
2 First-Order Predicate Logic

In this chapter, we’ll review the syntax and semantics of first-order predicate logic. In
contrast to propositional logic, most (some would say: all) mathematical reasoning can
be formalized in first-order logic.

2.1 Syntax

I’ll begin with a basic version of first-order logic, without function symbols and identity;
these will be added in section 2.4. For now, the primitive symbols of a first-order language
𝔏1 therefore fall into the following categories (whose members must not be part of one
another):

• a countably infinite set of (individual) variables,
• a countably infinite set of (individual) constants,
• for each natural number 𝑛, a set of 𝑛-ary predicate symbols,
• the connectives ‘¬’ and ‘ → ’,
• the universal quantifier symbol ‘∀’,
• the parentheses ‘(’ and ‘)’.

The individual constants and variables constitute the singular terms of 𝔏1. Intuitively,
their function is to pick out an object, which might be a person, a number, a set, or
anything else. Predicate symbols are used to attribute properties or relations to these
objects. For example, we might have individual constants ‘𝑎’ and ‘𝑏’ for Athens and
Berlin and a binary predicate ‘𝑅’ for being west of. ‘𝑅𝑎𝑏’ would then state that Athens
is west of Berlin, and ‘𝑅𝑏𝑎’ that Berlin is west of Athens. The predicate symbol always
comes first.

From atomic sentences like ‘𝑅𝑎𝑏’ or ‘𝐹𝑎’, we can form complex sentences in the
familiar way with the help of ‘¬’, ‘ → ’, and the parentheses: ¬𝑅𝑎𝑏, (𝑅𝑎𝑏 → 𝐹𝑎),
¬(𝑅𝑎𝑏 → 𝐹𝑎), etc.

The real power and complexity of first-order logic comes from its quantificational
apparatus. The quantifier symbol ‘∀’ allows making general claims about all objects –

23



2 First-Order Predicate Logic

where by ‘all’ I mean all objects in the intended domain of discourse. In a formal theory
of arithmetic, for example, the intended domain of discourse would consist of the natural
numbers 0, 1, 2, 3, etc. It would not include Athens. In this context, ‘∀𝑥𝐹𝑥’ would state
that every natural number has the property expressed by ‘𝐹’.

Some practice is required to become familiar with the use of ‘∀’, as it has no direct
analog in natural language. The closest translation of ‘∀𝑥𝐹𝑥’ in English is something
like

Everything is such that it is 𝐹.

This can obviously be simplified to ‘Everything is 𝐹’; but in that sentence, ‘everything’
combines directly with a predicate (‘is 𝐹’), whereas ‘∀𝑥’ combines with an expression
of sentential type, ‘𝐹𝑥’. The variable ‘𝑥’ works much like the pronoun ‘it’ in English.
Overt variables are sometimes used in English when quantifiers are nested:

For every number 𝑥 there is a number 𝑦 greater than 𝑥 such that every number
greater than 𝑦 is greater than 𝑥.

This can be easily expressed in first-order logic:

∀𝑥∃𝑦(𝐺𝑦𝑥 ∧ ∀𝑧(𝐺𝑧𝑦 → 𝐺𝑧𝑥)).

Definition 2.1
A formula of a basic first-order language 𝔏1 is a finite string built up according to
the following formation rules:

(i) If 𝑃 is an 𝑛-ary predicate symbol of 𝔏1 and 𝑡1, … , 𝑡𝑛 are singular terms of
𝔏1 then 𝑃𝑡1 … 𝑡𝑛 is a formula.

(ii) If 𝐴 is an 𝔏1-formula, then so is ¬𝐴.
(iii) If 𝐴 and 𝐵 are 𝔏1-formulas, then so is (𝐴 → 𝐵).
(iv) If 𝑥 is a variable and 𝐴 is a formula of 𝔏1 then ∀𝑥𝐴 is a formula.

Here, ‘𝑃’, ‘𝑡1’, ‘𝑡𝑛’, ‘𝐴’, ‘𝐵’, ‘𝑥’ are metalinguistic variables standing for expressions in
𝔏1. I haven’t specified what the predicate symbols, individual constants, and variables
of the object language look like.

As in the case of propositional logic, we introduce some shortcuts in the metalanguage,
writing

24



2 First-Order Predicate Logic

• (𝐴 ∧ 𝐵) for ¬(𝐴 → ¬𝐵);
• (𝐴 ∨ 𝐵) for (¬𝐴 → 𝐵);
• (𝐴 ↔ 𝐵) for ¬((𝐴 → 𝐵) → ¬(𝐵 → 𝐴)).
• ⊤ for 𝐴 → 𝐴;
• ⊥ for ¬(𝐴 → 𝐴);
• ∃𝑥𝐴 for ¬∀𝑥¬𝐴.

The last of these is new. We’ll omit parentheses and quotation marks when no ambiguity
threatens.

Definition 2.1 allows for formulas like these:

𝑅𝑎𝑥
𝐹𝑎 → 𝐺𝑥

If, as before, we interpret ‘𝑎’ as denoting Athens and ‘𝑅’ as being west of, ‘𝑅𝑎𝑥’ could
be read as ‘Athens is west of 𝑥’. But variables, unlike constants, don’t pick out a definite
object. Their only function is to construct quantified statements. ‘∀𝑥𝑅𝑎𝑥’ would say that
Athens is west of everything, but ‘𝑅𝑎𝑥’ doesn’t really say anything. It is neither true nor
false.

Formulas like ‘𝑅𝑎𝑥’ and ‘𝐹𝑎 → 𝐺𝑥’ that contain a variable without a matching quan-
tifier are called “open”. Formulas without such variables are “closed”. Only closed
formulas make a genuine claim about the intended domain of discourse.

Let’s make this distinction more precise. A quantifier consists of the symbol ‘∀’ fol-
lowed by a variable. That variable is said to be bound by the quantifier. Next, define
a subformula of a formula as any part of the formula that is itself a formula. For exam-
ple, 𝐹𝑥 is a subformula of ∀𝑥𝐹𝑥. The scope of an occurrence of a quantifier ∀𝑥 in a
formula is the shortest subformula that contains the occurrence. So the scope of ∀𝑥 in
𝐹𝑎 ∨ ∀𝑥(𝐹𝑥 → 𝐺𝑦) is ∀𝑥(𝐹𝑥 → 𝐺𝑦). An occurrence of a variable in a formula is bound
if it lies in the scope of an occurrence of a quantifier that binds it. An occurrence of a
variable that isn’t bound is free. A formula in which some variable occurs free is open.
A formula that isn’t open is closed. A sentence is a closed formula.

Exercise 2.1 Why do I say that ”occurrences” of a variable in a formula are free
or bound? Why not simply say that a variable is free or bound in a formula?

25



2 First-Order Predicate Logic

Exercise 2.2 Assume that ‘𝐹’ is a 1-ary (= monadic) predicate, ‘𝑎’ is a constant,
and ‘𝑦’ a variable. Which of the following are formulas? Which are sentences?
Mark the scope of each quantifier.
(a) 𝐹𝑎 → ∀𝑥𝐹𝑥 (b) ∀𝑥𝐹𝑥 → 𝐹𝑥 (c) ∀𝑥𝐹𝑎 (d) ∀𝑥(𝐹𝑎 → ∀𝑥¬(𝐹𝑥 → 𝐹𝑎))

2.2 The first-order predicate calculus

Frege’s Begriffsschrift from 1879 contains a complete proof system for first-order logic.
However, the formal language of the Begriffsschrift is not a first-order language, as it
allows quantifying into predicate position. In Frege’s language, one can say not only
things like ‘∀𝑥 𝐹𝑥’, but also ‘∀𝑋 𝑋𝑎’, which (roughly) means that 𝑎 has every property.
Quantifiers that bind predicate-type expressions are called second-order, and the result-
ing logic is called second-order logic. We’ll take a closer look at second-order logics in
chapter ??.

