
3 Completeness

In this chapter, we’re going to meet some important results about the powers and limita-
tions of first-order logic. Our starting point is the completeness theorem, which shows
that there is a mechanical way to check for first-order entailment. We’ll see that this pos-
itive result is tightly connected to some negative results: the compactness theorem and
the Löwenheim-Skolem theorems. These results concern the size of models, by which
we mean the size of their domain. To fully appreciate their implications, I’ll begin with
some background about the sizes of sets, which will be needed in later chapters anyway.

3.1 Cardinalities

{ Athens } is a set with a one member: the city Athens. We say that { Athens } has size 1.
{ Athens, Berlin } has size 2. { Athens, Berlin, Cairo } has size 3. And so on. It seems
straightforward. But now consider the set ℕ of natural numbers 0, 1, 2, 3, …. What is
its size?

The official set-theoretic term for the size of a set is cardinality. So { Athens, Berlin,
Cairo } has cardinality 3. Finite sets have a finite cardinalities, which are natural numbers.
But infinite sets also have a cardinality. These aren’t natural numbers, but numbers of a
more general sort, called cardinals. The infinite cardinals are also known as the alephs,
because they are conventionally written using the Hebrew letter ‘ℵ’ (“aleph”). For ex-
ample, the cardinality of ℕ is called ‘ℵ0’. This is the smallest infinite cardinal. The next
larger one is ℵ1, followed by ℵ2, and so on.

How do we determine the cardinality of an infinite set? The crucial idea goes back
to Galileo and Hume, but was only fully developed by Georg Cantor in the 19th century.
Following Galileo and Hume, Cantor stipulates that two sets have the same cardinality
iff there is a one-to-one correspondence between their members.

To make this precise, we define the notion of a one-to-one correspondence, or bijec-
tion.
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3 Completeness

Definition 3.1
A function 𝑓 from a set 𝐴 to a set 𝐵 is a bijection if it satisfies the following two
conditions.

(i) For every 𝑥, 𝑦 ∈ 𝐴, if 𝑓 (𝑥) = 𝑓 (𝑦) then 𝑥 = 𝑦. (Injectivity)
(ii) For every 𝑏 ∈ 𝐵 there is some 𝑎 ∈ 𝐴 such that 𝑓 (𝑎) = 𝑏. (Surjectivity)

Intuitively, a bijection pairs up each element of 𝐴 with exactly one element of 𝐵, and
vice versa, so that every element of either set gets a unique partner. As a shorthand, we
say that sets 𝐴 and 𝐵 are equinumerous if there is a bijection from 𝐴 to 𝐵. (In this case,
there is always also a bijection from 𝐵 to 𝐴.)

The Galileo-Hume-Cantor principle now says that two sets have the same cardinality
iff they are equinumerous. Obviously, no finite set of numbers is equinumerous with
ℕ. So ℕ has an infinite cardinality. We define ‘ℵ0’ to name this cardinality. Using the
Galileo-Hume-Cantor principle, we can determine, for any other set, whether it also has
cardinality ℵ0.

Consider, for example, the set of odd numbers 1, 3, 5, 7, …. The following function 𝑓
is a bijection from ℕ to the set of odd numbers:

𝑓 (𝑛) = 2𝑛 + 1.

The function maps 0 to 1, 1 to 3, 2 to 5, and so on. Every natural number is mapped to
a unique odd number, and no odd number is left unmapped. So the set of odd numbers
also has cardinality ℵ0.

Galileo found this paradoxical: how can there be as many odd numbers as natural
numbers, given that the odd numbers are a proper subset of the natural numbers? Never
mind, said Cantor: the resulting theory of cardinalities is consistent and mathematically
fruitful, even if it may initially seem strange.

Sets that are equinumerous with ℕ are also called countably infinite or denumerable.
A set is countable if it is either finite or countably infinite. The word ‘countable’ alludes
to the fact that a bijection between ℕ and another set effectively assigns a “counter”
to each member of the set. For example, the above bijection between ℕ and the odd
numbers assigns the counter 0 to 1, 1 to 3, 2 to 5, and so on.
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Exercise 3.1 Show that (a) the set of even natural numbers and (b) the set of
integers … , −2, −1, 0, 1, 2, … are both countably infinite.

Are there any uncountable sets? We might suspect that the set of pairs of natural
numbers is uncountable. But not so. Cantor’s zig-zag method shows that there is a
bijection between ℕ and the set of pairs of natural numbers. We begin by arranging all
pairs of natural numbers in a two-dimensional grid.

(0,0) (0,1) (0,2) (0,3) (0,4) ⋯

(1,0) (1,1) (1,2) (1,3) (1,4) ⋯

(2,0) (2,1) (2,2) (2,3) (2,4) ⋯

(3,0) (3,1) (3,2) (3,3) (3,4) ⋯

(4,0) (4,1) (4,2) (4,3) (4,4) ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

0

1

2

3

4

⋮

0 1 2 3 4 ⋯

We then define a path through this grid that visits each cell exactly once. The orange
arrows indicate that path. It effectively enumerates all pairs ⟨𝑥, 𝑦⟩, starting with ⟨0, 0⟩,
followed by ⟨0, 1⟩, ⟨1, 0⟩, ⟨2, 0⟩, ⟨1, 1⟩, ⟨0, 2⟩, and so on. The enumeration amounts to a
lists of all the pairs. We get a bijection to ℕ by assigning to each pair its position in the
list ⟨𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑤𝑖𝑡ℎ𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛0⟩. Thus ⟨0, 0⟩ is mapped to 0, ⟨0, 1⟩ to 1, ⟨1, 0⟩ to 2, and so
forth.

(We can find a formula for this bijection. As we follow the arrow, the pairs before any
given pair (𝑥, 𝑦) comprise all the pairs on the left-to-top diagonals before (𝑥, 𝑦), which
have 1, 2, 3, etc. pairs, plus the 𝑦 pairs on the diagonal containing (𝑥, 𝑦) itself. The total
number of pairs preceding (𝑥, 𝑦) is therefore (1 + 2 + … + (𝑥 + 𝑦)) + 𝑦. In exercise 1.4,
you showed that 1 + 2 + … + (𝑥 + 𝑦) = (𝑥 + 𝑦)(𝑥 + 𝑦 + 1)/2. So the position of any pair
(𝑥, 𝑦) in the enumeration is (𝑥 + 𝑦)(𝑥 + 𝑦 + 1)/2 + 𝑦.)

Exercise 3.2 Show that the set of ordered triples of natural numbers is countably
infinite.
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But it’s true that not all sets are countable. Cantor established this with another pow-
erful technique: diagonalization.

