘the complexity of 𝑆 is greater than 𝑘’. But one wouldn’t need an astronomical
number of instructions. 10,000 should be enough. If the doubling machine needs 10
instructions,𝑀𝑛 needs around 10𝑛+10, 000 instructions, each of which has a fixed length.
If the average length of these instructions is, say, 10 (never mind how this is measured),
𝑑 ⋅ 𝑘 + 𝑐 will be around 100, 000 + 100𝑘. The smallest 𝑘 with 100, 000 + 100𝑘 < 2𝑘 is
𝑘 = 17. This puts 𝐿 at 217 = 131, 072. For less cumbersome kinds of programs, 𝐿 is
even smaller. For Python and bit strings, it is well under 10,000.
That’s an astonishingly small number. Imagine a 3D movie of the entire observable

universe for its first billion years, at atomic resolution. Could youwrite a Python program
that generates this movie, in under 10 KB, without using external resources? Surely not!
Chaitin’s Incompleteness Theorem implies that while this may be true, it can’t be proved.

Exercise 10.17 Show that the complexity function that assigns to any finite pat-
tern of strokes and blanks its complexity is not computable.
(Hint: Assume some machine 𝑀 computes the complexity function. For any num-
ber 𝑛, one can then design a machine 𝑀𝑛 that goes through all finite patterns until
it finds one whose complexity exceeds 𝑛, then outputs that string and halts. The
program for 𝑀𝑛 is not much longer than that of 𝑀. Now derive a contradiction.)

LikeGödel’s First Incompleteness Theorem, Chaitin’s Incompleteness Theorem shows
that certain arithmetical truths are unprovable in PA or ZFC (assuming these theories are
sound). In 2010, Shira Kritchman and Ran Raz pointed out that there is also a route from
Chaitin’s Theorem to the Second Incompleteness Theorem.
We begin with an apparent paradox.
There is a finite number of programs of length ≤ 𝐿. Let 𝑁 be that number plus 1.

205



10 The Unprovability of Consistency

Each number 𝑛 between 1 and 𝑁 can be coded as a pattern of 𝑛 + 1 strokes. Since there
are more such numbers than programs of length ≤ 𝐿, at least one of them must require a
program longer than 𝐿 to be printed. How many, exactly, require a program longer than
𝐿?
Suppose there is exactly one number 𝑥 between 1 and𝑁 that requires a program longer

than 𝐿 to be printed. In that case, we can find it. We can run all Turing machines whose
program has length ≤ 𝐿. By assumption, at some point, all the 𝑁 − 1 numbers that
can be printed by such machines have been printed. We know that there is at least one
number between 1 and 𝑁 that requires a longer program. So we know that the remaining
number must be the one that requires a longer program. At this point, our procedure
proves that the complexity of that remaining number is greater than 𝐿. But by Chaitin’s
Incompleteness Theorem, we can’t prove this!
This argument seems to show that there can’t be a single number between 1 and 𝑁

that requires a program longer than 𝐿 to be printed. Well, suppose there are two. In that
case, we can find them. We run through all Turing machines with programs of length
≤ 𝐿 until all the 𝑁 − 2 numbers that can be printed by such machines have been printed.
We’ve just shown that there must be at least two numbers between 1 and 𝑁 that require a
program longer than 𝐿 to be printed. So we can identify these two numbers as the ones
that haven’t been printed yet. We have therefore proved that the complexity of these two
numbers is greater than 𝐿. By Chaitin’s Incompleteness Theorem, this is impossible.
So there can’t be exactly two numbers between 1 and 𝑁 that require a program longer

than 𝐿 to be printed. Suppose there are three…
Continuing this line of thought up to 𝑁 , we can seemingly show that every number

between 1 and 𝑁 is too complex to be printed with a program of length ≤ 𝐿. But this is
evidently false. We can easily show that, say, the number 1 can be printed with a program
much shorter than 𝐿.
Kritchman and Raz show where the paradoxical argument fails if it is spelled out for-

