
8 Arithmetical Definability

In this chapter, we’ll show that all computable functions and relations on the natural
numbers can be defined in the language 𝔏𝐴 of arithmetic. As foreshadowed at the end
of Chapter 5, it will follow that there can be no true, computably axiomatizable, and
complete theory of arithmetic. Further limitative consequences will be explored in the
next two chapters.

8.1 Definability

In Section 4.1, I introduced the language 𝔏𝐴, with non-logical symbols for the number
0 (‘0’), the successor function (‘𝑠’), addition (‘+’), and multiplication (‘×’). Other arith-
metical concepts can be defined in terms of these primitives. Let’s think about what this
involves.
Back in Section 4.1, I suggested that we can define the less-than relation < by stipu-

lating that for any terms 𝑡1 and 𝑡2, ‘𝑡1 < 𝑡2’ is short for ‘∃𝑧(𝑡1 + 𝑠(𝑧) = 𝑡2)’, where 𝑧 is a
variable not occurring in 𝑡1 or 𝑡2. This works because every 𝔏𝐴-term denotes a natural
number (in the standard model 𝔄), and a number 𝑎 is less than a number 𝑏 iff there is a
non-zero number 𝑐 such that 𝑎 + 𝑐 = 𝑏.
An 𝔏𝐴-numeral is an 𝔏𝐴-term constructed from 0 and 𝑠 alone. Every natural number

is denoted by a unique 𝔏𝐴-numeral (in 𝔄): 0 is denoted by ‘0’, 1 by ‘𝑠(0)’, 2 by ‘𝑠(𝑠(0))’,
and so on. To avoid clutter, I will use ‘𝑛’ as a shorthand for the 𝔏𝐴-numeral of the
number 𝑛. So 5 is ‘𝑠(𝑠(𝑠(𝑠(𝑠(0)))))’. Since every 𝔏𝐴-term denotes (in 𝔄) a number
𝑛 that is also denoted by an 𝔏𝐴-numeral 𝑛, it suffices to focus on 𝔏𝐴-numerals when
examining whether an 𝔏𝐴-expression defines a relation on the natural numbers.
Officially, we’ll say that an 𝑛-ary relation is defined by an 𝔏𝐴-formula with 𝑛 free vari-

ables. The less-than relation <, for example, is defined by the formula ∃𝑧(𝑥 + 𝑠(𝑧) = 𝑦),
with free variables 𝑥 and 𝑦. The free variables are placeholders. ∃𝑧(𝑥 + 𝑠(𝑧) = 𝑦) defines
the less-than relation because, for any numbers 𝑎 and 𝑏, ∃𝑧(𝑎 + 𝑠(𝑧) = 𝑏) is true (in 𝔄)
iff 𝑎 < 𝑏. In general:

145



8 Arithmetical Definability

Definition 8.1
An 𝔏𝐴-formula 𝐴(𝑥1, … , 𝑥𝑛) defines an 𝑛-place relation 𝑅 onℕ iff, for all numbers
𝑎1, … , 𝑎𝑛, 𝐴(𝑎1, … , 𝑎𝑛) is true in 𝔄 iff 𝑎1, … , 𝑎𝑛 stand in the relation 𝑅.

Exercise 8.1 Give two other 𝔏𝐴-formulas that define the less-than relation, and
explain why they do so.

So far, I’ve talked about relations. We can also define new functions in 𝔏𝐴. For exam-
ple, we might say that the expression 𝑥 × 𝑥 defines the squaring function that maps any
number 𝑎 to 𝑎2. Often, however, a function won’t be definable in this way by an 𝔏𝐴-term.
Instead, we have to resort to what I called a “syncategorematic” definition in Section 4.2.
For example, we’ll see that there is an 𝔏𝐴-formula 𝐹(𝑥, 𝑦) such that 𝐹(𝑎, 𝑏) is true (in 𝔄)
iff 𝑏 is the factorial 𝑎! of 𝑎. (That is, 𝑏 = 1 × 2 × … × 𝑎.) With the help of this formula,
any statement about factorials can be expressed in 𝔏𝐴. The (false) statement that every
number is less than its factorial, for example, can be expressed as

∀𝑥∀𝑦(𝐹(𝑥, 𝑦) → 𝑥 < 𝑦).

It’s important to clarifywhat kind of “definition”we are after. In the previous chapter, I
talked about defining functions by primitive recursion. The primitive recursive definition
of the factorial function would look as follows:

0! = 1
𝑠(𝑦)! = 𝑠(𝑦) × 𝑦!.

But this doesn’t define the factorial function in 𝔏𝐴. A definition in 𝔏𝐴 would be a single
𝔏𝐴-formula 𝐹(𝑥, 𝑦) that is true of 𝑥 and 𝑦 iff 𝑦 is the factorial of 𝑥.

Definition 8.2
An 𝔏𝐴-formula 𝐴(𝑥1, … , 𝑥𝑛, 𝑦) defines a (total) 𝑛-ary function 𝑓 on ℕ iff, for all
numbers 𝑎1, … , 𝑎𝑛, 𝑏, 𝐴(𝑎1, … , 𝑎𝑛, 𝑏) is true in 𝔄 iff 𝑓 (𝑎1, … , 𝑎𝑛) = 𝑏.

This definition could be extended to partial functions, but we’ll only be interested in total
functions in this chapter.
We say that a relation or function is definable in 𝔏𝐴 if it is defined by some 𝔏𝐴-formula.

146



8 Arithmetical Definability

Exercise 8.2 Give an 𝔏𝐴-formula that defines the addition function.

Exercise 8.3 Give an 𝔏𝐴-formula that defines the switcheroo function 𝛿 that
maps any positive number to 0 and 0 to 1.

We’ll show that all recursive functions and relations – and therefore, by the Church-
Turing thesis, all computable functions and relations – are definable in 𝔏𝐴. This is not
obvious. The factorial function, for example, is recursive, but it is hard to find an 𝔏𝐴-
formula 𝐹(𝑥, 𝑦) that defines it. (Try it!)
For a different type of example, consider the halting-with-bound relation that holds

between the code number of a Turing machine 𝑀, a number 𝑛, and a number 𝑘 iff 𝑀
halts on input 𝑛 within 𝑘 steps. This relation is computable: we can simply run 𝑀 on
𝑛 for 𝑘 steps, and return ‘yes’ if 𝑀 has halted by then, and ‘no’ otherwise. Since all
computable relations are definable in 𝔏𝐴, there must be an 𝔏𝐴-expression 𝐻(𝑥, 𝑦, 𝑧) so
that 𝐻(𝑚, 𝑛, 𝑘) is true (in 𝔄) iff the Turing machine coded by 𝑚 halts on input 𝑛 within
𝑘 steps. It’s not at all obvious what such a formula would look like.
As I mentioned in Section 5.5, the definability of halting-with-bound leads to a ver-

sion of Gödel’s incompleteness theorem. If 𝐻(𝑥, 𝑦, 𝑧) defines halting-with-bound then
∃𝑧𝐻(𝑥, 𝑦, 𝑧) defines the halting relation: ∃𝑧𝐻(𝑚, 𝑛, 𝑧) is true (in𝔄) iff the Turingmachine
coded by 𝑚 halts on input 𝑛. We know from Theorem 6.1 that there is no algorithm that
decides the halting relation. It follows that there can be no complete, computably axiom-
atizable, and true theory of arithmetic: otherwise we could decide the halting relation
by checking, for any numbers 𝑚 and 𝑛, whether ∃𝑧𝐻(𝑚, 𝑛, 𝑧) or its negation is entailed
by the axioms.
This version of the incompleteness theorem is sometimes called “semantic”, as it con-

cerns theories that are true. Gödel himself gave prominence to a “syntactic” version
of incompleteness that (in its contemporary form) only requires the relevant theories to
be consistent. The syntactic theorem relies not on definability in 𝔏𝐴 but on a slightly
stronger concept – representability – that I’m going to introduce next.