Theorem 3.1: Cantor’s Theorem
The set of all sets of natural numbers is not countable.

Proof. Assume for reductio that the set of all sets of natural numbers is countable. This
means that we can list them as 𝑆0, 𝑆1, 𝑆2, …. Now consider the set 𝐷 = {𝑛 ∈ ℕ ∶ 𝑛 ∉
𝑆𝑛}. This is a set of natural numbers, so it must be somewhere in the list. That is, there
is some 𝑆𝑘 such that 𝐷 = 𝑆𝑘. Now the number 𝑘 is either in 𝐷 or not. If 𝑘 is in 𝐷 then
by definition of 𝐷, 𝑘 is not in 𝑆𝑘. This is impossible, as 𝐷 = 𝑆𝑘. If 𝑘 is not in 𝐷, then
by definition of 𝐷, 𝑘 is in 𝑆𝑘. Again, this is impossible.

We can again picture this method with a two-dimensional grid.

3 7 7 3 3 ⋯

7 7 7 3 3 ⋯

7 7 3 7 7 ⋯

3 7 7 3 7 ⋯

3 7 7 7 7 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

𝑆0

𝑆1

𝑆2

𝑆3

𝑆4

⋮

0 1 2 3 4 …

Each row represents a set of natural numbers. Each column stands for a number. A
checkmark indicates that the number is in the set, a cross that it is not. (So 0 is in 𝑆0, 1 is
not in 𝑆0, 2 is not in 𝑆0, and so on.) Cantor’s method now looks at the diagonal, in bold.
It defines the new set 𝐷 by inverting the diagonal, swapping crosses and checkmarks.
In the picture, the inverted diagonal would begin with 73773…, meaning that 𝐷 does
not contain 0, does contain 1, does not contain 2 and 3, does contain 4, and so on. The
so-defined set 𝐷 is called the antidiagonal of the grid. It can’t be anywhere in the list.
And so there can be no list of all sets of natural numbers.

Theorem 3.2 can be strengthened:
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Theorem 3.2: Cantor’s Theorem (general version)
For any set 𝐴, the set of subsets of 𝐴 has strictly greater cardinality than 𝐴.

Proof. The proof proceeds essentially as before. Suppose for reductio that there is a
bijection 𝑓 ∶ 𝐴 → 𝒫(𝐴), where 𝒫(𝐴) (called the power set of 𝐴) is the set of all subsets
of 𝐴. Define the antidiagonal set 𝐷 as the set of all members 𝑋 of 𝐴 such that 𝑋 is not
in 𝑓 (𝑋) – for short: 𝐷 = {𝑋 ∈ 𝐴 ∶ 𝑋 ∉ 𝑓 (𝑋)}. Since 𝐷 is a subset of 𝐴, it is in 𝒫(𝐴).
But it can’t be an output of 𝑓 . For suppose it is. That is, suppose 𝐷 = 𝑓 (𝑋) for some
𝑋 ∈ 𝐴. Either 𝑋 is in 𝐷 or not. If 𝑋 is in 𝐷, then by definition of 𝐷, 𝑋 is not in 𝑓 (𝑋).
But 𝑓 (𝑋) = 𝐷, so this is impossible. If 𝑋 is not in 𝐷, then by definition of 𝐷, 𝑋 is in
𝑓 (𝑋). Again, this is impossible.

Cantor’s theorem reveals a hierarchy of infinities. Starting with ℕ, we can produce
larger and larger infinities by taking power sets: 𝒫(ℕ) is larger than ℕ, 𝒫(𝒫(ℕ)) is
even larger, 𝒫(𝒫(𝒫(ℕ))) is larger than that, and so on, without end. There are infinitely
many infinite cardinals.

Exercise 3.3 Show that if 𝐴 and 𝐵 are countably infinite sets, then their union
𝐴 ∪ 𝐵 is countably infinite.

Exercise 3.4 Show that if a first-order language has countably many non-logical
symbols, then the set of all sentences of the language is countably infinite.

3.2 Planning the completeness proof

In section 1.4, we showed that all valid sentences in propositional logic are derivable
from the axiom schemata A1–A3 by Modus Ponens. This particular result wasn’t easy
to foresee, but it wasn’t a surprise that there is some mechanical way of checking if a
sentence of propositional logic is valid. Models of propositional logic are essentially
finitary. A model is a truth-value assignment to the sentence letters. Since each sentence
of propositional logic is composed of finitely many sentence letters, and there are only
finitely many ways of assigning truth-values to these sentence letters, it is to be expected
that there is a finitary algorithm for deciding whether all of these assignments make the
sentence true.

In first-order logic, the situation is very different. A first-order model consists of an
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arbitrary set 𝐷 together with an interpretation of the non-logical vocabulary, where, for
example, every subset of 𝐷 is a possible interpretation of any monadic predicate. Even
if 𝐷 itself is countable, this means that there are usually uncountably many models with
that domain. And 𝐷 doesn’t have to be countable. It can have any cardinality whatsoever.
The space of first-order models is enormous. Their number is vastly greater than ℵ0.
There is, in fact, no aleph big enough to measure the number of first-order models. It is
therefore astonishing that there is a finitary, mechanical method – a proof system – by
which one can find every sentence that is true across the realm of all first-order models.
Astonishing, but true, as Kurt Gödel showed in 1929.

Gödel’s completeness theorem (not to be confused with his incompleteness theorems
that we’ll discuss in later chapters) is noteworthy for other reasons as well. For example,
it supports the conjecture that all intuitively valid mathematical arguments can be formal-
ized as deductions in the first-order calculus. Let’s take for granted, for the sake of the
argument, that every mathematical statement can be expressed in a first-order language.
Now suppose some mathematical argument can’t be replicated in the first-order calcu-
lus. By the completeness theorem, it follows that there is a model in which the premises
are true but the conclusion false. This strongly suggests that the argument wasn’t valid.
We’ll meet further applications of the completeness theorem later. First we need to prove
it.

Our proof will follow Henkin’s 1949 method, which we used in chapter 1 to prove the
completeness of propositional logic. Let’s recall the key steps.

We want to show that whenever a sentence 𝐴 is entailed by a set of sentences Γ (mean-
ing that every model that makes all members of Γ true also makes 𝐴 true), then there is a
deduction of 𝐴 from Γ. For short: if Γ ⊨ 𝐴 then Γ ⊢ 𝐴. The proof is by contraposition.
We assume Γ ⊬ 𝐴 and derive Γ ⊭ 𝐴, as follows.