A complete calculus for pure first-order logic was first presented by David Hilbert and
Wilhelm Ackermann in 1928. I give a slightly simplified version of their calculus, which
I’ll call the first-order predicate calculus.

Like the propositional calculus from the previous chapter, the first-order calculus con-
sists of some axioms and inference rules. In fact, we’ll take over all the axioms and rules
of the propositional calculus. All instances of A1-A3 are axioms, and Modus Ponens
(MP) is a rule of our new calculus. To these, we add some principles for dealing with
quantifiers. Let’s think about what we need.

A common inference pattern in first-order logic is “universal instantiation”: having
shown that every object has some property, we infer that a particular object 𝑐 has that
property. To state this precisely, we need some notation for substitution. If 𝐴 is a formula,
𝑥 a variable, and 𝑐 an individual constant, I write ‘𝐴(𝑥/𝑐)’ for the formula obtained from
𝐴 by replacing all free occurrences of 𝑥 in 𝐴 with 𝑐. For example, ‘𝐹𝑥(𝑥/𝑎)’ denotes
the formula ‘𝐹𝑎’, but ‘∀𝑥𝐹𝑥(𝑥/𝑎)’ denotes ‘∀𝑥𝐹𝑥’ rather than the nonsensical ‘∀𝑎𝐹𝑎’.
In informal contexts, I’ll often write ‘𝐴(𝑥)’ to indicate that 𝐴 is a formula in which the
variable 𝑥 occurs freely; ‘𝐴(𝑡)’ is then shorthand for ‘𝐴(𝑥/𝑡)’.

Exercise 2.3 Let 𝐴 be ∀𝑥(𝐹𝑥 → 𝐺𝑦) → ∀𝑦𝐹𝑦. What is 𝐴(𝑦/𝑏)?

We can now formulate a rule of universal instantiation: if 𝐴 is a formula, 𝑥 a variable
and 𝑐 a constant, one may infer 𝐴(𝑥/𝑐) from ∀𝑥𝐴. We won’t actually add this as a new

26



2 First-Order Predicate Logic

rule, however, because we can just as well add a corresponding axiom schema:

A4 ∀𝑥𝐴 → 𝐴(𝑥/𝑐)

Given A4, we can use MP to reason from ∀𝑥𝐴 to 𝐴(𝑥/𝑐).
We introduce a genuine rule – called (Universal) Generalization – for the inference in

the opposite direction, from a particular case to a general claim:

Gen From 𝐴 one may infer ∀𝑥𝐴(𝑐/𝑥).

Here, ‘(𝑐/𝑥)’ expresses the inverse of ‘(𝑥/𝑐)’: 𝐴(𝑐/𝑥) is the formula obtained from 𝐴 by
replacing all occurrences of 𝑐 in 𝐴 with 𝑥, except for any occurrences that would let 𝑥
become bound. (Just as 𝐴(𝑥/𝑐) only replaces free occurrences of 𝑥, we want 𝐴(𝑐/𝑥) to
only create free occurrences of 𝑥.)

The Gen rule requires explanation. Do we really want to infer ∀𝑥𝐹𝑥 from 𝐹𝑎? The
inference clearly isn’t valid: it’s easy to imagine cases where a particular object 𝑎 is 𝐹, but
other objects are not 𝐹. But remember that each line in a strictly Hilbert-style axiomatic
proof is either an axiom or follows from an axiom by an inference rule. None of our
axioms or rules will allow making specific claims about any particular object that one
couldn’t equally make about all other objects. 𝐹𝑎 won’t be provable. The only provable
sentences involving individual constants will be logical truths like 𝐹𝑎 → 𝐹𝑎. And here,
the inference to ∀𝑥(𝐹𝑥 → 𝐹𝑥) is safe.

To get a complete calculus, we need one more axiom schema:

A5 ∀𝑥(𝐴 → 𝐵) → (𝐴 → ∀𝑥𝐵), if 𝑥 is not free in 𝐴

To see the point of this, suppose that in the course of a proof we have established the
following claims, for some 𝐴 and 𝐵(𝑥), where 𝑥 isn’t free in 𝐴:

∀𝑥(𝐴 → 𝐵(𝑥))
𝐴

If we had the rule of universal instantiation, we could deduce 𝐴 → 𝐵(𝑐) from the first
line, then use MP to infer 𝐵(𝑐) and finally infer ∀𝑥𝐵(𝑥) by Gen. This reasoning can’t
be replicated after we’ve replace universal instantiation by the axiom schema A4. So we
add A5, which allows inferring ∀𝑥𝐵(𝑥) by two applications of Modus Ponens.

Here’s a summary of our axioms and rules:

27



2 First-Order Predicate Logic

A1 𝐴 → (𝐵 → 𝐴)
A2 (𝐴 → (𝐵 → 𝐶)) → ((𝐴 → 𝐵) → (𝐴 → 𝐶))
A3 (¬𝐴 → ¬𝐵) → (𝐵 → 𝐴)
A4 ∀𝑥𝐴 → 𝐴(𝑥/𝑐)
A5 ∀𝑥(𝐴 → 𝐵) → (𝐴 → ∀𝑥𝐵), if 𝑥 is not free in 𝐴
MP From 𝐴 and 𝐴 → 𝐵 one may infer 𝐵.
Gen From 𝐴 one may infer ∀𝑥𝐴(𝑐/𝑥).

Definition 2.2: Proof
A proof of a sentence 𝐴 in the first-order calculus is a finite sequence of sentences
𝐴1, 𝐴2, … 𝐴𝑛 with 𝐴𝑛 = 𝐴, such that each 𝐴𝑖 is either an instance of A1-A5 or
follows from earlier sentences in the sequence by MP or Gen.

I’ll use ‘⊢ 𝐴’ to express that 𝐴 is provable in the first-order calculus.
As in the case of propositional logic, it is convenient to generalize our Hilbert-style

proof system to allow for deductions from premises. In this case, we have to restrict the
use of Gen: we don’t want to infer ∀𝑥𝐹𝑥 from 𝐹𝑎.

Definition 2.3
If 𝐴 is a first-order sentence and Γ a set of first-order sentences, a deduction of 𝐴
from Γ in the first-order calculus is a finite sequence of sentences 𝐴1, 𝐴2, … 𝐴𝑛,
with 𝐴𝑛 = 𝐴, such that each 𝐴𝑖 is either an instance of A1–A5, an element of Γ,
or follows from previous sentences by MP or Gen, but without applying Gen to an
individual constant 𝑐 that occurs in one of the sentences in the sequence that are
elements of Γ.

We write ‘Γ ⊢ 𝐴’ to express that there is a deduction of 𝐴 from Γ. Let’s investigate
what this relation looks like.