Exercise 8.4 Explain why every finite set is definable in 𝔏𝐴.

147



8 Arithmetical Definability

Exercise 8.5 Explain why the Busy Beaver function Σ is definable in 𝔏𝐴. (Hint:
consider the relation that holds between four numbers𝑚, 𝑛, 𝑡, 𝑘 iff𝑚 codes a Turing
machine with 𝑛 states that halts, on blank input, after 𝑡 steps leaving 𝑘 strokes on
the tape.)

8.2 Representability

‘+’, ‘×’, ‘𝑠’ and ‘0’ are non-logical symbols. They have an intended interpretation, but
this interpretation isn’t built into the language. An axiomatic 𝔏𝐴-theory doesn’t automat-
ically “know” what the non-logical symbols mean. ‘0’ and ‘𝑠(0)’, for example, denote
different numbers in the intended interpretation, but an axiomatic theory may not be able
to prove ‘0 ≠ 𝑠(0)’.

Exercise 8.6 Specify an 𝔏𝐴-theory that proves 0 = 𝑠(0).

The standard axiomatic theory of arithmetic, PeanoArithmetic (PA), can prove 0 ≠ 𝑠(0).
Indeed, whenever 𝑎 ≠ 𝑏, PA contains 𝑎 ≠ 𝑏. Trivially, if 𝑎 = 𝑏 then PA contains 𝑎 = 𝑏,
for then 𝑎 and 𝑏 are the same term. So PA knows all particular facts about equality
between numbers: that 17 = 17, that 17 ≠ 29, and so on.
PA also knows all particular facts about the less-than relation: whenever 𝑎 < 𝑏, PA

contains 𝑎 < 𝑏, and whenever 𝑎 ≮ 𝑏, PA contains ¬(𝑎 < 𝑏). Of course, ‘<’ isn’t really
part of the language. What I mean is that whenever 𝑎 < 𝑏, PA contains ∃𝑧(𝑎 + 𝑠(𝑧) = 𝑏),
and whenever 𝑎 ≮ 𝑏, PA contains ¬∃𝑧(𝑎 + 𝑠(𝑧) = 𝑏). In that sense, ∃𝑧(𝑥 + 𝑠(𝑧) = 𝑦)
represents the less-than relation in PA.

Definition 8.3
An 𝔏𝐴-formula 𝐴(𝑥1, … , 𝑥𝑛) represents an 𝑛-ary relation 𝑅 on ℕ in a theory 𝑇 iff,
for all numbers 𝑎1, … , 𝑎𝑛,

(i) if 𝑅 holds of 𝑎1, … , 𝑎𝑛, then ⊢𝑇 𝐴(𝑎1, … , 𝑎𝑛), and
(ii) if 𝑅 does not hold of 𝑎1, … , 𝑎𝑛, then ⊢𝑇 ¬𝐴(𝑎1, … , 𝑎𝑛).

Exercise 8.7 Explain why every relation is representable in the inconsistent the-
ory.

148



8 Arithmetical Definability

Exercise 8.8 Explain why a formula defines a relation in 𝔏𝐴 iff it represents the
relation in Th(𝔄). (Th(𝔄) is the set of all 𝔏𝐴-sentences that are true in 𝔄).

We can also talk about representing functions:

Definition 8.4
An 𝔏𝐴-formula 𝐴(𝑥1, … , 𝑥𝑛, 𝑦) represents a (total) 𝑛-ary function 𝑓 on ℕ in 𝑇 iff,
for all numbers 𝑎1, … , 𝑎𝑛,

(i) ⊢𝑇 𝐴(𝑎1, … , 𝑎𝑛, 𝑓 (𝑎1, … , 𝑎𝑛)), and
(ii) ⊢𝑇 ∀𝑦(𝐴(𝑎1, … , 𝑎𝑛, 𝑦) → 𝑦 = 𝑓 (𝑎1, … , 𝑎𝑛)).

Here, 𝑓 (𝑎1, … , 𝑎𝑛) is the 𝔏𝐴-term with 𝑓 (𝑎1, … , 𝑎𝑛) occurrences of ‘𝑠’. Condition (ii)
effectively requires 𝑇 to know that 𝐴(𝑥1, … , 𝑥𝑛, 𝑦) expresses a functional relationship (as
discussed in Section 4.2).
An example may help. What is needed for a formula 𝐹(𝑥, 𝑦) to represent the factorial

function in a theory 𝑇? Condition (i) requires that whenever 𝑏 is the factorial of 𝑎 then
𝑇 proves 𝐹(𝑎, 𝑏). This leaves open that 𝑇 also proves 𝐹(𝑎, 𝑐) for some 𝑐 ≠ 𝑏. Indeed,
the formula 𝑥 =𝑥 ∧ 𝑦=𝑦 passes condition (i) in any theory 𝑇 , but there’s no good sense
in which this formula represents the factorial function. By condition (ii), 𝑇 must know
that there is no 𝑦 other than 𝑏 for which 𝐹(𝑎, 𝑦) holds.
If a function or relation is represented in a theory 𝑇 by some formula, we say that the

function or relation is representable in 𝑇 .

Proposition 8.1
If an 𝔏𝐴-formula represents a function in a theory 𝑇 ⊆ Th(𝔄), then the formula
also defines that function.

Proof. Assume 𝐴(𝑥, 𝑦) represents a function 𝑓 in a theory 𝑇 , where 𝑇 ⊆ Th(𝔄). I’ll
assume for readability that 𝑓 is one-place. We have to show that for all numbers 𝑎, 𝑏,
𝐴(𝑎, 𝑏) is true in 𝔄 iff 𝑓 (𝑎) = 𝑏. For the ‘if’ direction, assume that 𝑓 (𝑎) = 𝑏. By
condition (i) in definition 8.4, ⊢𝑇 𝐴(𝑎, 𝑏). Since 𝑇 ⊆ Th(𝔄), 𝐴(𝑎, 𝑏) is true in 𝔄.
For the ‘only if’ direction, assume that 𝑓 (𝑎) ≠ 𝑏. By condition (ii) in definition 8.4,
⊢𝑇 ∀𝑦(𝐴(𝑎, 𝑦) → 𝑦 = 𝑓 (𝑎)). So ∀𝑦(𝐴(𝑎, 𝑦) → 𝑦 = 𝑓 (𝑎)) is true in 𝔄. Since 𝑓 (𝑎) ≠ 𝑏 is
true in 𝔄, it follows that ¬𝐴(𝑎, 𝑏) is true in 𝔄, and so 𝐴(𝑎, 𝑏) is false in 𝔄.

149



8 Arithmetical Definability

Exercise 8.9 ‘𝑥+𝑦 = 𝑧’ represents addition in PA. Let PA∗ be the theory obtained
by swapping ‘+’ and ‘×’ everywhere in PA. Can you find a formula that represents
addition in PA∗?