1. Assume Γ ⊬ 𝐴.
2. Infer that Γ ∪ {¬𝐴} is consistent.
3. Show that Γ ∪ {¬𝐴} can be extended to a maximal consistent set Γ+.
4. Construct a model 𝔐 based on Γ+ in which all members of Γ+ are true.
5. Infer that Γ ⊭ 𝐴.

As in chapter 1, we call a set of sentences consistent if no contradiction can be derived
from it. That is, Γ is consistent iff there is no sentence 𝐴 such that Γ ⊢ 𝐴 and Γ ⊢ ¬𝐴.
Equivalently (as you showed in exercise 1.8; the proof carries over from propositional
logic), Γ is consistent iff Γ ⊬ ⊥.

Steps 2 and 5 are easy. The following lemma establishes step 2, and is proved just as
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its propositional counterpart, lemma 1.2.

Lemma 3.1
Γ ⊬ 𝐴 iff Γ ∪ {¬𝐴} is consistent.

Proof. Suppose Γ ∪ {¬𝐴} is inconsistent. Then Γ ⊢ ¬¬𝐴 by RAA and so Γ ⊢ 𝐴 by
DNE. Contraposing, this means that if Γ ⊬ 𝐴 then Γ ∪ {¬𝐴} is consistent. Conversely,
suppose Γ ⊢ 𝐴. Then Γ, ¬𝐴 ⊢ 𝐴 by Mon and Γ, ¬𝐴 ⊢ ¬𝐴 by Mon and Id. So Γ∪{¬𝐴}
is inconsistent.
It remains to fill in steps 3 and 4: we need to show that every consistent set of sentences

is satisfiable.
Here is the plan. Let Γ be a consistent set of sentences in some first-order language

𝔏 (with identity and function symbols). We’ll show how one can construct a model
𝔐 in which all members of Γ are true. As in chapter 1, we first extend Γ to a maximal
consistent set Γ+ that will guide the construction of the model. For example, if Γ contains
𝐹𝑎 ∨ 𝐺𝑏, it’s not obvious if our model should satisfy 𝐹𝑎 or 𝐺𝑏 or both. Γ+ will directly
contain 𝐹𝑎 or 𝐺𝑏 or both, so it answer this question.

Suppose we have 𝐹𝑎 in Γ+. Our model 𝔐 must then contain an object J𝑎K𝔐 denoted
by 𝑎 that falls in the extension J𝐹K𝔐 of 𝐹. The nature of the object J𝑎K𝔐 is irrelevant. It
proves useful to choose the individual constant 𝑎 as the object denoted by 𝑎. Then we
can say that the extension of 𝐹 comprises all individual constants 𝑐 for which 𝐹𝑐 ∈ Γ+.
(It might seem odd to have a model whose domain consists of individual constants, and
in which each constant denotes itself. But nothing in the definition of a first-order model
prevents us from doing this.)

Unfortunately, there are some complications. Suppose Γ contains ∃𝑥𝐹𝑥. (Which is
short for ¬∀𝑥¬𝐹𝑥.) We want this sentence to be true in our model 𝔐. So there must
be some object in J𝐹K𝔐. But if J𝐹K𝔐 is defined as the set of individual constants 𝑐 for
which 𝐹𝑐 ∈ Γ+, there might be no such object, as there might be no constant 𝑐 for which
𝐹𝑐 ∈ Γ+. We need to ensure that this doesn’t happen. That is, we need to ensure that
for each existential sentence ∃𝑥𝐹𝑥 in Γ+, there is a “witnessing” sentence 𝐹𝑐 in Γ+. The
problem is that Γ may already contain ¬𝐹𝑐 for every individual constant 𝑐. Then we
can’t add the required witness without making Γ inconsistent.

To get around this problem, we’ll construct Γ+ in an extend language 𝔏+ that adds
new individual constants to 𝔏. We can use these constants to ensure that every existential
sentence in Γ has a witness.

Another complication arises from the presence of the identity symbol. If we let each
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individual constant denote itself, any identity statement involving different individual
constants will be false. After all, no constant is identical to any other constant. But
𝑎 = 𝑏 is consistent, and might be in Γ and therefore in Γ+. So we’ll actually let each
constant denote a set of terms: the constant 𝑎 will denote the set of closed terms 𝑡 for
which 𝑎 = 𝑡 is in Γ+.

Let’s fill in the details.

3.3 The completeness proof

We’ll show that every consistent set of first-order sentences is satisfiable. As we’ve seen
above (and as we’ll spell out again below), from this it is only a small step to the com-
pleteness theorem.

So let Γ be a consistent set of sentences in a first-order language 𝔏. Let 𝔏+ be an
extension of 𝔏 with (countably) infinitely many new individual constants. We’ll extend
Γ to a maximal consistent set in 𝔏+. First, though, we need to confirm that Γ itself is
still consistent in the extended language 𝔏+. Consistency is language-relative because
the language determines which instances of the axioms are available. As we switch from
𝔏 to 𝔏+, new axioms become available. We need to confirm that these new axioms don’t
allow deriving a contradiction from Γ.

Lemma 3.2
If Γ is a set of 𝔏-sentences that is consistent within 𝔏, and 𝔏+ extends 𝔏 by a set
of new individual constants, then Γ is consistent within 𝔏+.

Proof by contraposition. Assume that Γ is inconsistent within 𝔏+. Then there is a
deduction 𝐴1, … , 𝐴𝑛 of ⊥ from Γ, where each 𝐴𝑖 is an 𝔏+-sentence. Being finite, the
deduction only uses finitely many of the new constants: call them 𝑐1, … , 𝑐𝑘. The deduc-
tion also can’t use more than finitely many of the old constants in 𝔏. Since first-order
languages have infinitely many constants, we can choose 𝑘 distinct constants 𝑑1, … , 𝑑𝑘
from 𝔏 that don’t occur in the deduction. Now consider the sequence of sentences
𝐴′

1, … , 𝐴′𝑛 that results from 𝐴1, … , 𝐴𝑛 by replacing each 𝑐𝑖 by 𝑑𝑖. It is easy to see that
(i) if 𝐴𝑖 is an axiom then so is 𝐴′

𝑖 ;
(ii) if 𝐴𝑖 ∈ Γ then 𝐴′

𝑖 ∈ Γ (sentences in Γ don’t contain any new constants);
(iii) if 𝐴𝑖 follows from 𝐴1, … , 𝐴𝑖−1 by MP or Gen, then 𝐴′

𝑖 follows from 𝐴′
1, … , 𝐴′

𝑖−1
by MP or Gen.
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So 𝐴′
1, … , 𝐴′𝑛 is a deduction of ⊥ from Γ, showing that Γ is inconsistent within 𝔏.