The structural principles Id, Mon, and Cut from the previous chapter hold for every
axiomatic calculus. So we have

Id 𝐴 ⊢ 𝐴
Mon If Γ ⊢ 𝐴 then Γ, 𝐵 ⊢ 𝐴
Cut If Γ ⊢ 𝐴 and Δ, 𝐴 ⊢ 𝐵 then Γ, Δ ⊢ 𝐵

(As in the previous chapter, we generally omit set brackets on the left-hand side of ‘⊢’,
and write a comma to indicate unions: ‘Γ, 𝐵 ⊢ 𝐴’ is shorthand for ‘Γ ∪ {𝐵} ⊢ 𝐴’.)

28



2 First-Order Predicate Logic

The Deduction Theorem also still holds:

Theorem 2.1: The Deduction Theorem (DT)
If Γ, 𝐴 ⊢ 𝐵 then Γ ⊢ 𝐴 → 𝐵.

Proof. Let 𝐵1, 𝐵2, … , 𝐵𝑛 be a deduction of 𝐵 from Γ ∪ {𝐴}. We prove by strong
induction on 𝑘 that Γ ⊢ 𝐴 → 𝐵𝑘 for all 𝑘 = 1, 2, … , 𝑛. That is, we show that if Γ ⊢
𝐴 → 𝐵𝑖 for all 𝑖 < 𝑘, then Γ ⊢ 𝐴 → 𝐵𝑘.
We need to distinguish four cases, corresponding to the ways in which 𝐵𝑘 can appear
in the deduction: as an axiom, as an element of Γ ∪ {𝐴}, from an application of MP, or
from an application of Gen. The proof for the first three cases is exactly as in the proof
of the Deduction Theorem for the propositional calculus. It remains to check the case
of Gen.
Assume 𝐵𝑘 follows from 𝐵𝑖 by an application of Gen. So 𝐵𝑘 is of the form ∀𝑥𝐵𝑖(𝑐/𝑥),
and 𝑐 doesn’t occur in Γ or 𝐴. By induction hypothesis, there is a deduction of 𝐴 → 𝐵𝑖
from Γ. As 𝑐 doesn’t occur in Γ, we can apply Gen, getting a deduction of ∀𝑥(𝐴 → 𝐵𝑖)(𝑐/𝑥).
Since 𝑐 doesn’t occur in 𝐴, this formula can also be written as ∀𝑥(𝐴 → 𝐵𝑖(𝑐/𝑥)). A5
gives us ∀𝑥(𝐴 → 𝐵𝑖(𝑐/𝑥)) → (𝐴 → ∀𝑥𝐵𝑖(𝑐/𝑥)). By MP, we therefore get a deduction of
𝐴 → ∀𝑥𝐵𝑖(𝑐/𝑥) from Γ.

You may remember that we don’t need to invoke A1 and A2 any more once we have
DT and MP. Similarly, once we have DT, MP, and Gen, we no longer need A5, as any
instance of it can be derived. Here is how.

Assume, as in the statement of A5, that 𝑥 is not free in 𝐴. Let 𝑐 be a constant that
doesn’t occur in 𝐴 or 𝐵. Then:

1. ∀𝑥(𝐴 → 𝐵), 𝐴 ⊢ ∀𝑥(𝐴 → 𝐵) (Id, Mon)
2. ⊢ ∀𝑥(𝐴 → 𝐵) → (𝐴 → 𝐵(𝑥/𝑐)) (A4, 𝑥 not free in 𝐴)
3. ∀𝑥(𝐴 → 𝐵), 𝐴 ⊢ 𝐴 → 𝐵(𝑥/𝑐) (MP, 1, 2)
4. ∀𝑥(𝐴 → 𝐵), 𝐴 ⊢ 𝐴 (Id)
5. ∀𝑥(𝐴 → 𝐵), 𝐴 ⊢ 𝐵(𝑥/𝑐) (MP, 3, 4)
6. ∀𝑥(𝐴 → 𝐵), 𝐴 ⊢ ∀𝑥𝐵 (Gen, 5, 𝐵(𝑥/𝑐)(𝑐/𝑥) = 𝐵)
7. ∀𝑥(𝐴 → 𝐵) ⊢ 𝐴 → ∀𝑥𝐵 (DT, 6)
8. ⊢ ∀𝑥(𝐴 → 𝐵) → (𝐴 → ∀𝑥𝐵) (DT, 7)

29



2 First-Order Predicate Logic

From A4 and DT, we get the rule of universal instantiation:

Theorem 2.2: Universal Instantiation (UI)
If Γ ⊢ ∀𝑥𝐴 then Γ ⊢ 𝐴(𝑥/𝑐).

Proof. Assume Γ ⊢ ∀𝑥𝐴. By A4, ⊢ ∀𝑥𝐴 → 𝐴(𝑥/𝑐). So by MP, Γ ⊢ 𝐴(𝑥/𝑐).
From this (and DT), we can derive any instance of A4. So we won’t need to invoke

A4 any more.
The derivations of EFQ, DNE, and RAA from the previous chapter all go through as

before, and make any appeal to A3 unnecessary.
In fact, we know from the completeness theorem for propositional logic that all truth-

functional tautologies are provable from A1–A3 and MP. A truth-functional tautology is
a sentence that is true on every truth-value assignment to atomic sentences. For example,
𝐹𝑎 → 𝐹𝑎 is a truth-functional tautology, and so is ¬¬∀𝑥𝐹𝑥 → ∀𝑥𝐹𝑥.

Theorem 2.3: Tautologies (Taut)
⊢ 𝐴 whenever 𝐴 is a truth-functional tautology.

Proof. Consider the propositional language 𝔏0 whose “sentence letters” are the atomic
sentences of the first-order language. By theorem 1.6, (the completeness theorem for
propositional logic), every sentence in this language that is true on every truth-value
assignment is provable from A1–A3 and MP.

As in the case of propositional logic, we could use the facts that we have established
about ⊢: Id, Mon, Cut, DT, UI, Taut, together with MP and Gen, to define a sequent
calculus. From this, we could derive the kind of natural deduction or tableau calculus
that you have probably learned in your intro logic course. We won’t pause to explore
these matters.

Exercise 2.4 Show that if Γ ⊢ 𝐴(𝑥/𝑐) then Γ ⊢ ∃𝑥𝐴.

Exercise 2.5 Show that if Γ ⊢ ∀𝑥(𝐴 → 𝐵) then Γ ⊢ ∀𝑥𝐴 → ∀𝑥𝐵.

30



2 First-Order Predicate Logic

2.3 Semantics

I’ve already explained informally how first-order languages are interpreted: individual
constants are assumed to pick out objects in the intended domain of discourse; predicate
symbols express properties or relations among these objects. We’ll now make this more
precise.

Our semantics is inspired by the truth-conditional approach to meaning. Plausibly,
we can determine the conditions under which an atomic first-order sentences is true by
assigning objects to individual constants, and properties or relations to predicate symbols.
For example, if we know that ‘𝑎’ picks out Athens, ‘𝑏’ Berlin, and ‘𝑅’ the property of
being west of, we can determine that ‘𝑅𝑎𝑏’ is true in a possible scenario iff Athens is
west of Berlin in that scenario.