In the following sections, we’ll show that all recursive functions are representable in
any arithmetical theory that knows some basic facts about arithmetic. It will follow by
Proposition 8.1 that all recursive functions are definable in 𝔏𝐴.
We can focus on functions because the representability of recursive functions entails

the representability of recursive relations, at least in any theory that can prove 0 ≠ 1.
(Recall that a relation is recursive iff its characteristic function is recursive.)

Proposition 8.2
A relation 𝑅 is representable in a theory 𝑇 iff its characteristic function 𝜒𝑅 is
representable in 𝑇 , provided that ⊢𝑇 0 ≠ 1.

Proof. I’ll assume for readability that 𝑅 is a one-place relation.
For the left-to-right direction, assume that 𝑅 is represented in 𝑇 by some formula 𝐴(𝑥).
Let 𝐶(𝑥, 𝑦) be the formula (𝐴(𝑥) ∧ 𝑦=1) ∨ (¬𝐴(𝑥) ∧ 𝑦=0). I claim that 𝐶(𝑥, 𝑦) repre-
sents the characteristic function 𝜒𝑅 of 𝑅. Assume first that 𝜒𝑅(𝑎) = 1. Then 𝑅 holds
of 𝑎, and 𝑇 proves 𝐴(𝑎). Since 𝐴(𝑎) entails both 𝐶(𝑎, 1) and ∀𝑦(𝐶(𝑎, 𝑦) → 𝑦 = 1), 𝑇
proves both of these as well. Similarly, if 𝜒𝑅(𝑎) = 0, then 𝑇 proves ¬𝐴(𝑎), which en-
tails 𝐶(𝑎, 0) and ∀𝑦(𝐶(𝑎, 𝑦) → 𝑦 = 0). So whenever 𝜒𝑅(𝑎) = 𝑏 then 𝑇 proves 𝐶(𝑎, 𝑏)
and ∀𝑦(𝐶(𝑎, 𝑦) → 𝑦 = 𝑏). So 𝐶(𝑥, 𝑦) satisfies the two conditions in definition 8.4.
For the other direction, assume 𝐴(𝑥, 𝑦) represents 𝜒𝑅 in 𝑇 . This means that whenever
𝑅 holds of 𝑎, then ⊢𝑇 𝐴(𝑎, 1), by condition (i) in definition 8.4. Moreover, when 𝑅
does not hold of 𝑎, then ⊢𝑇 𝐴(𝑎, 0) by condition (i) and ⊢𝑇 ∀𝑦𝐴(𝑎, 𝑦) → 𝑦 = 0 by
condition (ii). Assuming that ⊢𝑇 0 ≠ 1, it follows that 𝐴(𝑥, 1) represents 𝑅 in 𝑇 .

8.3 Conditions for Representability I

We want to show that every recursive function is representable in any theory that knows
some basic facts about arithmetic. We proceed by induction on the construction of recur-
sive functions. By definition 7.4 in Section 7.3, every recursive function is constructed
from the base functions zero, successor, and projection by composition, primitive recur-
sion, and regular minimization. We’ll first show that the base functions are representable

150



8 Arithmetical Definability

in any theory. Then we’ll show that representability in a theory 𝑇 is preserved under com-
position, primitive recursion, and regular minimization, provided that 𝑇 knows certain
facts about arithmetic.
Let’s start with the zero function 𝑧 that maps every number 𝑎 to 0. It’s not hard to find

a formula 𝐴(𝑥, 𝑦) so that 𝐴(𝑎, 𝑏) is true (in 𝔄) iff 𝑏 = 0. The formula 𝑥 =𝑥 ∧ 𝑦 =0 does
the job. So 𝑥 = 𝑥 ∧ 𝑦 = 0 defines 𝑧 in 𝔏𝐴. We need to confirm that it also represents 𝑧 in
any theory 𝑇 .

Lemma 8.1
The zero function 𝑧 is representable in every theory 𝑇 .

Proof. I claim that 𝑧 is represented in every theory 𝑇 by the formula 𝑥 =𝑥 ∧ 𝑦 =0. By
definition 8.4, this means that, for all numbers 𝑎, 𝑇 can prove

(i) 𝑎=𝑎 ∧ 0=0, and
(ii) ∀𝑦((𝑎=𝑎 ∧ 𝑦=0) → 𝑦=0).

Both of these are logical truths.

Lemma 8.2
The successor function 𝑠 is representable in every theory 𝑇 .

Proof. I claim that 𝑠(𝑥) = 𝑦 represents the successor function in every theory 𝑇 : for
all numbers 𝑎, 𝑇 can prove

(i) 𝑠(𝑎) = 𝑠(𝑎), and
(ii) ∀𝑦(𝑠(𝑎) = 𝑦 → 𝑦 = 𝑠(𝑎)).

Since 𝑠(𝑎) and 𝑠(𝑎) are the same term, both of these are logical truths.

Lemma 8.3
Each projection function 𝜋𝑛

𝑖 is representable in every theory 𝑇 .

Proof. Exercise.

151



8 Arithmetical Definability

Exercise 8.10 Prove Lemma 8.3.

Now for the closure operations. We start with composition.

Lemma 8.4
If an 𝑚-place function 𝑓 is representable in a theory 𝑇 and 𝑚 𝑛-place functions
𝑔1, … , 𝑔𝑚 are representable in 𝑇 , then the composition ℎ = 𝐶𝑛[𝑓 , 𝑔1, … , 𝑔𝑚] is
representable in 𝑇 .

Proof. For readability, I only give the proof for 𝑛 = 1 and 𝑚 = 2.
Assume that 𝑓 is represented in a theory 𝑇 by a formula 𝐹(𝑥1, 𝑥2, 𝑦), and that 𝑔1,
𝑔2 are represented in 𝑇 by 𝐺1(𝑥, 𝑦1) and 𝐺2(𝑥, 𝑦2), respectively. I claim that ℎ =
𝐶𝑛[𝑓 , 𝑔1, 𝑔2] is represented in 𝑇 by the formula

∃𝑣1∃𝑣2(𝐺1(𝑥, 𝑣1) ∧ 𝐺2(𝑥, 𝑣2) ∧ 𝐹(𝑣1, 𝑣2, 𝑦)).

Condition (i) for representations requires that whenever ℎ(𝑎) = 𝑏 then

⊢𝑇 ∃𝑣1∃𝑣2(𝐺1(𝑎, 𝑣1) ∧ 𝐺2(𝑎, 𝑣2) ∧ 𝐹(𝑣1, 𝑣2, 𝑏)).

So assume ℎ(𝑎) = 𝑏. Then there are 𝑐1, 𝑐2 such that 𝑔1(𝑎) = 𝑐1, 𝑔2(𝑎) = 𝑐2, and
𝑓 (𝑐1, 𝑐2) = 𝑏. Since 𝑔1 and 𝑔2 are represented by𝐺1(𝑥, 𝑦1) and𝐺2(𝑥, 𝑦2), respectively,
and 𝑓 is represented by 𝐹(𝑥1, 𝑥2, 𝑦), we have

⊢𝑇 𝐺1(𝑎, 𝑐1)
⊢𝑇 𝐺2(𝑎, 𝑐2)

⊢𝑇 𝐹(𝑐1, 𝑐2, 𝑏).