mally. This requires a theory in which one can formalize the proof of Chaitin’s Theorem.
Q is too weak for this, but PA is strong enough. More specifically, PA can prove that
there is a number 𝐿 such that PA can’t prove of any number 𝑥 that the complexity of 𝑥 is
greater than 𝐿 – unless PA is inconsistent, in which case, of course, it proves everything.
PA can also prove that there is at least one number between 1 and 𝑁 whose complexity is
greater than 𝐿. And it can prove that if there is exactly one such number then PA can find
it, by showing that all the other numbers 𝑦 < 𝑁 have complexity at most 𝐿, and inferring
that the remaining number has complexity greater than 𝐿. So PA can prove that if there
is exactly one number between 1 and 𝑁 then PA can prove that the complexity of that
number is greater than 𝐿.

206



10 The Unprovability of Consistency

In the argument above, I said that this contradicts Chaitin’s Incompleteness Theorem.
But Chaitin’s Theorem for PA doesn’t quite say that PA can’t prove that the complexity
of 𝑥 is greater than 𝐿. It says that PA can’t prove this if PA is consistent.
If PA could prove its own consistency, it could use Chaitin’s Theorem to conclude that

there can’t be exactly one number between 1 and 𝑁 with complexity greater than 𝐿. It
could similarly show that there can’t be exactly two such numbers, and so on. It would
reach the conclusion that every number between 1 and 𝑁 has complexity greater than 𝐿,
which it can also refute, as it can prove that 1 has complexity less than 𝐿. Thus, if PA
could prove its own consistency, it would be inconsistent.

10.5 Philosophy of Mind

Gödel’s Incompleteness Theorems, and their corollaries, have profound implications for
the foundations of mathematics. They derailed Hilbert’s program. They draw a wedge
between truth and provability, showing that there is no way to capture all mathemati-
cal truths in an axiomatic system. Some have argued that Gödel’s theorems also have
profound implications for our understanding of the human mind: they show that our
mathematical capacity goes beyond what any mechanical system (any computer) can
achieve.
In its basic form, this argument goes as follows.
Let 𝑆 be the set of mathematical sentences that I accept as true. 𝑆 includes the axioms

of PA. Let 𝑆+ be the set of sentences entailed by 𝑆. If my mind is equivalent to a Turing
machine, 𝑆 is computably enumerable, and 𝑆+ is a computably axiomatizable extension
of PA. I can then go through the proof of Gödel’s First Incompleteness Theorem to con-
struct a sentence 𝐺 that is true, but not in 𝑆+. This is impossible: since I realize that 𝐺
is true, 𝐺 is part of my mathematical knowledge: it must be in 𝑆+! Hence my mind is
not equivalent to a Turing machine.
An initial problem with this argument is that the inference to the truth of 𝐺 requires

the assumption that 𝑆+ is consistent. Gödel’s proof shows that if 𝑆+ is axiomatizable
and consistent, then 𝐺 is not in 𝑆+. To reach the conclusion that 𝐺 is true, the argument
therefore assumes that the set 𝑆+ includes the statement that 𝑆+ is consistent. Obviously,
𝑆+ is consistent iff 𝑆 is consistent. So the argument assumes that the set 𝑆 of my math-
ematical beliefs includes the statement that this very set is consistent. It’s not enough
to believe that “my mathematical beliefs are consistent”; I would also have to be aware
of the fact that my mathematical beliefs comprise precisely the set 𝑆. Thus one way to
escape the argument is to hold that we cannot be fully aware of our mathematical beliefs.