Now remember that logic abstracts away from the meanings of non-logical expres-
sions. Some premises logically entail a conclusion iff there is no conceivable scenario
in which the premises are true and the conclusion false, under any interpretation of the
non-logical vocabulary. The non-logical parts of a first-order language are its individual
constants and predicate symbols. As in the case of propositional logic, we will define a
model as a structure that contains just enough information about a scenario and an inter-
pretation of the non-logical vocabulary to determine the truth-values of all sentences.

What do you need to know about a scenario 𝑆 and an interpretation 𝐼 to figure out
whether, say, 𝑅𝑎𝑏 is true? It would obviously suffice to know (1) which objects are picked
out by ‘𝑎’ and ‘𝑏’ under 𝐼 , (2) which relation is expressed by ‘𝑅’ under 𝐼 , and (3) whether
that relation holds between those two objects in 𝑆. But you don’t need all that information.
It would also suffice to know (1) which objects are picked out by ‘𝑎’ and ‘𝑏’ under 𝐼 , and
(2) which pairs of objects in 𝑆 stand in the relation expressed by ‘𝑅’ under 𝐼 . For example,
if I told you that ‘𝑎’ picks out Athens, ‘𝑏’ Berlin, and ‘𝑅’ expresses a relation that holds
between all and only the following pairs of objects: ⟨Athens, Berlin⟩, ⟨Berlin, Paris⟩,
⟨Paris, Rome⟩, you’d know enough to figure out that ‘𝑅𝑎𝑏’ is true – although you don’t
really know what the sentence says or what the scenario is like.

Definition 2.4
A model 𝔐 of a first-order language 𝔏1 consists of

(i) a non-empty set 𝐷, called the domain or universe of 𝔐, and
(ii) an interpretation function 𝐼 that assigns to each individual constant of 𝔏1 a

member of 𝐷, and to each 𝑛-ary predicate of 𝔏1 a set of 𝑛-tuples from 𝐷.

31



2 First-Order Predicate Logic

An “𝑛-tuple” is a list of 𝑛 objects. A 1-tuple is simply an object. So a “set of 1-tuples
from 𝐷” is a set of members of 𝐷 a “set of 2-tuples from 𝐷” is a set of pairs of members
of 𝐷, and so on. The set assigned to a predicate is called the extension of the predicate.

A model’s domain can be arbitrarily large, but it can’t be empty. That’s because I’ve
stipulated that every first-order language has infinitely many individual constants, and
definition 2.4 requires that every such constant be assigned an object in the domain. This
wouldn’t be possible if the domain were empty. But a single object is enough because
we allow that all constants pick out the same object.

It is useful to have an expression for the denotation of a non-logical symbol 𝑠 in a
model 𝔐. I’ll use ‘J𝑠K𝔐’. That is, if 𝔐 is a model with interpretation function 𝐼 , 𝑐 is an
individual constant and 𝑃 a predicate, then J𝑐K𝔐 is 𝐼(𝑐) and J𝑃K𝔐 is 𝐼(𝑃).

Exercise 2.6 We can mimic sentence letters by using zero-ary predicate symbols.
For example, if 𝑃 and 𝑄 are zero-ary predicates, then 𝑃 → 𝑄 is a sentence. We
might expect that a model should assign a truth-value to zero-ary predicates. How
can we define the truth-values 𝑇 and 𝐹 to get this result out of definition 2.4? (Hint:
A 0-tuple is a list of zero objects. There is only one such list: the empty list.)

Next, we define what it takes for a sentence 𝐴 to be true in a model 𝔐. For atomic
sentences, this is easy. ‘𝑅𝑎𝑏’, for example, is true in 𝔐 iff the pair of objects assigned (by
𝔐) to ‘𝑎’ and ‘𝑏’ are in the set assigned to ‘𝑅’. For negated sentences and conditionals,
we can use the same clauses as in propositional logic. Quantified sentences require a
little more thought.

Let 𝐴(𝑥) be some formula in which 𝑥 is free. Under what conditions is ∀𝑥𝐴(𝑥) true
in a model 𝔐? As a first shot, one might suggest that ∀𝑥𝐴(𝑥) is true iff 𝐴(𝑐) is true for
every individual constant 𝑐. This is called a substitutional interpretation of the quantifier.
It assumes that every object in the domain is picked out by some individual constant.
Definition 2.4 doesn’t guarantee this. It allows for models in which some objects don’t
have a name, just as most stars and most real numbers don’t have a name in English.

What we’ll say instead is that ∀𝑥𝐴(𝑥) is true in a model 𝔐 iff 𝐴(𝑐) is true in every
model that differs from 𝔐 at most in the object it assigns to 𝑐, where 𝑐 is some individual
constant that doesn’t already occur in 𝐴(𝑥). For example, ‘∀𝑥𝑅𝑎𝑥’ is true in 𝔐 iff ‘𝑅𝑎𝑏’
is true in every model that differs from 𝔐 at most in the object it assigns to ‘𝑏’. By
varying the interpretation of ‘𝑏’, we can check whether 𝑎 stands in 𝑅 to every object in the
domain. For definiteness, we’ll say that 𝑐 is the “alphabetically first” individual constant
that doesn’t occur in 𝐴(𝑥), assuming that the constants come with some alphabetical

32



2 First-Order Predicate Logic

order.
This approach to the semantics of quantifiers goes back to Benson Mates. An equally

popular alternative, due to Alfred Tarski, states that ∀𝑥𝐴(𝑥) is true in a model 𝔐 iff
𝐴(𝑥) is true for every way of assigning an individual to 𝑥. This requires defining a truth
relation not just between sentences and models, but between sentences, models, and
so-called “assignment functions” that assign objects to variables. The two approaches
deliver the same results. I use Mates’ because it requires slightly less machinery.

Definition 2.5
An 𝔏1-sentence 𝐴 is true in a model 𝔐 (for short, 𝔐 ⊩ 𝐴) iff one of the following
conditions holds.

(i) 𝐴 is an atomic sentence 𝑃𝑐1 … 𝑐𝑛 and ⟨J𝑐1K𝔐, … , J𝑐𝑛K𝔐 ⟩ ∈ J𝑃K𝔐.
(ii) 𝐴 has the form ¬𝐵 and 𝔐 ⊮ 𝐵.
(iii) 𝐴 has the form (𝐵 → 𝐶) and 𝔐 ⊮ 𝐵 or 𝔐 ⊩ 𝐶.
(iv) 𝐴 has the form ∀𝑥𝐵 and 𝔐′ ⊩ 𝐵(𝑥/𝑐) for every model 𝔐′ that differs from

𝔐 at most in the object assigned to 𝑐, where 𝑐 is the alphabetically first
individual constant that does not occur in 𝐵.

If 𝐴 is true in 𝔐, we also say that 𝔐 is a model of 𝐴, or that 𝔐 satisfies 𝐴, A model
satisfies a set of sentences if it satisfies each sentence in the set.

Entailment and validity are defined in terms of satisfaction, as in the previous chapter.

Definition 2.6
A set of sentences Γ entails a sentence 𝐴 (for short, Γ ⊨ 𝐴) iff every model that
satisfies Γ also satisfies 𝐴.
Sentences 𝐴 and 𝐵 are equivalent if 𝐴 ⊨ 𝐵 and 𝐵 ⊨ 𝐴.
A sentence is valid (for short, ⊨ 𝐴) iff it is satisfied by every model.

Exercise 2.7 State the truth conditions for ∃𝑥𝐴. That is, complete this sentence:
‘∃𝑥𝐴 is true in a model 𝔐 iff …’.