Next, we show that Γ can be extended to a maximal consistent set Γ+ in which every
existential sentence ∃𝑥𝐴 has a witness 𝐴(𝑥/𝑐). Such sets are called Henkin sets.

Definition 3.2
A set of sentences Γ in a first-order language 𝔏 is a Henkin set in 𝔏 if it satisfies
the following conditions.

(i) Γ is consistent (within 𝔏).
(ii) For every 𝔏-sentence 𝐴, either 𝐴 ∈ Γ or ¬𝐴 ∈ Γ. (Maximality)
(iii) Whenever Γ contains a sentence of the form ¬∀𝑥𝐴 then it also contains

¬𝐴(𝑥/𝑐) for some individual constant 𝑐. (Witnessing)

In the presence of the other conditions, (iii) is equivalent to the requirement that if Γ
contains ¬∀𝑥¬𝐴 then it contains 𝐴(𝑥/𝑐) for some 𝑐.

Exercise 3.5 Show that if Γ is a Henkin set and Γ ⊢ 𝐴, then 𝐴 ∈ Γ.

Exercise 3.6 Show that if Γ is a Henkin set (in a first-order language with iden-
tity) then for every closed term 𝑡 of the language there is an individual constant 𝑐
such that 𝑡 = 𝑐 is in Γ.

Exercise 3.7 Show that if Γ is a Henkin set then Γ contains ∀𝑥𝐴 iff Γ contains
𝐴(𝑥/𝑐) for every individual constant 𝑐.

Lemma 3.3
Every consistent set of 𝔏-sentences Γ can be extended to a Henkin set Γ+ in any
language 𝔏+ that adds infinitely many individual constants to 𝔏.

Proof. Let Γ be a consistent set of 𝔏-sentences. Let 𝐴1, 𝐴2, … be a list of all 𝔏+-
formulas with exactly one free variable. We define a sequence of sets Γ0, Γ1, … as
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follows:

Γ0 ∶= Γ
Γ𝑛+1 ∶= Γ𝑛 ∪ {¬∀𝑥𝐴𝑛 → ¬𝐴𝑛(𝑥/𝑐𝑛)},

where 𝑥 is the free variable in 𝐴𝑛 and 𝑐𝑛 is a new 𝔏+-constant that does not occur in
Γ𝑛. (There must be some such constant because 𝔏+ contains infinitely many constants
that don’t occur in Γ.) Let Γ′ be the union ⋃𝑛 Γ𝑛 of all sets in this sequence. (That is,
a sentence 𝐴 is in Γ′ iff it is in some Γ𝑛.)
We show that Γ′ is consistent. Suppose not. Then there is a derivation of ⊥ from Γ
and the “Henkin sentences” ¬∀𝑥𝐴𝑛 → ¬𝐴𝑛(𝑥/𝑐𝑛). This derivation can use only finitely
many of the Henkin sentences. So one of the Γ𝑛 must be inconsistent. But we can show
by induction on 𝑛 that each Γ𝑛 is consistent.
The base case, for 𝑛 = 0, holds by assumption: Γ is consistent.
For the inductive step, assume Γ𝑛 is consistent and suppose for reductio that Γ𝑛+1 is
inconsistent. By RAA, we then have

Γ𝑛 ⊢ ¬(¬∀𝑥𝐴𝑛 → ¬𝐴𝑛(𝑥/𝑐𝑛)). (1)

It’s easy to show that if Γ𝑛 ⊢ ¬(𝐴 → 𝐵) then Γ𝑛 ⊢ 𝐴 and Γ𝑛 ⊢ ¬𝐵. (Both ¬(𝐴 → 𝐵) → 𝐴
and ¬(𝐴 → 𝐵) → ¬𝐵 are truth-functional tautologies.) So (1) implies

Γ𝑛 ⊢ ¬∀𝑥𝐴𝑛, and (2)
Γ𝑛 ⊢ ¬¬𝐴𝑛(𝑥/𝑐𝑛). (3)

From (3), we get Γ𝑛 ⊢ 𝐴𝑛(𝑥/𝑐𝑛) by DNE. As 𝑐𝑛 does not occur in Γ𝑛, Gen yields

Γ𝑛 ⊢ ∀𝑥𝐴𝑛. (4)

(2) and (4) show that Γ𝑛 is inconsistent, which contradicts the induction hypothesis.
Next, we extend Γ′ to a maximal consistent set Γ+. The construction follows the proof
of Lindenbaum’s Lemma (lemma 1.4). Let 𝑆1, 𝑆2, … be a list of all 𝔏+-sentences. Start-
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ing with Γ′, we define another sequence of sets Γ′
0, Γ′

1, …:

Γ′
0 ∶= Γ′

Γ′
𝑛+1 ∶=

⎧{
⎨{⎩
Γ′𝑛 ∪ {𝑆𝑛} if Γ′𝑛 ∪ {𝑆𝑛} is consistent,
Γ′𝑛 ∪ {¬𝑆𝑛} otherwise.

We show by induction that each Γ′𝑛 is consistent. The base case, for 𝑛 = 0, holds
because Γ′

0 is Γ′, which we’ve just shown to be consistent. For the inductive step,
assume that a set Γ′𝑛 in the list is consistent. By lemma 1.3 (which only depends on
RAA and therefore also holds for the first-order calculus), either Γ′𝑛∪{𝑆𝑛} or Γ′𝑛∪{¬𝑆𝑛}
is consistent. If Γ′𝑛 ∪ {𝑆𝑛} is consistent, then Γ′

𝑛+1 is Γ′𝑛 ∪ {𝑆𝑛} (by construction), so
Γ′

𝑛+1 is consistent. If Γ′𝑛 ∪ {𝑆𝑛} is not consistent, then Γ′
𝑛+1 is Γ′𝑛 ∪ {¬𝑆𝑛}, so again

Γ′
𝑛+1 is consistent.