The desired claim follows by the fact that 𝑇 is closed under first-order consequence.
For condition (ii), we have to show that

⊢𝑇 ∀𝑦(∃𝑣1∃𝑣2(𝐺1(𝑎, 𝑣1) ∧ 𝐺2(𝑎, 𝑣2) ∧ 𝐹(𝑣1, 𝑣2, 𝑦)) → 𝑦=𝑓 (𝑔1(𝑎), 𝑔2(𝑎))).

152



8 Arithmetical Definability

This, too, follows from the representability conditions for 𝐹, 𝐺1, and 𝐺2, which yield

⊢𝑇 ∀𝑦(𝐺1(𝑎, 𝑦) → 𝑦=𝑐1)
⊢𝑇 ∀𝑦(𝐺2(𝑎, 𝑦) → 𝑦=𝑐2)

⊢𝑇 ∀𝑦(𝐹(𝑐1, 𝑐2, 𝑦) → 𝑦=𝑓 (𝑐1, 𝑐2)).

I leave the case of primitive recursion for last: it is by far the hardest. Let’s turn to
regular minimization. Suppose ℎ = Mn[𝑓 ], where 𝑓 is a regular function. Recall that
𝑓 (𝑥, 𝑦) is regular if it is total and for all 𝑥 there is some 𝑦 such that 𝑓 (𝑥, 𝑦) = 0. The
function ℎ takes a number 𝑥 and returns the least 𝑦 for which 𝑓 (𝑥, 𝑦) = 0. Assuming that
𝑓 is represented in 𝑇 by some formula 𝐹(𝑥, 𝑦, 𝑧), we have: ℎ(𝑥) = 𝑦 iff 𝐹(𝑥, 𝑦, 0) and
there is no 𝑧 < 𝑦 such that 𝐹(𝑥, 𝑧, 0). We can directly translate this into 𝔏𝐴:

𝐹(𝑥, 𝑦, 0) ∧ ∀𝑧(𝑧 < 𝑦 → ¬𝐹(𝑥, 𝑧, 0)).

This formula defines ℎ in 𝔏𝐴. Some assumptions are needed for it to represent ℎ in a
theory 𝑇 . Informally speaking, the theory must have some idea of what < means. The
following conditions are sufficient.

R1 For all 𝑎, ⊢𝑇 ∀𝑥(𝑎 < 𝑥 ∨ 𝑥 = 𝑎 ∨ 𝑥 < 𝑎).
R2 ⊢𝑇 ¬∃𝑥(𝑥 < 0).
R3 For all 𝑎 > 0, ⊢𝑇 ∀𝑥(𝑥 < 𝑎 → (𝑥 = 0 ∨ … ∨ 𝑥 = 𝑎 − 1)).
R4− For all 𝑎 > 0, ⊢𝑇 𝑎 ≠ 0

Officially, of course, ‘<’ isn’t part of the language. I assume here, and in what follows,
that ‘𝑡1 < 𝑡2’ is short for ‘∃𝑧(𝑠(𝑧) + 𝑡1 = 𝑡2)’, where 𝑧 is a variable that doesn’t occur in
𝑡1 or 𝑡2.

Lemma 8.5
If a regular function 𝑓 is representable in a theory 𝑇 , and 𝑇 satisfies the conditions
R1, R2, R3, and R4−, then the minimization Mn[𝑓 ] of 𝑓 is representable in 𝑇 .

Proof. Assume that 𝐹(𝑥, 𝑦, 𝑧) represents 𝑓 in 𝑇 , and 𝑇 satisfies R1, R2, R3, and R4−.
For readability, I’ll assume that 𝑓 is a two-place function. I claim that ℎ = Mn[𝑓 ] is
represented in 𝑇 by 𝐹(𝑥, 𝑦, 0) ∧ ∀𝑧(𝑧 < 𝑦 → ¬𝐹(𝑥, 𝑧, 0)). We have to confirm that
whenever ℎ(𝑎) = 𝑏 then 𝑇 can prove

153



8 Arithmetical Definability

(i) 𝐹(𝑎, 𝑏, 0) ∧ ∀𝑧(𝑧 < 𝑏 → ¬𝐹(𝑎, 𝑧, 0)).
(ii) ∀𝑦(𝐹(𝑎, 𝑦, 0) ∧ ∀𝑧(𝑧 < 𝑦 → ¬𝐹(𝑎, 𝑧, 0)) → 𝑦 = 𝑏).

From the fact that ℎ = Mn[𝑓 ] and ℎ(𝑎) = 𝑏, we know that 𝑓 (𝑎, 𝑏) = 0 and 𝑓 (𝑎, 𝑐) ≠ 0
for all 𝑐 < 𝑏. Since 𝑓 is represented in 𝑇 by 𝐹, 𝑇 can prove

𝐹(𝑎, 𝑏, 0) (1)

as well as (for 𝑐 < 𝑏)
∀𝑦(𝐹(𝑎, 𝑐, 𝑦) → 𝑦 = 𝑓 (𝑎, 𝑐)). (2)

From (2) and R4−, it follows that 𝑇 can prove ¬𝐹(𝑎, 𝑐, 0) for all 𝑐 < 𝑏. By R3, 𝑇 can
prove ∀𝑧(𝑧 < 𝑏 → (𝑧 = 0 ∨ … ∨ 𝑧 = 𝑏 − 1)) whenever 𝑏 > 0. So if 𝑏 > 0 then 𝑇 can
prove

∀𝑧(𝑧 < 𝑏 → ¬𝐹(𝑎, 𝑧, 0)). (3)

For 𝑏 = 0, (3) follows from R2. (i) is the conjunction of (1) and (3).
For (ii), we show (by reasoning “inside 𝑇”) that 𝑇 can derive 𝑦 = 𝑏 from

𝐹(𝑎, 𝑦, 0) ∧ ∀𝑧(𝑧 < 𝑦 → ¬𝐹(𝑎, 𝑧, 0)). (4)

(1) and (4) imply ¬(𝑏 < 𝑦). From (3) and (4), we have ¬(𝑦 < 𝑏). By R1, it follows
that 𝑦 = 𝑏.
Now for the hard part: primitive recursion.

8.4 Conditions for Representability II

Return to the factorial function that maps each number 𝑛 to 𝑛! = 1 × 2 × … × 𝑛. The
construction by primitive recursion goes as follows:

0! = 1
𝑠(𝑦)! = 𝑠(𝑦) × 𝑦!

We need to find a formula 𝐹(𝑥, 𝑦) that expresses this function in 𝔏𝐴, so that 𝐹(𝑥, 𝑦) is
true of numbers 𝑎 and 𝑏 iff 𝑎! = 𝑏.
The trick is to see the recursive construction as defining a sequence: ⟨0!, 1!, 2!, … , 𝑛!⟩.

Our formula 𝐹(𝑥, 𝑦) will say that “𝑦 is the last element of the sequence ⟨0!, 1!, … 𝑥!⟩”.