Exercise 2.8 Give a countermodel to show that ∀𝑥(𝐹𝑥 ∨ 𝐺𝑥) ⊭ ∀𝑥𝐹𝑥 ∨ ∀𝑥𝐺𝑥.

33



2 First-Order Predicate Logic

Exercise 2.9 Show that if 𝑥 is not free in 𝐵 then ∀𝑥(𝐴 → 𝐵) is equivalent to
∃𝑥𝐴 → 𝐵.

2.4 Functions and identity

Consider the sentence ‘1+2 = 3’. How could we translate this into a first-order language?
We could use a three-place predicate symbol 𝑆 and write ‘𝑆(1, 2, 3)’. But this isn’t ideal.
It obscures the structure of the original sentence, which states an identity between 1 + 2
and 3.

As a first step to remedy this situation, let’s introduce a predicate for identity. We’ll
use ‘=’. So ‘=𝑎𝑏’ states that 𝑎 equals 𝑏, in the sense that 𝑎 and 𝑏 are the very same object.
For legibility, we’ll “abbreviate” this as ‘𝑎 = 𝑏’. We’ll also write ‘𝑎 ≠ 𝑏’ for ‘¬ =𝑎𝑏’.

Of course, nothing in our earlier definition of first-order languages prevented us from
having a predicate ‘=’. The real novelty is that we now classify ‘=’ as a logical expression.
This means that its interpretation is held fixed: in every model, ‘=’ is interpreted as the
identity relation (on the model’s domain). We’ll also introduce new rules for reasoning
with ‘=’. Before we get to these changes, I want to introduce another addition to our
definition of first-order languages that allows forming complex terms like ‘1 + 2’.

Let’s think about how such terms work. The expression ‘1 + 2’ denotes a number: the
number 3. (That’s why ‘1 + 2 = 3’ is true.) In general, for any numerical terms ‘𝑎’ and
‘𝑏’, ‘𝑎 + 𝑏’ denotes a number: the sum of 𝑎 and 𝑏. We can therefore understand the ‘+’
sign as expressing a function that maps a pair of numbers to their sum. So understood,
‘+’ is a function symbol. Function symbols are ubiquitous in maths. It’s useful to have
them in our formal languages as well.

Let me say a few general words on the concept of a function, as it will play an important
role throughout these notes. A function, in the mathematical and logical sense, takes
one or more objects as input and (typically) returns an object as output. An input to a
function is also called an argument to the function; the output is called the function’s
value for that argument. The inputs and outputs are usually restricted to a certain class
of objects, called the function’s domain and codomain, respectively. For example, the
addition function takes two numbers as input and returns a number. The square function
takes a single number and returns a number. The inputs and outputs don’t need to be
numbers. There is an “area” function that takes a country as input and returns its area
in (say) square kilometres. And there is a “mother” function that takes a person as input
and returns their mother.

34



2 First-Order Predicate Logic

If a function has domain 𝑋 and codomain 𝑌 , we say that it is a function from 𝑋 to 𝑌 .
If all inputs and outputs of a function belong to a set 𝑋, we say that it is a function on
𝑋. So the addition function and the square function are functions on the set of numbers,
while the area function is a function from the set of countries to the set of numbers.

Some functions are not defined for all objects in their domain. The division function,
for example, takes two numbers as input and returns a number, but it is undefined if the
second input is zero. Such functions are called partial.

Functions are often associated with a recipe or algorithm for determining the output
for a given input. There are well-known algorithms for computing sums or squares. But
this isn’t part of the modern concept of a function. Any mapping from inputs to outputs
is a function, even if there is no recipe for determining the output.

Since functions are just mappings from inputs to outputs, they are fully determined by
their values for each input. Consider, for example, the function 𝑔 on the natural numbers
that takes a number 𝑥 and as input and returns 𝑥2 if Goldbach’s conjecture is true and
0 if Goldbach’s conjecture is false. Goldbach’s conjecture says that every even number
greater than 2 is the sum of two primes. It is not known whether the conjecture is true.
So we don’t know what 𝑔 returns for inputs other than 0. But we know that 𝑔 is either
identical to the square function or to the constant function that returns 0 for every input.
Both of these are trivial to compute. So we know that 𝑔 is trivial to compute, even though
we don’t know its value for 1!

Exercise 2.10 Give an example of a function with 3 arguments.

Let’s now add function symbols to our first-order languages. These combine with
singular terms to form new singular terms. For example, if ‘𝑓 ’ is a two-place function
symbol and ‘𝑎’ and ‘𝑏’ are individual constants, then ‘𝑓 (𝑎, 𝑏)’ is a singular term; it de-
notes the value of the function 𝑓 for the arguments 𝑎 and 𝑏. ‘𝑓 (𝑓 (𝑎, 𝑏), 𝑐)’ is another
singular term; it denotes the value of 𝑓 for the arguments 𝑓 (𝑎, 𝑏) and 𝑐. Previously, all
singular terms were just individual constants and variables, now they can be arbitrarily
complex. So we need a recursive definition.

Definition 2.7
A (singular) term of a first-order language 𝔏=

1 with functions and identity is a finite
string conforming to the following formation rules.

• Every variable and every individual constant is a singular term.

35



2 First-Order Predicate Logic

• If 𝑓 is an 𝑛-ary function symbol (𝑛 > 0) and 𝑡1, … , 𝑡𝑛 are singular terms then
𝑓 (𝑡1, … , 𝑡𝑛) is a singular term.

A singular term is closed if it contains no variables. Formulas and sentences are
defined exactly as before.

Officially, function symbols are placed in front of their arguments, with parentheses
and commas to separate the arguments. By this convention, ‘(𝑎 × 𝑏) + 𝑐’ is written
‘+(×(𝑎, 𝑏), 𝑐)’. For the sake of readability, we allow the more familiar infix notation as
a metalinguistic “abbreviation”.

Exercise 2.11 Write down a first-order sentence expressing Lagrange’s Theo-
rem, that every natural number is the sum of four squares. Use a language with
individual constants ‘0’, ‘1’, ‘2’, ‘3’, ..., and function symbols ‘+’ and ‘×’ for ad-
dition and multiplication.

In the axiomatic calculus, we generalize A4 to allow for closed terms 𝑡 where we
previously had individual constants 𝑐:

A4 ∀𝑥𝐴 → 𝐴(𝑥/𝑡).

‘(𝑥/𝑡)’ is the obvious extension of the substitution notation to closed terms.
We don’t need any new axioms or rules for function symbols. But we introduce two

new axiom schemas for identity:

A6 𝑡1 = 𝑡1
A7 𝑡1 = 𝑡2 → (𝐴(𝑥/𝑡1) → 𝐴(𝑥/𝑡2))

Here, 𝑡1 and 𝑡2 are closed terms and 𝐴 is a formula in which only 𝑥 is free, so that all
instances of the schemas are closed. A7 is often called Leibniz’ Law. The idea is that if
𝑡1 and 𝑡2 are the very same object, then anything true of 𝑡1 is also true of 𝑡2.

Exercise 2.12 You may wonder why I didn’t write A7 as
𝑡1 = 𝑡2 → (𝐴 → 𝐴(𝑡1/𝑡2)). In response, explain why the following sentence
is an instance of A7, but not of the alternative formulation: 𝑎 = 𝑏 → (𝑅𝑎𝑎 → 𝑅𝑎𝑏).