Let Γ+ be the union ⋃𝑛 Γ′𝑛 of Γ′
0, Γ′

1, …. Evidently, Γ is a subset of Γ+. We show
that Γ+ is a Henkin set.
Maximality holds because for each sentence 𝑆𝑛, one of 𝑆𝑛 or ¬𝑆𝑛 is in Γ′

𝑛+1 and there-
fore in Γ+.
To show consistency, suppose that Γ+ is inconsistent. Then there are sentences 𝐴1, … , 𝐴𝑛
in Γ+ from which ⊥ is deducible. All of these sentences have to occur somewhere on
the list 𝑆1, 𝑆2, …. Let 𝑆𝑗 be the first sentence from 𝑆1, 𝑆2, … that occurs after all the
𝐴1, … , 𝐴𝑛. Then all 𝐴1, … , 𝐴𝑛 are in Γ′

𝑗 . So Γ′
𝑗 is inconsistent. But we’ve seen that all

of the Γ′𝑛 are consistent.
It remains to show that Γ+ has the witnessing property: whenever ¬∀𝑥𝐴 is in Γ+ then
Γ+ contains a corresponding sentence ¬𝐴(𝑥/𝑐). Let 𝐴 be any formula in which 𝑥 is the
only free variable. By construction, Γ′ contains ¬∀𝑥𝐴 → ¬𝐴(𝑥/𝑐), for some constant
𝑐. Since Γ+ extends Γ′, it also contains this sentence. So if Γ+ contains ¬∀𝑥𝐴 then it
contains ¬𝐴(𝑥/𝑐), by MP and exercise 3.5.

Next, we show how to read off a model from a Henkin set. The model’s domain will
consist of sets of closed terms, so that we can stipulate that each constant 𝑐 denotes the
set of all terms 𝑡 for which 𝑐 = 𝑡 is in the Henkin set. Let’s have a closer look at these
sets.
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Definition 3.3
A binary relation 𝑅 on some domain 𝐷 is an equivalence relation if it is

(i) reflexive: for every 𝑥 ∈ 𝐷, 𝑥𝑅𝑥;
(ii) symmetric: for every 𝑥, 𝑦 ∈ 𝐷, if 𝑥𝑅𝑦 then 𝑦𝑅𝑥; and
(iii) transitive: for every 𝑥, 𝑦, 𝑧 ∈ 𝐷, if 𝑥𝑅𝑦 and 𝑦𝑅𝑧 then 𝑥𝑅𝑧.

Lemma 3.4
If Γ is a Henkin set in a language 𝔏 then the relation 𝑅 that holds between 𝔏-terms
𝑡, 𝑠 iff 𝑡 = 𝑠 ∈ Γ is an equivalence relation.

Proof. By A6, ⊢ 𝑡 = 𝑡. So 𝑡 = 𝑡 ∈ Γ by exercise 3.5. Symmetry and transitivity follow
similarly from exercise 2.13.

An equivalence relation partitions the domain over
which it is defined into distinct cells so that within each
cell, all objects stand in the relation to one another. These
cells are called equivalence classes. If 𝑅 is an equivalence
relation and 𝑥 an object in the domain, we write ‘[𝑥]𝑅’
for the equivalence class of 𝑅 that contains 𝑥. That is,
[𝑥]𝑅 = {𝑦 ∈ 𝐷 ∶ 𝑥𝑅𝑦}. If the relation 𝑅 is clear from
the context, we may simply write ‘[𝑥]’.

When we’re talking about a Henkin set Γ, the relevant
equivalence relation is the one defined in lemma 3.4. In
what follows, ‘[𝑡]’ therefore denotes the set of all terms 𝑠
for which 𝑡 = 𝑠 ∈ Γ.

The model 𝔐 that we’ll construct from a Henkin set Γ will have as its domain the
set of all equivalence classes [𝑡], where 𝑡 is a closed term in the language of Γ. By
exercise 3.6, [𝑡] always contains an individual constant. So we can also say that 𝐷 is the
set of all [𝑐] where 𝑐 is an individual constant in the language of Γ.

We’ll stipulate that the interpretation function 𝐼 of 𝔐 assigns [𝑐] to each constant 𝑐. So
we’ll have J𝑐K𝔐 = [𝑐]. We’ll extend this to function terms, so that J𝑓 (𝑐)K𝔐 = [𝑓 (𝑐)]. But
we can’t directly stipulate this, because interpretation functions don’t assign denotations
to complex terms. We have to interpret 𝑓 as denoting a function on 𝐷. By definition 2.9,
The denotation of 𝑓 (𝑐) is the denotation of 𝑓 applied to the denotation of 𝑐. Since the
denotation of 𝑐 is [𝑐], we want the denotation of 𝑓 to be a function that returns [𝑓 (𝑐)]
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for input [𝑐]. So we’ll stipulate that for any one-place function symbol 𝑓 and constant 𝑐,
𝐼(𝑓 ) is the function that maps [𝑐] to [𝑓 (𝑐)]. Similarly for many-place function symbols.

This kind of stipulation can go wrong. Suppose [𝑐] contains two constants 𝑐 and 𝑑,
and [𝑓 (𝑐)] ≠ [𝑓 (𝑑)]. Our stipulation would entail that 𝐼(𝑓 ) returns [𝑓 (𝑐)] for input [𝑐]
and [𝑓 (𝑑)] for input [𝑑]. But if 𝑐 and 𝑑 are both in [𝑐] then [𝑐] = [𝑑]. And a function
can’t return two different values for the same input. We must show that this problem can
never arise.

A similar issue arises for the interpretation of predicates. To ensure that 𝐹𝑡 is in Γ iff
𝔐 ⊩ 𝐹𝑡, we’ll stipulate that 𝐼(𝐹) is the set of all [𝑡] for which 𝐹𝑡 ∈ Γ. This set isn’t
well-defined if there are cases where [𝑡] contains two terms 𝑡 and 𝑠 for which 𝐹𝑡 ∈ Γ but
𝐹𝑠 ∉ Γ.

The following lemma shows that neither problem can arise.

Lemma 3.5
If 𝑓 is an 𝑛-ary function symbol, 𝑃 an 𝑛-ary predicate symbol, and
𝑠1, … , 𝑠𝑛, 𝑡1, … , 𝑡𝑛 are terms such that [𝑠1] = [𝑡1], … , [𝑠𝑛] = [𝑡𝑛], then

(i) [𝑓 (𝑠1, … , 𝑠𝑛)] = [𝑓 (𝑡1, … , 𝑡𝑛)];
(ii) 𝑃(𝑠1, … , 𝑠𝑛) ∈ Γ iff 𝑃(𝑡1, … , 𝑡𝑛) ∈ Γ.

Proof. Assume [𝑠𝑖] = [𝑡𝑖], for 𝑖 = 1, 2, … , 𝑛. So Γ contains 𝑠𝑖 = 𝑡𝑖, for each 𝑖 =
1, 2, … , 𝑛.
(i). By A6 (and exercise 3.5), 𝑓 (𝑠1, … , 𝑠𝑛) = 𝑓 (𝑠1, … , 𝑠𝑛) is in Γ. By 𝑛 instances
of A7 and MP, it follows that 𝑓 (𝑠1, … , 𝑠𝑛) = 𝑓 (𝑡1, … , 𝑡𝑛) is in Γ, which entails that
[𝑓 (𝑠1, … , 𝑠𝑛)] = [𝑓 (𝑡1, … , 𝑡𝑛)].
(ii). Assume 𝑃(𝑠1, … , 𝑠𝑛) is in Γ. By 𝑛 instances of A7 and MP, 𝑃(𝑡1, … , 𝑡𝑛) is in Γ
as well. The converse holds by the same reasoning.