154



8 Arithmetical Definability

Of course, 𝔏𝐴 doesn’t have terms for sequences. But we know that sequences of num-
bers can be coded as single numbers. Suppose we can find a formula ENTRY(𝑥, 𝑖, 𝑦) that
expresses “𝑦 is the 𝑖-th entry in the sequence coded by 𝑥”. Using ENTRY(𝑥, 𝑖, 𝑦), we can
then define a formula SEQ(𝑧, 𝑥) saying that
(i) 𝑧 codes a sequence whose first entry is 1, and
(ii) for all 𝑖 < 𝑥, the 𝑠(𝑖)-th entry in the sequence coded by 𝑧 is the product of the 𝑖th

entry and 𝑠(𝑖).
So SEQ(𝑧, 𝑥) will say that 𝑧 codes the sequence ⟨0!, 1!, … , 𝑥!⟩. From this, we can define
𝐹(𝑥, 𝑦) as ∃𝑧(SEQ(𝑧, 𝑥) ∧ ENTRY(𝑧, 𝑠(𝑥), 𝑦)). This says that there is a number 𝑧 that
codes ⟨0!, 1!, … , 𝑥!⟩ and that 𝑦 is the 𝑠(𝑥)-th entry in that sequence. (We need an 𝑠(𝑥)
here because 𝐹(𝑥, 0) is the first, not the zero-th, entry in the sequence.)
The main task, then, is to find the formula ENTRY(𝑥, 𝑖, 𝑦) that holds of numbers 𝑥, 𝑖, 𝑦

iff 𝑦 is the 𝑖-th entry in the sequence coded by 𝑥.
You may remember that we faced a similar task in Section 7.2. There, we used the

prime exponents method to code sequences of numbers, and we showed that there is
a primitive recursive function entry(𝑥, 𝑦) that returns the 𝑦-th number in the sequence
coded by 𝑥. Unfortunately, our construction of the entry function involved primitive
recursion, so we can’t assume that this function is definable in 𝔏𝐴. In fact, we won’t
code sequences of numbers in terms of prime exponents, as we don’t even have an 𝔏𝐴-
formula for exponentiation yet. We’ll use a different coding method.
To explain that method, assume first that wewant to code a sequence ⟨𝑎1, 𝑎2, … , 𝑎𝑛 ⟩ of

numbers all of which are below 9. We could simply concatenate their decimal represen-
tation: ⟨1, 7, 0, 7⟩ would be coded as 1707. To simplify accessing individual elements
of the sequence, we might store the indices (the position numbers) of the elements in the
code, so that ⟨1, 7, 0, 7⟩ gets coded as 11273047. The third element can now be identified
as the digit to the right of the ’3’ (in decimal representation). As it stands, this doesn’t
quite work because the indices can also be among the coded elements, as is the case for
the number 1 in the example: there are two digits to the right of a ’1’. We can disam-
biguate the indices by prefixing them with yet another digit, 9, that doesn’t occur among
the coded numbers. The code of ⟨1, 7, 0, 7⟩ becomes 911927930947. The 𝑖-th element
can now be retrieved as the unique digit to the right of ’9𝑖’ (in decimal representation).
We’ll adapt this scheme to code arbitrary sequences of numbers. We obviously can’t

assume that all of the numbers are below 9. We therefore code sequences not to base 10,
but to some base 𝑝 that is at least 2 greater than all numbers in the sequence and all index
numbers (𝑝 − 1 is used to mark the index numbers). For convenience, we’ll always use
a prime number as the base 𝑝. The sequence ⟨1, 12, 0⟩, for example, would be coded in

155



8 Arithmetical Definability

base 17 as
16 17⌢1 17⌢1 17⌢16 17⌢2 17⌢12 17⌢16 17⌢3 17⌢0,

where ‘ 17⌢’ is the operation of concatenation in base 17. (I’ll define this formally below.)
If 𝑞 is the code number of a sequence in base 𝑝, the 𝑖-th element of the sequence can be
retrieved as

alpha(𝑝, 𝑞, 𝑖) = the unique number 𝑥 for which (𝑝 − 1) 𝑝⌢𝑖 𝑝⌢𝑥 is part of the
base-𝑝 numeral of 𝑞.

We’ll see that this can be expressed in 𝔏𝐴.
The alpha function retrieves elements from the code 𝑞 of a sequence, but it also needs

the base 𝑝 as a key to the code. We can get rid of the extra argument by coding ⟨𝑝, 𝑞⟩ into
a single number. We have to use a different coding method here. We’ll use the pairing
function that we met in Section 3.1 when we discussed Cantor’s zig-zag method:

j(𝑥, 𝑦) = 1
2(𝑥 + 𝑦)(𝑥 + 𝑦 + 1) + 𝑦

The j function is easily defined in 𝔏𝐴. We can also define two functions l and r that
extract the elements of a pair encoded by j, so that l(j(𝑥, 𝑦)) = 𝑥 and r(j(𝑥, 𝑦)) = 𝑦. If
we have coded a sequence of numbers ⟨𝑎1, … , 𝑎𝑛 ⟩ by 𝑝 and 𝑞 as described above, and
packaged these into a single number 𝑐 = j(𝑝, 𝑞), we can now retrieve any element 𝑎𝑖 of
the doubly coded sequence as

beta(𝑐, 𝑖) = alpha(l(𝑐), r(𝑐), 𝑖).

We’ll show that this function beta is definable in 𝔏𝐴. The formula BETA(𝑥, 𝑦, 𝑧) that
defines it is formula ENTRY(𝑥, 𝑦, 𝑧) that we were looking for.
I’m not actually going to write down BETA(𝑥, 𝑦, 𝑧) as an 𝔏𝐴-formula. Instead, I’ll

show that the function beta can be constructed by composition and minimization from
certain functions and relations that are easily definable in 𝔏𝐴: projection, addition, mul-
tiplication, and the characteristic function 𝜒= of identity. 𝜒= is the two-place function
that returns 1 if its two arguments are equal and 0 otherwise. It is defined in 𝔏𝐴 by
(𝑥 =𝑦 ∧ 𝑧=1) ∨ (𝑥 ≠𝑦 ∧ 𝑧=0). Projection, addition, and multiplication are also easily
definable. We’ve dealt with projection in Lemma 8.3. Addition is defined by 𝑥 + 𝑦 = 𝑧;
multiplication by 𝑥 × 𝑦 = 𝑧. To ensure that these formulas also represent the relevant
functions in a theory 𝑇 , we need the following assumptions:

156



8 Arithmetical Definability

R4 For all 𝑎, 𝑏, if 𝑎 ≠ 𝑏 then ⊢𝑇 𝑎 ≠ 𝑏.
R5 For all 𝑎, 𝑏, ⊢𝑇 𝑎 + 𝑏 = 𝑎 + 𝑏.
R6 For all 𝑎, 𝑏, ⊢𝑇 𝑎 × 𝑏 = 𝑎 × 𝑏.

Note that R4 subsumes R4−.

Lemma 8.6
Projection, addition, multiplication, and 𝜒= are representable in every theory that
satisfies R4–R6.

Proof. Projection is representable in every theory by Lemma 8.3.
The addition function is represented by 𝑥 + 𝑦 = 𝑧 in every theory 𝑇 that satisfies R5:
condition (i) in the definition of representation is given by R5; condition (ii) then holds
by first-order logic.
The multiplication function is represented by 𝑥 × 𝑦 = 𝑧 in every theory 𝑇 that satisfies
R6: condition (i) is given by R6; (ii) holds by first-order logic.
𝜒= is represented by (𝑥 = 𝑦 ∧ 𝑧 = 1) ∨ (𝑥 ≠ 𝑦 ∧ 𝑧 = 0) in every theory 𝑇 that satisfies
R4. For condition (i), we need to show that if 𝜒=(𝑎, 𝑏) = 𝑐 then ⊢𝑇 (𝑎=𝑏 ∧ 1=𝑐) ∨
(𝑎≠𝑏 ∧ 0=𝑐). There are two ways in which 𝜒=(𝑎, 𝑏) = 𝑐 can hold: either 𝑎 = 𝑏 and
𝑐 = 1 or 𝑎 ≠ 𝑏 and 𝑐 = 0. In the first case, 𝑎 = 𝑏 and 1 = 𝑐 are logical truths. In the
second case, 0 = 𝑐 is a logical truth and 𝑎 ≠ 𝑏 holds by R4. Condition (ii) holds by
first-order logic.