36



2 First-Order Predicate Logic

Exercise 2.13 Show: (a) if Γ ⊢ 𝑡 = 𝑠 then Γ ⊢ 𝑠 = 𝑡, (b) if Γ ⊢ 𝑡 = 𝑠 and
Γ ⊢ 𝑠 = 𝑟 then Γ ⊢ 𝑡 = 𝑟.

We also need to adjust our semantics. The definition of a model remains the same as
before, except that interpretation functions need to interpret the function symbols. We
assume that all function symbols denote total functions on the model’s domain.

Definition 2.8
A model 𝔐 of a first-order language 𝔏=

1 with functions and identity consists of

(i) a non-empty set 𝐷 and
(ii) a function 𝐼 that assigns

• to each individual constant of 𝔏=
1 a member of 𝐷,

• to each 𝑛-ary function symbol of 𝔏=
1 an 𝑛-ary total function on 𝐷, and

• to each non-logical 𝑛-ary predicate of 𝔏=
1 a set of 𝑛-tuples from 𝐷.

As before, we write J𝑠K𝔐 for the denotation of a non-logical symbol 𝑠 in a model 𝔐.
We extend this notation to all singular terms:

Definition 2.9
Let 𝔐 be a model of a first-order language 𝔏=

1 and 𝐼 the interpretation function of
𝔐.

(i) For any individual constant 𝑐, J𝑐K𝔐 = 𝐼(𝑐).
(ii) If 𝑓 is an 𝑛-ary function symbol and 𝑡1, … , 𝑡𝑛 are singular terms thenJ𝑓 (𝑡1, … , 𝑡𝑛)K𝔐 = 𝐼(𝑓 )(J𝑡1K𝔐, … , J𝑡𝑛K𝔐).

With this, satisfaction, entailment, and validity are defined essentially as before. I’ll
only give the definition of satisfaction:

Definition 2.10
An 𝔏=

1 -sentence 𝐴 is true in a model 𝔐 (for short, 𝔐 ⊩ 𝐴) if one of the following
conditions holds.

37



2 First-Order Predicate Logic

(i) 𝐴 has the form 𝑡1 = 𝑡2 and J𝑡1K𝔐 = J𝑡2K𝔐.
(ii) 𝐴 is any other atomic sentence 𝑃𝑡1 … 𝑡𝑛 and ⟨J𝑡1K𝔐, … , J𝑡𝑛K𝔐 ⟩ is in J𝑃K𝔐.
(iii) 𝐴 is of the form ¬𝐵 and 𝔐 ⊮ 𝐵.
(iv) 𝐴 is of the form (𝐵 → 𝐶) and 𝔐 ⊮ 𝐵 or 𝔐 ⊩ 𝐶.
(v) 𝐴 is of the form ∀𝑥𝐵 and 𝔐′ ⊩ 𝐵(𝑥/𝑐) for every model 𝔐′ that differs

from 𝔐 at most in the object assigned to 𝑐, where 𝑐 is the alphabetically
first individual constant that does not occur in 𝐵.

Exercise 2.14 Explain why ⊩ 𝑎 = 𝑎, if 𝑎 is an individual constant.

Exercise 2.15 Define a model in which ‘1 + 1 = 2’ is true and another in which
it is false.

Exercise 2.16 Construct a sentence with ‘=’ as the only predicate symbol that is
true in a model 𝔐 iff the domain of 𝔐 has (a) at least two members, (b) at most
two members, (c) exactly two members.

Two final comments.
One, it would be nice if we could allow for partial functions and empty domains. The

problem is that we would then have to deal with “empty” terms that don’t pick out any-
thing. (On an empty domain, every term is empty; if 𝑓 denotes a partial function, 𝑓 (𝑎)
may be empty.) If 𝑡 is empty, should we say that 𝑡 = 𝑡 be true? What about its negation,
𝑡 ≠ 𝑡? These questions can be answered in different ways, leading to different versions
of free logic. A free logic is simply a logic in which terms can be empty.

Two. I’ve stipulated at the very start of this chapter that a first-order language must
have infinitely many individual constants. This, too, is somewhat unsatisfactory. For-
malized theories of arithmetic or set theory or Newtonian mechanics, for example, typi-
cally don’t involve infinitely many non-logical symbols. Indeed, the standard first-order
theory of sets has only one non-logical symbol: the membership predicate ‘∈’.

Why, then, did I require infinitely many individual constants? There are two reasons.
The first arises in our (Mates-style) semantics of quantifiers: Clause (v) in definition 2.10
interprets ∀𝑥𝐴 in terms of 𝐴(𝑥/𝑐), where 𝑐 is a constant that doesn’t occur in 𝐴. Because
quantifiers can be nested without limit, this requires an unending supply of constants: we
need two constants for the interpretation of ∀𝑥∀𝑦𝐴, three for ∀𝑥∀𝑦∀𝑧𝐴, and so on. But

38



2 First-Order Predicate Logic

these constants are only used in the internal semantic machinery. Their original denota-
tion in the model is irrelevant: it plays no role in clause (v). A similar point applies to the
other reason why we need an unending supply of constants. In our first-order calculus,
deriving ∀𝑥𝐵(𝑥) from ∀𝑥𝐴(𝑥) often requires instantiation ∀𝑥𝐴(𝑥) to 𝐴(𝑐), deriving 𝐵(𝑐),
and then applying Gen. Here we also need an unending supply of constants to deal with
nested quantifiers. But here, too, the meaning of these constants is irrelevant: they are
used to denote “arbitrary” objects.

So we need a large supply of constants to play certain internal roles in our proof system
and semantics. Conceptually, these constants resemble variables: they are sometimes
called eigenvariables. We might have decided to classify them as logical. In later chap-
ters, when I speak of the non-logical expressions of, say, formalized set theory, I will
usually ignore the eigenvariables.

2.5 Soundness

We have defined two consequence relations: the proof-theoretic (syntactic) relation ⊢,
and the model-theoretic (semantic) relation ⊨. How are they related? Can we show that
Γ ⊢ 𝐴 iff Γ ⊨ 𝐴? We can. The completeness direction, from Γ ⊨ 𝐴 to Γ ⊢ 𝐴, is hard
and will be treated in the next chapter. The soundness direction, from Γ ⊢ 𝐴 to Γ ⊨ 𝐴, is
comparatively easy. As in the propositional case, we only have to verify that all axioms
are valid and that the rules preserve validity. There is nothing terribly exciting about this
proof, but let’s go through it anyway.

We’ll need the following lemmas.

Lemma 2.1: Coincidence Lemma
If two models 𝔐 and 𝔐′ have the same domain and agree on the interpretation
of all non-logical symbols in an ℒ=

1 -sentence 𝐴, then 𝔐 ⊩ 𝐴 iff 𝔐′ ⊩ 𝐴.