Lemma 3.5 ensures that the following definition is legitimate.

Definition 3.4
If Γ be a Henkin set in a language 𝔏 then the Henkin model 𝔐Γ of Γ is defined
as follows.
The domain 𝐷 of 𝔐Γ is the set of all [𝑐] where 𝑐 is an individual constant of 𝔏.
The interpretation function 𝐼 of 𝔐Γ maps
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(i) each individual constant 𝑐 to [𝑐],
(ii) each 𝑛-ary function symbol 𝑓 to the function on 𝐷 that maps any 𝑛 objects

[𝑡1], … , [𝑡𝑛] to [𝑓 (𝑡1, … , 𝑡𝑛)],
(iii) each (non-logical) 𝑛-ary predicate symbol 𝑃 to the set of all 𝑛-tuples

⟨[𝑡1], … , [𝑡𝑛]⟩ such that 𝑃(𝑡1, … , 𝑡𝑛) ∈ Γ.

Now remember what we’re trying to achieve. We want to show that every consistent
set of sentences is satisfiable. We’ve shown in lemma 3.3 that every such set can be
extended to a Henkin set. Definition 3.4 tells us how to construct a model from this
Henkin set. It remains to show that all members of the Henkin set (and therefore all
members of the original set) are true in this model.

We’ll need the following two facts.

Lemma 3.6
If 𝔐 is a Henkin model and 𝑡 a closed term then J𝑡K𝔐 = [𝑡].

Proof. The proof is by induction on complexity of 𝑡. The base case is covered by clause
(i) in definition 3.4. So let 𝑡 be 𝑓 (𝑡1, … , 𝑡𝑛). Then

J𝑓 (𝑡1, … , 𝑡𝑛)K𝔐 = J𝑓 K𝔐(J𝑡1K𝔐, … , J𝑡𝑛K𝔐) by def. 2.10
= J𝑓 K𝔐([𝑡1], … , [𝑡𝑛]) by ind. hyp.
= [𝑓 (𝑡1, … , 𝑡𝑛)] by def. 3.4.

Lemma 3.7
If 𝔐 is a Henkin model and 𝐴 a formula then 𝔐 ⊩ ∀𝑥𝐴 iff 𝔐 ⊩ 𝐴(𝑥/𝑐) for all
individual constants 𝑐.

Proof. We first show that if 𝔐𝑑∶[𝑐] is a model just like 𝔐 except that it assigns [𝑐] to
𝑑, and 𝑑 does not occur in 𝐴, then

𝔐𝑑∶[𝑐] ⊩ 𝐴(𝑥/𝑑) iff 𝔐 ⊩ 𝐴(𝑥/𝑐). (1)

There are two cases to consider. If 𝑑 is 𝑐 then 𝔐𝑑∶[𝑐] is 𝔐 and (1) holds trivially.
If 𝑑 is a constant other than 𝑐, then 𝑑 does not occur in 𝐴(𝑥/𝑐). So 𝔐𝑑∶[𝑐] and 𝔐
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agree on the interpretation of all symbols in 𝐴(𝑥/𝑐) and we have 𝔐𝑑∶[𝑐] ⊩ 𝐴(𝑥/𝑐)
iff 𝔐 ⊩ 𝐴(𝑥/𝑐) by the coincidence lemma (lemma 2.1). Also, by the extensionality
lemma (lemma 2.2), 𝔐𝑑∶[𝑐] ⊩ 𝐴(𝑥/𝑑) iff 𝔐𝑑∶[𝑐] ⊩ 𝐴(𝑥/𝑐). So (1) holds.
Now, by definition 2.10, 𝔐 ⊩ ∀𝑥𝐴 iff 𝔐′ ⊩ 𝐴(𝑥/𝑑) for every model 𝔐′ that differs
from 𝔐 at most in the object assigned to 𝑑, where 𝑑 is the alphabetically first constant
that does not occur in 𝐴. Since each such 𝔐′ has the same domain as 𝔐, the set of
such 𝔐′ is precisely the set of variants 𝔐𝑑∶[𝑐] of 𝔐, So 𝔐 ⊩ ∀𝑥𝐴 iff 𝔐𝑑∶[𝑐] ⊩ 𝐴(𝑥/𝑑)
for every constant 𝑐, which, by (1), is the case iff 𝔐 ⊩ 𝐴(𝑥/𝑐) for every constant 𝑐.

Lemma 3.8: Truth Lemma
If 𝔐 is the Henkin model of a Henkin set Γ in a language 𝔏, then for every 𝔏-
sentence 𝐴, 𝔐 ⊩ 𝐴 iff 𝐴 ∈ Γ.

Proof by induction on complexity of 𝐴.
Base case: 𝐴 is atomic. There are two subcases.
Assume that 𝐴 is an identity sentence 𝑠 = 𝑡. Then 𝔐 ⊩ 𝑠 = 𝑡 iff J𝑠K𝔐 = J𝑡K𝔐

by definition 2.10, iff [𝑠] = [𝑡] by lemma 3.6, iff 𝑠 = 𝑡 ∈ Γ, by definition of the
equivalence classes.
Assume next that 𝐴 is an atomic sentence 𝑃(𝑡1, … , 𝑡𝑛), where 𝑃 is non-logical. Then
𝔐 ⊩ 𝑃(𝑡1, … , 𝑡𝑛) iff (J𝑡1K𝔐, … , J𝑡𝑛K𝔐) ∈ J𝑃K𝔐 by definition 2.10, iff ([𝑡1], … , [𝑡𝑛]) ∈J𝑃K𝔐 by lemma 3.6, iff 𝑃(𝑡1, … , 𝑡𝑛) ∈ Γ by definition 3.4.
Inductive step: 𝐴 is composed of other sentences. We have three subcases. The first
two, where 𝐴 is ¬𝐵 or 𝐵 → 𝐶, are easy and go exactly as in lemma 1.6. I’ll skip them.
For the final subcase, assume that 𝐴 is ∀𝑥𝐵, for some formula 𝐵. We have: 𝔐 ⊩ ∀𝑥𝐵
iff 𝔐 ⊩ 𝐵(𝑥/𝑐) for every constant 𝑐 by lemma 3.7, iff 𝐵(𝑥/𝑐) ∈ Γ for every constant
𝑐 by induction hypothesis, iff ∀𝑥𝐵 ∈ Γ by exercise 3.7.