Now we need to show that beta can be constructed from projection, addition, multi-
plication, and 𝜒= by composition and minimization. To this end, let’s first introduce a
name for the class of functions that can be so constructed. I’ll call a function legit if
it can be constructed from projection, addition, multiplication, and 𝜒= by composition
and minimization; I’ll call a relation legit if its characteristic function is legit.

Lemma 8.7
All legit functions and relations are representable in any theory that satisfies R1–
R6.

Proof. By Lemma 8.6, projection, addition, multiplication, and 𝜒= are representable
in any theory that satisfies R4–R6. By Lemmas 8.4 and 8.5, composition and mini-

157



8 Arithmetical Definability

mization preserve representability in any theory that satisfies R1–R4.

The following lemmas show that the class of legit relations is closed under truth-
functional combinations, bounded quantification, and regular minimization. We’ve met
the first two of these operations in Section 7.2. For the third, recall that the minimization
𝜇𝑦 𝑅(𝑥1, … , 𝑥𝑛, 𝑦) of an 𝑛+1-ary relation 𝑅 is the 𝑛-ary function that maps 𝑥1, … , 𝑥𝑛
to the least 𝑦 such that 𝑅(𝑥1, … , 𝑥𝑛, 𝑦). Regular minimization is minimization applied
to a relation that is regular in the sense that for all 𝑥1, … , 𝑥𝑛 there is some 𝑦 such that
𝑅(𝑥1, … , 𝑥𝑛, 𝑦).

Lemma 8.8
The legit relations are closed under truth-functional combinations.

Proof. Let 𝑅 and 𝑆 be legit relations (of arity 1, for readability), and 𝜒𝑅 and 𝜒𝑆 their
characteristic functions. Then

𝜒𝑅∧𝑆(𝑥) = 𝜒𝑅(𝑥) × 𝜒𝑆(𝑥)
𝜒¬𝑅(𝑥) = 𝜒=(𝜒𝑅(𝑥), 0).

All truth-functional combinations can be constructed from conjunction and negation.

Lemma 8.9
The legit relations are closed under regular minimization.

Proof. Let𝑅(𝑥1, … , 𝑥𝑛, 𝑦) be a regular legit relation. Then𝜇𝑦 𝑅(𝑥1, … , 𝑥𝑛, 𝑦) isMn[𝜒¬𝑅].
Since 𝜒¬𝑅 is legit by Lemma 8.8, so is Mn[𝜒¬𝑅].

Lemma 8.10
The legit relations are closed under bounded quantification: if 𝑅(𝑥1, … , 𝑥𝑛, 𝑧) is
a legit 𝑛+1-ary relation, then so are the 𝑛+1-ary relations ∀𝑧 ≤ 𝑦 𝑅(𝑥1, … , 𝑥𝑛, 𝑧)
and ∃𝑧 ≤ 𝑦 𝑅(𝑥1, … , 𝑥𝑛, 𝑧).

Proof. Let 𝑅(𝑥1, … , 𝑥𝑛, 𝑧) be a legit relation. For readability, I assume 𝑛 = 1. Let
𝑑(𝑥, 𝑦) = 𝜇𝑧[¬𝑅(𝑥, 𝑧) ∨ 𝑦 = 𝑧]. By Lemma 8.8, 𝜇𝑧 is here applied to a legit relation,

158



8 Arithmetical Definability

and the final disjunct ensures that the relation is regular. So 𝑑 is legit by Lemma 8.9.
If 𝑑(𝑥, 𝑦) < 𝑦 then ¬𝑅(𝑥, 𝑑(𝑥, 𝑦)); if 𝑑(𝑥, 𝑦) = 𝑦 then ∀𝑧 ≤ 𝑦 𝑅(𝑥, 𝑧). So ∀𝑧 ≤ 𝑦 𝑅(𝑥, 𝑧)
holds iff 𝑑(𝑥, 𝑦) = 𝑦. (I.e., 𝜒∀𝑧≤𝑦 𝑅(𝑥,𝑧)(𝑥, 𝑦) = 𝜒=(𝑑(𝑥, 𝑦), 𝑦).)
Since ∃𝑧 ≤ 𝑦 𝑅(𝑥, 𝑧) is equivalent to ¬∀𝑧 ≤ 𝑦 ¬𝑅(𝑥, 𝑧), it is legit by Lemma 8.8.

Exercise 8.11 We know from the proof of Lemma 8.6 that addition is repre-
sentable in every theory that satisfies R5. Use Lemmas 8.7 and Lemma 8.10 to
infer that ≤ is representable in any theory that satisfies R1–R5, by defining ≤ in
terms of addition and bounded quantification.

Lemma 8.11: Beta Function Lemma
There is a function beta such that for any finite sequence ⟨𝑎1, … , 𝑎𝑛 ⟩ of natural
numbers, there is a number 𝑐 such that beta(𝑐, 𝑖) = 𝑎𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. Moreover,
beta is representable in any theory that satisfies R1–R6.

Proof. We use the coding method described above: given a sequence ⟨𝑎1, … , 𝑎𝑛 ⟩, let
𝑝 be the smallest prime that’s at least 2 greater than all of 𝑎1, … , 𝑎𝑛 and n; let 𝑞 be the
base-𝑝 numeral built as (𝑝−1) 𝑝⌢1 𝑝⌢𝑎1

𝑝⌢ … 𝑝⌢(𝑝−1) 𝑝⌢𝑛 𝑝⌢𝑎𝑛; let 𝑐 = j(𝑝, 𝑞). I’ll now
show how we can construct a function beta(𝑐, 𝑖) that retrieves the 𝑖-th element from the
sequence coded by 𝑐:

𝑥 < 𝑦 ⇔ ∃𝑧≤𝑥(𝑠(𝑧) = 𝑦).
Divides(𝑥, 𝑦) ⇔ ∃𝑧≤𝑦 (𝑦 = 𝑥 × 𝑧).

Prime(𝑥) ⇔ 𝑥 ≠ 0 ∧ 𝑥 ≠ 1 ∧ ∀𝑦≤𝑥 (Divides(𝑦, 𝑥) → 𝑦=1 ∨ 𝑦=𝑥).
Pow(𝑥, 𝑝) ⇔ 𝑥 ≠0 ∧ Prime(𝑝) ∧ ∀𝑦≤𝑥 (Divides(𝑦, 𝑥) → 𝑦=1 ∨ Divides(𝑝, 𝑦))

(in words: 𝑥 is a power of the prime 𝑝).
𝜂(𝑝, 𝑥) = 𝜇𝑦 ((Pow(𝑦, 𝑝) ∧ 𝑥 <𝑦 ∧ 1<𝑦) ∨ (¬Prime(𝑝) ∧ 𝑦=0))

(the smallest power of prime 𝑝 greater than 𝑥).
𝑥 𝑝⌢𝑦 = 𝑥 × 𝜂(𝑝, 𝑦) + 𝑦

(the base-𝑝 numeral of 𝑦 appended to that of 𝑥).
Part(𝑥, 𝑦, 𝑝) ⇔ ∃𝑣≤𝑦 ∃𝑤≤𝑦 (𝑣 𝑝⌢𝑥 𝑝⌢𝑤 = 𝑦 ∨ 𝑣 𝑝⌢𝑥 = 𝑦 ∨ 𝑥 𝑝⌢𝑣 = 𝑦 ∨ 𝑥 =𝑦)

(the base-𝑝 numeral of 𝑥 is part of the base-𝑝 numeral of 𝑦).