Proof. The proof is a simple induction on the complexity of 𝐴. The base case is
guaranteed by clauses (i) and (ii) in definition 2.10. The inductive step for ¬ and → is
trivial. Let’s look at the case where 𝐴 has the form ∀𝑥𝐵.
Assume 𝔐 ⊮ ∀𝑥𝐵. By clause (v) of definition 2.10, this means that 𝔐″ ⊮ 𝐵(𝑥/𝑐) for
some model 𝔐″ that differs from 𝔐 at most in the object assigned to a constant 𝑐 that
does not occur in 𝐵. Let 𝔐‴ be like 𝔐′ except that J𝑐K𝔐‴ = J𝑐K𝔐″ . Since 𝔐 and
𝔐′ agree on all symbols in 𝐵, and 𝑐 is not in 𝐵, 𝔐″ and 𝔐‴ agree on all symbols in

39



2 First-Order Predicate Logic

𝐵(𝑥/𝑐). So by induction hypothesis, 𝔐‴ ⊮ 𝐵(𝑥/𝑐). By clause (v) of definition 2.10,
this means that 𝔐′ ⊮ ∀𝑥𝐵.
We’ve shown that if 𝔐 ⊮ ∀𝑥𝐵 then 𝔐′ ⊮ ∀𝑥𝐵. The converse direction can be shown
by an exactly parallel argument. So 𝔐 ⊩ ∀𝑥𝐵 iff 𝔐′ ⊩ ∀𝑥𝐵.

Lemma 2.2: Extensionality Lemma

If J𝑡1K𝔐 = J𝑡2K𝔐 then 𝔐 ⊩ 𝐴(𝑥/𝑡1) iff 𝔐 ⊩ 𝐴(𝑥/𝑡2).

Proof. The proof is by induction on complexity of 𝐴. As before, the base case is
guaranteed by clauses (i) and (ii) in definition 2.10, and the inductive step for ¬ and
→ is trivial. The case where 𝐴 has the form ∀𝑦𝐵 needs some work.
Assume

𝔐 ⊮ ∀𝑦𝐵(𝑥/𝑡1). (1)

We’ll show that 𝔐 ⊮ ∀𝑦𝐵(𝑥/𝑡2). By (1) and definition 2.10, we have

𝔐𝑐 ⊮ 𝐵(𝑥/𝑡1)(𝑦/𝑐), (2)

where 𝑐 is the alphabetically first constant that does not occur in 𝐵(𝑥/𝑡1) and 𝔐𝑐 is
a model that differs from 𝔐 at most in the interpretation of 𝑐. Let 𝑑 be a constant
distinct from 𝑐 that does not occur in 𝐵(𝑥/𝑡1) or 𝐵(𝑥/𝑡2). let 𝔐𝑑𝑐 be like 𝔐𝑐 except
that J𝑑K𝔐𝑑𝑐 = J𝑐K𝔐𝑐 . Since 𝔐𝑑𝑐 and 𝔐𝑐 agree on all symbols in 𝐵(𝑥/𝑡1)(𝑦/𝑐), we
have, by the coincidence lemma,

𝔐𝑐 ⊩ 𝐵(𝑥/𝑡1)(𝑦/𝑐) iff 𝔐𝑑𝑐 ⊩ 𝐵(𝑥/𝑡1)(𝑦/𝑐). (3)

By induction hypothesis,

𝔐𝑑𝑐 ⊩ 𝐵(𝑥/𝑡1)(𝑦/𝑐) iff 𝔐𝑑𝑐 ⊩ 𝐵(𝑥/𝑡1)(𝑦/𝑑). (4)

Let 𝔐𝑑 be like 𝔐𝑑𝑐 except that J𝑐K𝔐𝑑 = J𝑐K𝔐. Since 𝑐 does not occur in 𝐵(𝑥/𝑡1)
and is distinct from 𝑑, 𝔐𝑑 and 𝔐𝑑𝑐 agree on all symbols in 𝐵(𝑥/𝑡1)(𝑦/𝑑). So by the
coincidence lemma,

𝔐𝑑𝑐 ⊩ 𝐵(𝑥/𝑡1)(𝑦/𝑑) iff 𝔐𝑑 ⊩ 𝐵(𝑥/𝑡1)(𝑦/𝑑) (5)

Since 𝔐𝑑 agrees with 𝔐 on the interpretation of 𝑡1 and 𝑡2, J𝑡1K𝔐𝑑 = J𝑡2K𝔐𝑑 . So by

40



2 First-Order Predicate Logic

induction hypothesis,

𝔐𝑑 ⊩ 𝐵(𝑥/𝑡1)(𝑦/𝑑) iff 𝔐𝑑 ⊩ 𝐵(𝑥/𝑡2)(𝑦/𝑑). (6)

From (2)–(6), we get
𝔐𝑑 ⊮ 𝐵(𝑥/𝑡2)(𝑦/𝑑). (7)

Now let 𝑒 be the alphabetically first constant that does not occur in 𝐵(𝑥/𝑡2). Assume
first that 𝑒 is distinct from 𝑑. Let 𝔐𝑒𝑑 be like 𝔐𝑑 except that J𝑒K𝔐𝑒𝑑 = J𝑑K𝔐𝑑 . Since
𝑒 doesn’t occur in 𝐵(𝑥/𝑡2)(𝑦/𝑑), 𝔐𝑒𝑑 and 𝔐𝑑 agree on all symbols in 𝐵(𝑥/𝑦2)(𝑦/𝑑).
So by the coincidence lemma,

𝔐𝑑 ⊩ 𝐵(𝑥/𝑡2)(𝑦/𝑑) iff 𝔐𝑒𝑑 ⊩ 𝐵(𝑥/𝑦2)(𝑦/𝑑). (8)

By induction hypothesis,

𝔐𝑒𝑑 ⊩ 𝐵(𝑥/𝑡2)(𝑦/𝑑) iff 𝔐𝑒𝑑 ⊩ 𝐵(𝑥/𝑡2)(𝑦/𝑒). (9)

Finally, let 𝔐𝑒 be like 𝔐 except that J𝑒K𝔐𝑒 = J𝑒K𝔐𝑒𝑑 . By the coincidence lemma,

𝔐𝑒𝑑 ⊩ 𝐵(𝑥/𝑡2)(𝑦/𝑒) iff 𝔐𝑒 ⊩ 𝐵(𝑥/𝑡2)(𝑦/𝑒). (10)

From (7), (8), (9), and (10), we get

𝔐𝑒 ⊮ 𝐵(𝑥/𝑡2)(𝑦/𝑒). (11)

We assumed that 𝑒 is distinct from 𝑑. If 𝑒 and 𝑑 are the same constant, we get (11)
directly from (7). From (11) and definition 2.10, we conclude that

𝔐 ⊮ ∀𝑦𝐵(𝑥/𝑡2). (12)

We’ve shown that if 𝔐 ⊮ ∀𝑦𝐵(𝑥/𝑡1) then 𝔐 ⊮ ∀𝑦𝐵(𝑥/𝑡2). Swapping 𝑡1 and 𝑡2
throughout the argument, we can equally show that if 𝔐 ⊮ ∀𝑦𝐵(𝑥/𝑡2) then 𝔐 ⊮
∀𝑦𝐵(𝑥/𝑡1). So 𝔐 ⊩ ∀𝑦𝐵(𝑥/𝑡1) iff 𝔐 ⊩ ∀𝑦𝐵(𝑥/𝑡2).

Theorem 2.4: Soundness of the first-order calculus
If Γ ⊢ 𝐴, then Γ ⊨ 𝐴.