With that, we have all the ingredients for the completeness proof.

Theorem 3.3: Completeness of the first-order calculus (Gödel 1929)
If Γ ⊨ 𝐴 then Γ ⊢ 𝐴.
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Proof. We argue by contraposition. Assume Γ ⊬ 𝐴. Then Γ ∪ {¬𝐴} is consistent, by
lemma 3.1. By lemma 3.3, Γ∪{¬𝐴} can be extended to a Henkin set Γ+ in an extended
language 𝔏+. By the Truth Lemma, the Henkin model of Γ+ satisfies every sentence
in Γ+, and therefore every sentence in Γ ∪ {¬𝐴}. So there is a model that satisfies all
sentences in Γ but doesn’t satisfy 𝐴. So Γ ⊭ 𝐴.

Technically, the model that figures in this proof is not a model for the original language
𝔏 of Γ and 𝐴, because it also interprets the added individual constants. If this bothers you,
we can define an 𝔏-model that falsifies Γ ⊨ 𝐴 by restricting the interpretation function
of the Henkin model to 𝔏-constants, without changing the domain. This is called the
reduct of the Henkin model to 𝔏.

Exercise 3.8 Assume that Γ0, Γ1, … are consistent sets of sentences in a first-
order language 𝔏, and that each Γ𝑖 is a subset of Γ𝑖+1. Show that their union
⋃𝑖 Γ𝑖 is consistent.

3.4 Unintended Models

We’ve now shown that the first-order calculus is both sound (theorem 2.4) and complete
(theorem 3.3): Γ ⊨ 𝐴 iff Γ ⊢ 𝐴. As Gödel pointed out, this has a curious consequence:

Theorem 3.4: Compactness of first-order logic (Gödel 1929)
If every finite subset of a set of sentences is satisfiable then the set itself is satisfi-
able.

Proof. Let Γ be a set of first-order sentences. Assume that Γ is not satisfiable. So
Γ ⊨ ⊥. By completeness, it follows that Γ ⊢ ⊥: there is a deduction of ⊥ from Γ. This
deduction can only use finitely many sentences from Γ. So there is a finite subset Γ′

of Γ for which Γ′ ⊢ ⊥. By soundness, Γ′ ⊨ ⊥.

Why is this curious? Well, for one, it is easy to come up with cases where a conclusion
is entailed by infinitely many premises, but not by any finite subset of those premises. For
example, consider the premises ‘I like the number 0’, ‘I like the number 1’, ‘I like the
number 2’, and so on, for all natural numbers. Together, these premises entail ‘I like
all natural numbers’. But no finite subset of the premises does. This doesn’t contradict
the compactness theorem because the inference isn’t logically valid: it depends on the
interpretation of ‘0’, ‘1’, ‘2’, …, and ‘natural number’. Still, it’s curious that first-order
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logic doesn’t allow any such inference to be valid. More directly, compactness implies
that there is no way to fully pin down the interpretation of ‘0’, ‘1’, ‘2’, etc. in a first-order
language. Let’s think through this more carefully.

Many branches of mathematics can be seen as studying certain mathematical struc-
tures. A mathematical structure consists of a set of objects together with some operations
and relations on these objects. For example, arithmetic studies operations and relations
on the natural numbers. A formalized, first-order theory of arithmetic will have nonlogi-
cal symbols for, say, addition (‘+’), multiplication (‘×’), and the less-than relation (‘<’).
We might add an individual constant ‘𝑛’ for each number 𝑛, but for the sake of economy
we can instead have a single constant ‘0’ for 0 and another symbol ‘𝑠’ for the successor
function that maps each number 𝑛 to its successor 𝑛+1. Instead of ‘1’, we can then write
‘𝑠(0)’; ‘2’ is ‘𝑠(𝑠(0))’, and so on.

In logic, we abstract away from the meaning of the nonlogical symbols. In arithmetic,
we don’t. In arithmetic, ‘1 + 2 = 3’ (that is, ‘𝑠(0) + 𝑠(𝑠(0)) = 𝑠(𝑠(𝑠(0)))’) is a definite
claim about the natural numbers. We say that it has an intended interpretation, or an
intended model.

The intended model of arithmetic, also known as the standard model of arithmetic,
or 𝔄, has as its domain the set of natural numbers ℕ; it interprets ‘0’ as denoting 0,
‘+’ as denoting the addition function +, ‘×’ as denoting the multiplication function ×,
‘𝑠’ as denoting the successor function 𝑠, and ‘<’ as denoting the less-than relation <.
We can represent this as a list: ⟨ℕ, 0, +, ×, 𝑠, < ⟩. The list represents the “structure” of
the natural numbers. It identifies a set ℕ and some operations and relations on that set
that are picked out by the nonlogical symbols of the language. (0 counts as a zero-ary
operation.)

Of course, the language of arithmetic also has unintended models. For example, we
can let the domain be { Athens, Berlin } and use an interpretation function that maps
‘0’ to Athens, ‘+’ and ‘×’ to the function that maps any pair of cities to Athens, ‘𝑠’ to
the function that maps each city to itself, and ‘<’ to the empty relation. In this model,
‘𝑠(0) + 𝑠(𝑠(0)) = 𝑠(𝑠(𝑠(0)))’ is true, but so is ‘𝑠(0) = 0’.

Exercise 3.9 Is Lagrange’s Theorem (every natural number is the sum of four
squares) true in this model?

We might hope that such unintended models can always be ruled out by laying down
sufficiently many postulates in the formal language of arithmetic. For example, if our
theory of arithmetic contains ‘𝑠(0) ≠ 0’ then the above model (with Athens and Berlin)
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is no longer a model of the theory. So we can rule out some unintended models. The
compactness theorem dashes any hope of ruling out all unintended models. Let Th(𝔄)
be the set of all sentences true in the standard model 𝔄. This is called the theory of 𝔄.
It contains all postulates we could possibly lay down, assuming that they should all be
true in the standard model. By compactness, there is a model of Th(𝔄) whose domain
includes junk elements that clearly aren’t natural numbers.

Theorem 3.5: Non-standard Models of Arithmetic
Th(𝔄) has models in which some object is not reachable from 0 by finitely many
applications of the successor function. (Such models are called non-standard mod-
els of arithmetic.)