159



8 Arithmetical Definability

𝑥 ∸ 𝑦 = 𝜇𝑧 ((𝑦<𝑥 → 𝑦+𝑧=𝑥) ∧ (¬(𝑦<𝑥) → 𝑧=0))
(truncated subtraction, as in Section 7.1).

alpha(𝑝, 𝑞, 𝑖) = 𝜇𝑥 (Part((𝑝 ∸ 1) 𝑝⌢𝑖 𝑝⌢𝑥, 𝑞, 𝑝) ∨ 𝑥 =𝑞)
(the 𝑥 for which (𝑝 − 1) 𝑝⌢𝑖 𝑝⌢𝑥 is part of the base-𝑝 numeral of 𝑞).

J(𝑥, 𝑦, 𝑞) ⇔ 2 × 𝑞 = (𝑥 + 𝑦) × (𝑥 + 𝑦 + 1) + 2 × 𝑦.
r(𝑞) = 𝜇𝑦 ∃𝑥 ≤𝑞(J(𝑥, 𝑦, 𝑞)).
l(𝑞) = 𝜇𝑥 ∃𝑦≤𝑞(J(𝑥, 𝑦, 𝑞)).

beta(𝑐, 𝑖) = alpha(l(𝑐), r(𝑐), 𝑖).

To be clear: this chain of definitions doesn’t directly define the relevant functions and
relations in 𝔏𝐴. The expressions on the right-hand side aren’t 𝔏𝐴-formulas; they are
metalinguistic descriptions of certain functions and relations. The chain of definitions
merely shows how beta can be constructed from addition, multiplication, projection,
and 𝜒= by composition, truth-functional combination, bounded quantification, and
regular minimization, By Lemmas 8.8, 8.10, and 8.9, it follows that beta is legit. By
Lemma 8.7, beta is representable in any theory 𝑇 that satisfies R1–R6.

Now we can show that representability is closed under primitive recursion.

Lemma 8.12
If 𝑓 and 𝑔 are representable in a theory 𝑇 that satisfies R1–R6, and ℎ = Pr[𝑓 , 𝑔],
then ℎ is also representable in 𝑇 .

Proof. Assume ℎ = 𝑃𝑟[𝑓 , 𝑔]. For readability, I assume that 𝑓 is one-place. Let 𝐹(𝑥, 𝑦),
𝐺(𝑥, 𝑦, 𝑧, 𝑤), and BETA(𝑥, 𝑦, 𝑧) be 𝔏𝐴-formulas that represent 𝑓 , 𝑔, and beta in 𝑇 , re-
spectively. Let SEQ(𝑐, 𝑥, 𝑘) be the formula

∃𝑢(BETA(𝑐, 1, 𝑢) ∧ 𝐹(𝑥, 𝑢))∧
∀𝑖(𝑖 < 𝑘 → ∃𝑡∃𝑢(BETA(𝑐, 𝑠(𝑖), 𝑡) ∧ BETA(𝑐, 𝑠(𝑠(𝑖)), 𝑢) ∧ 𝐺(𝑥, 𝑖, 𝑡, 𝑢))).

This represents (in 𝑇 ) the relation that holds of 𝑐, 𝑥, 𝑘 iff 𝑐 codes ⟨ℎ(𝑥, 0), … , ℎ(𝑥, 𝑘)⟩.
Let 𝐻(𝑥, 𝑘, 𝑦) be

∃𝑐(SEQ(𝑐, 𝑥, 𝑘) ∧ BETA(𝑐, 𝑠(𝑘), 𝑦)).
This represents the relation that holds of 𝑥, 𝑘, 𝑦 iff 𝑦 is the last element of ⟨ℎ(𝑥, 0), … , ℎ(𝑥, 𝑘)⟩,

160



8 Arithmetical Definability

It therefore represents ℎ in 𝑇 .

Exercise 8.12 (a) Show that all legit functions are recursive. (b) Can you also
show that all legit functions are recursive? (Hint: if ℎ = Pr[𝑓 , 𝑔] then ℎ can be
constructed from 𝑓 , 𝑔, and beta, roughly as in the proof of Lemma 8.12.)

8.5 Summing up

The lemmas from the previous two sections combine to give us our main result:

Theorem 8.1
All recursive functions are representable in any theory that satisfies R1–R6.

Proof. Let 𝑇 be any theory that satisfies R1–R6. By Lemmas 8.1, 8.2, and 8.3, the zero
function, successor function, and projection functions are representable in 𝑇 . By Lem-
mas 8.4, 8.5, and 8.12, any function constructed by composition, regular minimization,
or primitive recursion from functions that are representable in 𝑇 is itself representable
in 𝑇 . Since all recursive functions can be constructed from zero, successor, and pro-
jection by these operations, it follows that all recursive functions are representable in
𝑇 .

Theorem 8.2
All recursive relations are representable in any theory that satisfies R1–R6.

Proof. Immediate from Theorem 8.1, Proposition 8.2, and the fact that any theory 𝑇
that satisfies R4 can prove 0 ≠ 1.
The conditions R1–R6 can be seen as defining a minimal arithmetical theory in which

all recursive functions and relations are representable. This theory is not especially ele-
gant. More elegant is the theory Q (or “Robinson Arithmetic”) that wemet in Section 4.1.
As a reminder, here are the axioms of Q:

161



8 Arithmetical Definability

Q1 ∀𝑥∀𝑦 (𝑠(𝑥)=𝑠(𝑦) → 𝑥 =𝑦)
Q2 ∀𝑥 0≠𝑠(𝑥)
Q3 ∀𝑥 (𝑥 ≠ 0 → ∃𝑦 𝑥 =𝑠(𝑦))
Q4 ∀𝑥(𝑥 + 0 = 𝑥)
Q5 ∀𝑥∀𝑦(𝑥 + 𝑠(𝑦) = 𝑠(𝑥 + 𝑦))
Q6 ∀𝑥(𝑥 × 0 = 0)
Q7 ∀𝑥∀𝑦(𝑥 × 𝑠(𝑦) = (𝑥 × 𝑦) + 𝑥)

The following proof shows that Q, and therefore every extension of Q, satisfies R1–R6.
An extension of Q is a theory that is at least as strong as Q, in the sense that it contains
all sentences in Q.

Theorem 8.3
All recursive functions and relations are representable in every extension of Q.