207



10 The Unprovability of Consistency

There are other problems with the argument. The concepts of mathematical knowl-
edge and belief are surprisingly difficult to model consistently, especially if we want to
allow for beliefs about one’s own beliefs.
Suppose we extend the language of arithmetic by a predicate 𝐵 for belief. On its

intended interpretation, 𝐵(⌜𝐴⌝) is meant to express that I accept the sentence 𝐴. (We
could use special quote marks to refer to sentences, rather than Gödel numbers. This
would make no difference.) We could also add a predicate 𝐾 for knowledge.
We might now want to lay down some axioms for 𝐵 and 𝐾 . For example, since knowl-

edge is factive (what is known is true), a minimal theory of mathematical knowledge and
belief should include the schema Ref𝐾 :

Ref𝐾 ⊢𝑇 𝐾(⌜𝐴⌝) → 𝐴.

Suppose such a theory also includes the axioms of Q. In fact, let’s simply consider the
theory 𝑇 that adds Ref𝐾 to Q. By the Diagonal Lemma, there is a sentence 𝐺 such that

⊢𝑇 𝐺 ↔ ¬𝐾(⌜𝐺⌝). (D)

By Ref𝐾 , ⊢𝑇 𝐾(⌜𝐺⌝) → 𝐺. Combining this with (D), we get ⊢𝑇 𝐾(⌜𝐺⌝) → ¬𝐾(⌜𝐺⌝),
which entails ⊢𝑇 ¬𝐾(⌜𝐺⌝). By (D) again, we get ⊢𝑇 𝐺.
This shows that the sentence 𝐺 that figures in (D) is derivable from the axioms of Q

and an instance of Ref𝐾 . One would think that I could know the axioms of Q and the
relevant instance of Ref𝐾 . Going through the above reasoning, I could thereby come to
know 𝐺. But this is incompatible with 𝑇 , for we’ve just seen that ⊢𝑇 ¬𝐾(⌜𝐺⌝)!
This puzzle is known as the Knower Paradox. If we hold fixed classical logic and

the factivity of knowledge (as expressed by Ref𝐾), the only way to avoid contradiction
is to deny that I can come to know 𝐺 by competently going through its proof. Notice
that the above argument against the equivalence between my mind and a Turing machine
involved a very similar assumption: that I could come to know the Gödel sentence 𝐺 of
𝑆+ by going through the proof of Gödel’s Theorem.
The situation for belief is arguably even worse. If we add 𝐵 to 𝔏𝐴, we can construct a

formula BC(𝑥, 𝑦) saying that there is a code 𝑐 of a sequence of sentences 𝐴1, … , 𝐴𝑛 such
that 𝐵(ENTRY(𝑐, 𝑖)) for each 1 ≤ 𝑖 ≤ 𝑛, and ∃𝑦PRFPA(𝑦, ⌜𝐴1 ∧ … ∧ 𝐴𝑛 → 𝐴⌝). That is,
BC(⌜𝐴⌝) is true iff 𝐴 is provable in PA from premises that I believe.
Now assume that the set of sentences that I believe is decidable and consistent with

PA. (This is surely possible.) Let 𝐵∗ be the set of sentences that are provable in PA from
premises that I believe. 𝐵∗ is a consistent, axiomatizable extension of PA. Without fur-

208



10 The Unprovability of Consistency

ther assumptions about 𝐵, one can show that BC(𝑥) satisfies P1–P3. So Löb’s Theorem
applies: whenever 𝐵∗ contains BC(⌜𝐴⌝) → 𝐴, it also contains BC(⌜𝐴⌝).
This is highly counterintuitive. For example, one might think that I could believe that

1+1=3 does not follow in PA frommymathematical beliefs. (It certainly seems to me as
if I believe this!) But if ¬BC(⌜1+1=3⌝) is in 𝐵∗ then so is its tautological consequence
BC(⌜1+1 = 3⌝) → 1+1 = 3. By Löb’s Theorem, it follows that ‘1+1 = 3’ is in 𝐵∗. That
is, I can only believe that ‘1+1 = 3’ does not follow from my mathematical beliefs if it
actually follows from my mathematical beliefs!

209