Proof. Let 𝔏+
𝐴 be the language of arithmetic with an added individual constant 𝑐. Let

Th(𝔄)+ be the set of sentences that extends Th(𝔄) by

𝑐 ≠ 0, 𝑐 ≠ 𝑠(0), 𝑐 ≠ 𝑠(𝑠(0)), 𝑐 ≠ 𝑠(𝑠(𝑠(0))), … .

So Th(𝔄)+ says that 𝑐 is different from 0, 1, 2, and so on, for all natural numbers.
Every finite subset of Th(𝔄)+ is obviously satisfiable: it is true in the standard model
𝔄, interpreting 𝑐 as a sufficiently large number. By the compactness theorem, it follows
that Th(𝔄)+ is satisfiable. Any model of Th(𝔄)+ must have an element (denoted by 𝑐)
that is not identical to any natural number: it can’t be reached from 0 by finitely many
applications of the successor function. The reduct of any such model to the original
language of arithmetic (discarding the interpretation of 𝑐) is a model of Th(𝔄).
Compactness thus reveals a deep expressive limitation of first-order logic: the struc-

ture of the natural numbers can’t be captured in a first-order language.
Here is a simpler example. For each 𝑛 > 0, it is easy to find a first-order sentence 𝑆𝑛

that is true in all and only the models with exactly 𝑛 elements. For example, ∃𝑥∃𝑦(𝑥 ≠
𝑦∧∀𝑧(𝑧 = 𝑥∨𝑧 = 𝑦)) is true in all and only models with exactly two elements. (Compare
exercise 2.16.) In that sense, we can capture the intended size of a domain, as long as
that size is a fixed finite number. But there is no first-order sentence that is true in all
and only the models with infinitely many elements.

To see why, let 𝑆∞ be such a sentence. Its negation ¬𝑆∞ would be true in all and only
the finite models. Now consider the set consisting of ¬𝑆∞ together with ¬𝑆1, ¬𝑆2, ¬𝑆3, ….
All finite subsets of this set are satisfiable. By compactness, the whole set is satisfiable.
But there is no model whose domain not infinite, and yet also has no finite size.
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The following theorems show that the situation is even worse. In section 3.1, we saw
that there are many levels of infinity: many infinite cardinalities. None of them can be
captured in first-order logic, insofar as there is no sentence (nor even a set of sentences)
that would force a model to have a particular infinite cardinality, or even to fall in any
non-trivial range of infinite cardinalities.

Theorem 3.6: The (Downward) Löwenheim-Skolem Theorem
If a set of sentences in a countable first-order language has a model, then it has a
countable model.

Proof. Let Γ be such a set. By lemma 3.3, Γ can be extended to a Henkin set Γ+. By
lemma 3.8, the Henkin model of Γ+ is a model of Γ. Its domain consists of equivalence
classes of closed terms in the language of Γ+. If the language of Γ is countable, then
so is the language of Γ+. So it has only countably many closed terms.

Theorem 3.7: The Upward Löwenheim-Skolem Theorem (Tarski 1935)
If a set of sentences in a countable first-order language has an infinite model, then
it has models of every infinite cardinality.

Proof sketch. The proof requires relaxing our stipulation that a first-order language
must only have countably many individual constants. The completeness theorem can
be proved without this assumption (although the proof becomes more complicated,
as we can no longer appeal to enumerations of the sentences in the language). Com-
pactness still follows from completeness, and we get a slightly generalized downward
Löwenheim-Skolem theorem according to which every satisfiable set of sentences has
a model whose cardinality is at most equal to the cardinality of the language.
Now let Γ be a set of first-order sentences in a countable language with an infinite
model. From the downward theorem, we know that Γ has a countably infinite model 𝔐.
Let 𝜅 be any cardinal greater than ℵ0. Expand the language of Γ by 𝜅 new individual
constants. For each pair of these constants 𝑐𝑖 and 𝑐𝑗, add the sentence 𝑐𝑖 ≠ 𝑐𝑗 to Γ,
thereby creating the set Γ+. All finite subsets of Γ+ are satisfied in 𝔐, with the (finitely
many) new constants in the set interpreted as distinct objects in 𝔐. By the compactness
theorem (for uncountable languages), Γ+ has a model 𝔐+. All the 𝜅 new constants
denote distinct objects in this model, so 𝔐+ has at least 𝜅 objects. By the generalized
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3 Completeness

downward theorem, it follows that Γ+ has a model whose cardinality is exactly 𝜅. The
reduct of that model to the language of Γ is a model of Γ with cardinality 𝜅.

The downward theorem was proved by Thoralf Skolem in 1920, building on an earlier
proof sketch by Leopold Löwenheim. The (ill-named) upward theorem, due to Alfred
Tarski, requires compactness and could only be proved after 1929. It entails, among
other things, that Th(𝔄) has non-standard models of every infinite cardinality.

Exercise 3.10 (a) Can you find a first-order sentence that is only true in infinite
models? (Hint: let 𝑓 be a function that is injective, but not surjective.) (b) Is the
negation of this sentence only true in finite models?

Exercise 3.11 Explain why every satisfiable set of first-order sentences has a
model whose domain is a set of natural numbers.

Exercise 3.12 Consider a first-order language with a binary predicate symbol ‘𝑃’
for the “parent” relation, so that 𝑃𝑥𝑦 means (on its intended interpretation) that 𝑥 is
a parent of 𝑦. We can then define the “grandparent” relation 𝑃2(𝑥, 𝑦) as ∃𝑧1(𝑃𝑥𝑧1∧
𝑃𝑧1𝑦), the “great-grandparent” relation 𝑃3(𝑥, 𝑦) as ∃𝑧1∃𝑧2(𝑃𝑥𝑧1 ∧ 𝑃𝑧1𝑧2 ∧ 𝑃𝑧2𝑦),
and so on. Show that there is no way to define the “ancestor” relation (no matter
what other nonlogical symbols we add to the language): there can be no formula
𝐴(𝑥, 𝑦) that is equivalent to the infinite disjunction 𝑃(𝑥, 𝑦)∨𝑃2(𝑥, 𝑦)∨𝑃3(𝑥, 𝑦)∨….

Exercise 3.13 Let 𝔄𝑐 be exactly like the standard model of arithmetic 𝔄, ex-
cept that the number 2 is replaced by Julius Caesar: the domain of 𝔄𝑐 is
{0, 1, Caesar, 3, 4, …}; ’𝑠’ denotes a function that maps 0 to 1, 1 to Caesar, Cae-
sar to 3, …; ‘+’ denotes a function that maps 1 and 1 to Caesar, 1 and Caesar to
3, and so on. Is 𝔄𝑐 a model of Th(𝔄)? In what way is it less interesting than the
non-standard models of theorem 3.5?
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