41



2 First-Order Predicate Logic

Proof. We first show a special case: if ⊢ 𝐴 then ⊨ 𝐴.
Assume ⊢ 𝐴. So there is a sequence 𝐴1, … , 𝐴𝑛 with 𝐴𝑛 = 𝐴 such that each 𝐴𝑘 in the
sequence is either an axiom or follows from previous sentences by MP or Gen. We
show by strong induction on 𝑘 that ⊨ 𝐴𝑘.
Case 1. 𝐴𝑘 is an instance of A1–A3. Then ⊨ 𝐴𝑘 by exercise 1.14 and the fact that the
interpretation of ‘¬’ and ‘ → ’ in definition 2.10 is the same as in propositional logic.
Case 2. 𝐴𝑘 is an instance of A4: ∀𝑥 𝐵 → 𝐵(𝑥/𝑡). Let 𝔐 be any model that satisfies ∀𝑥𝐵.
By definition 2.10, this means that 𝔐′ ⊩ 𝐵(𝑥/𝑐) for every model 𝔐′ that differs from
𝔐 at most in the object assigned to 𝑐, where 𝑐 does not occur in 𝐵. Let 𝔐′ be a model
of this kind with J𝑐K𝔐′ = J𝑡K𝔐′ . Since 𝐵(𝑥/𝑡) is obtained from 𝐵(𝑥/𝑐) by substituting
𝑡 for 𝑐, it follows by the extensionality lemma that 𝔐′ ⊩ 𝐵(𝑥/𝑡). Finally, since 𝑐 does
not occur in 𝐵(𝑥/𝑡), 𝔐′ and 𝔐 agree on the interpretation of all symbols in 𝐵(𝑥/𝑡).
So 𝔐 ⊩ 𝐵(𝑥/𝑡) by the coincidence lemma. This shows that any model that satisfies
∀𝑥𝐵 also satisfies 𝐵(𝑥/𝑡). Hence every model satisfies ∀𝑥𝐵 → 𝐵(𝑥/𝑡).
Case 3. 𝐴𝑘 is an instance of A5: ∀𝑥(𝐴 → 𝐵) → (𝐴 → ∀𝑥 𝐵), where 𝑥 is not free in 𝐴.
Let 𝔐 be any model that doesn’t satisfy 𝐴 → ∀𝑥𝐵. By definition 2.10, this means
that 𝔐 ⊩ 𝐴 and 𝔐′ ⊮ 𝐵(𝑥/𝑐) for some model 𝔐′ that differs from 𝔐 at most
in the object assigned to some constant 𝑐 that does not occur in 𝐵. Let 𝑑 be the al-
phabetically first constant that does not occur in either 𝐴 or 𝐵, and let 𝔐″ be like
𝔐′ except that J𝑑K𝔐″ = J𝑐K𝔐′ . By the extensionality lemma, 𝔐″ ⊮ 𝐵(𝑥/𝑑). By
the coincidence lemma, 𝔐″ ⊩ 𝐴. So 𝔐″ ⊮ 𝐴 → 𝐵(𝑥/𝑑). Since 𝑥 is not free in
𝐴, 𝐴 → 𝐵(𝑥/𝑑) is (𝐴 → 𝐵)(𝑥/𝑑). So 𝔐″ ⊮ (𝐴 → 𝐵)(𝑥/𝑑). By definition 2.10, this
means that 𝔐 ⊮ ∀𝑥(𝐴 → 𝐵). Contraposing, we’ve shown that any model that satisfies
∀𝑥(𝐴 → 𝐵) satisfies 𝐴 → ∀𝑥𝐵. So every model satisfies ∀𝑥(𝐴 → 𝐵) → (𝐴 → ∀𝑥𝐵).
Case 4. 𝐴𝑘 is an instance of A6: 𝑡1 = 𝑡1. Then ⊨ 𝐴𝑘 by clause (i) of definition 2.10.
Case 5. 𝐴𝑘 is an instance of A7: 𝑡1 = 𝑡2 → (𝐴(𝑥/𝑡1) → 𝐴(𝑥/𝑡2)). Let 𝔐 be any model
that satisfies 𝑡1 = 𝑡2. Then J𝑡1K𝔐 = J𝑡2K𝔐. By the extensionality lemma, 𝔐 ⊩ 𝐴(𝑥/𝑡1)
iff 𝔐 ⊩ 𝐴(𝑥/𝑡2). So any model that satisfies 𝑡1 = 𝑡2 and 𝐴(𝑥/𝑡1) also satisfies 𝐴(𝑥/𝑡2).
So every model satisfies 𝑡1 = 𝑡2 → (𝐴(𝑥/𝑡1) → 𝐴(𝑥/𝑡2)).
Case 6. 𝐴𝑘 is obtained by MP from earlier lines 𝐴𝑖 and 𝐴𝑖 → 𝐴𝑘. By induction hypoth-
esis, 𝐴𝑖 and 𝐴𝑖 → 𝐴𝑘 are valid. So 𝐴𝑘 is valid by clause (iii) of definition 2.10.
Case 7. 𝐴𝑘 is obtained by Gen from an earlier line 𝐴𝑖. So 𝐴𝑘 has the form ∀𝑥𝐴𝑖(𝑐/𝑥).
Let 𝔐 be any model. By definition 2.10, we need to show that 𝔐′ ⊩ 𝐴𝑖(𝑐/𝑥)(𝑥/𝑑)
for every model 𝔐′ that differs from 𝔐 at most in the object assigned to 𝑑, where

42



2 First-Order Predicate Logic

𝑑 is the alphabetically first individual constant that does not occur in 𝐴𝑖(𝑐/𝑥). Take
any such 𝔐′ and 𝑑. Let 𝔐″ be like 𝔐′ except that J𝑐K𝔐″ = J𝑑K𝔐′ . By induction
hypothesis, every model satisfies 𝐴𝑖; so 𝔐″ ⊩ 𝐴𝑖. If 𝑑 is 𝑐 then 𝔐″ = 𝔐′. Otherwise
𝑐 does not occur in 𝐴𝑖(𝑐/𝑥)(𝑥/𝑑). Either way, 𝔐″ and 𝔐′ agree on the interpretation
of every symbol in 𝐴𝑖(𝑐/𝑥)(𝑥/𝑑). By the coincidence lemma, it follows that 𝔐′ ⊩
𝐴𝑖(𝑐/𝑥)(𝑥/𝑑).
This completes the induction. We’ve shown that if ⊢ 𝐴 then ⊨ 𝐴. Now assume Γ ⊢
𝐴. That is, there is a deduction 𝐴 from Γ. This deduction can involve only finitely
many sentences 𝐴1, … , 𝐴𝑛 from Γ. So we also have 𝐴1, … , 𝐴𝑛 ⊢ 𝐴, By the deduction
theorem, it follows that ⊢ 𝐴1 → (… (𝐴𝑛 → 𝐴) …). From what we’ve just shown, we can
infer that ⊨ 𝐴1 → (… (𝐴𝑛 → 𝐴) …). It is easy to see that Γ ⊨ 𝐴 → 𝐵 iff Γ, 𝐴 ⊨ 𝐵. So we
have 𝐴1, … , 𝐴𝑛 ⊨ 𝐴 and thereby Γ ⊨ 𝐴.

Exercise 2.17 Soundness implies consistency: it is impossible to prove ⊥ in
the first-order calculus. Recall that a calculus is Post-complete if any addition of a
new axiom schema (that is not already provable in the calculus) makes the calculus
inconsistent. Can you outline a proof showing that the first-order calculus is not
Post-complete?

43