Proof. By Theorems 8.1 and 8.2, it suffices to show that Q (and therefore any extension
of Q) satisfies R1–R6.
R1. We show by induction on 𝑎 that ⊢𝑄 ∀𝑥(𝑎 < 𝑥 ∨ 𝑥 = 𝑎 ∨ 𝑥 < 𝑎). Base: 𝑎 = 0.
(I now reason “inside Q”.) By Q3, for all 𝑥 either 𝑥 = 0 or ∃𝑦 𝑥 = 𝑠(𝑦). In the second
case, ∃𝑦(𝑠(𝑦) + 0 = 𝑥) by Q4, and so 0 < 𝑥. So ∀𝑥(𝑥 = 0 ∨ 0 < 𝑥). Induction
step: Let 𝑥 be any number. We show that 𝑠(𝑎) < 𝑥 ∨ 𝑥 = 𝑠(𝑎) ∨ 𝑥 < 𝑠(𝑎). By
Q3, either 𝑥 = 0 or ∃𝑦 𝑥 = 𝑠(𝑦). If 𝑥 = 0 then 𝑥 < 𝑠(𝑎) because 𝑠(𝑎) + 0 = 𝑠(𝑎) by
Q4 and hence ∃𝑧(𝑠(𝑧) + 0 = 𝑠(𝑎)). Assume ∃𝑦 𝑥 = 𝑠(𝑦). By induction hypothesis,
𝑎 < 𝑦 ∨ 𝑦=𝑎 ∨ 𝑦 < 𝑎. If 𝑎 < 𝑦 then ∃𝑧(𝑠(𝑧) + 𝑎=𝑦) and 𝑠(𝑧) + 𝑠(𝑎)=𝑠(𝑦) by Q5; so
𝑠(𝑎) < 𝑥. If 𝑦=𝑎 then 𝑥 = 𝑠(𝑎). If 𝑦 < 𝑎 then ∃𝑧(𝑠(𝑧) + 𝑦 = 𝑎) and 𝑠(𝑧) + 𝑠(𝑦) = 𝑠(𝑎)
by Q5; so 𝑥 < 𝑠(𝑎).
R2. We show that 𝑄 contains ¬∃𝑥(𝑥 < 0). Fix any 𝑥, 𝑧. By Q3, either 𝑥 = 0 or
∃𝑦 𝑥 = 𝑠(𝑦). If 𝑥 = 0, 𝑠(𝑧) + 𝑥 = 𝑠(𝑧) + 0 = 𝑠(𝑧) by Q4, hence 𝑠(𝑧) + 𝑥 ≠ 0 by Q2.
If, alternatively, ∃𝑦 𝑥 = 𝑠(𝑦), then 𝑠(𝑧) + 𝑥 = 𝑠(𝑧) + 𝑠(𝑦) = 𝑠(𝑠(𝑧) + 𝑦) by Q5, hence
𝑠(𝑧) + 𝑥 ≠ 0 by Q2. So Q2–Q5 entail ∀𝑥¬∃𝑧(𝑠(𝑧) + 𝑥 = 0), which is equivalent to
¬∃𝑥(𝑥 < 0).
R3. We show by induction on 𝑎 that whenever 𝑎 > 0 then ⊢𝑄 ∀𝑥(𝑥 < 𝑎 → (𝑥 =0 ∨
… ∨ 𝑥 =𝑎 − 1)). Base: 𝑎 = 1. We show that ⊢𝑄 ∀𝑥(𝑥 < 1 → 𝑥 = 0). Assume
𝑥 < 1; i.e. ∃𝑧(𝑠(𝑧) + 𝑥 = 𝑠(0)). Suppose for reductio that 𝑥 ≠ 0. By Q3, ∃𝑦 𝑥 =𝑠(𝑦); so

162



8 Arithmetical Definability

𝑠(𝑧) + 𝑠(𝑦) = 𝑠(0); so 𝑠(𝑠(𝑧) + 𝑦) = 𝑠(0) by Q5, and 𝑠(𝑧) + 𝑦 = 0 by Q1; if 𝑦 = 0 then
𝑠(𝑧) + 0 = 𝑠(𝑧) = 0 contradicting Q2; if 𝑦 = 𝑠(𝑤) then 𝑠(𝑧) + 𝑠(𝑤) = 𝑠(𝑠(𝑧) + 𝑤) = 0,
again contradicting Q2. Induction step: Assume 𝑥 < 𝑠(𝑎), i.e. ∃𝑧(𝑠(𝑧) + 𝑥 = 𝑠(𝑎)).
By Q3, either 𝑥 = 0 or ∃𝑦 𝑥 = 𝑠(𝑦). In the second case, 𝑠(𝑧) + 𝑠(𝑦) = 𝑠(𝑎), so
𝑠(𝑠(𝑧) + 𝑦) = 𝑠(𝑎) by Q5, and 𝑠(𝑧) + 𝑦 = 𝑎 by Q1; so 𝑦 < 𝑎. By induction hypothesis,
𝑦 = 0 ∨ … ∨ 𝑦 = 𝑎 − 1, so 𝑥 = 𝑠(𝑦) is one of 1, … , 𝑎. Combining both cases, we
have 𝑥 = 0 ∨ … ∨ 𝑥 = 𝑎.
R4. We show that if 𝑎 ≠ 𝑏, then ⊢𝑄 𝑎 ≠ 𝑏. Assume 𝑎 < 𝑏. We show by induction on
𝑎 that ⊢𝑄 𝑎 ≠ 𝑏. Base: 𝑎 = 0. Then 𝑏 = 𝑠(𝑏 − 1)) and hence 0 ≠ 𝑏 by Q2. Induction
step: 𝑎 = 𝑠(𝑐). Then 𝑏 = 𝑠(𝑑) for some 𝑑 with 𝑐 < 𝑑. By induction hypothesis,
⊢𝑄 𝑐 ≠ 𝑑. So ⊢𝑄 𝑠(𝑐) ≠ 𝑠(𝑑) by Q1. The case for 𝑏 < 𝑎 is analogous.

R5. We show by induction on 𝑏 that for all 𝑎, 𝑏, ⊢𝑄 𝑎 + 𝑏 = 𝑎 + 𝑏. Base: 𝑏 = 0. Then
𝑎 + 𝑏 = 𝑎 + 𝑏 by Q4. Induction step: 𝑏 = 𝑠(𝑐). By induction hypothesis, 𝑎 + 𝑐 = 𝑎 + 𝑐.
By Q5, 𝑎 + 𝑠(𝑐) = 𝑠(𝑎 + 𝑐) = 𝑠(𝑎 + 𝑐) = 𝑎 + 𝑠(𝑐) = 𝑎 + 𝑏.
R6. We show by induction on 𝑏 that for all 𝑎, 𝑏, ⊢𝑄 𝑎 × 𝑏 = 𝑎 × 𝑏. Base: 𝑏 = 0. Then
𝑎 × 𝑏 = 𝑎 × 𝑏 by Q6. Induction step: 𝑏 = 𝑠(𝑐). Then 𝑎 × 𝑠(𝑐) = 𝑎 × 𝑐 + 𝑎 by Q7,
= 𝑎 × 𝑐 + 𝑎 by induction hypothesis, = 𝑎 × 𝑐 + 𝑎 by R5, = 𝑎 × 𝑏.
By Proposition 4.1, Peano Arithmetic (PA) is an extension of Q. So all recursive func-

tions and relations are representable in PA.
We can also prove a result that goes in the other direction:

Theorem 8.4
Every relation that is representable in a computably axiomatizable and consistent
𝔏𝐴-theory is recursive.

Proof. Assume 𝐴(𝑥1, … , 𝑥𝑛) represents 𝑅 in a computably axiomatizable and con-
sistent theory 𝑇 . That is, if 𝑅 holds of some numbers 𝑎1, … , 𝑎𝑛, then 𝑇 can prove
𝐴(𝑎1, … , 𝑎𝑛), and if 𝑅 does not hold of 𝑎1, … , 𝑎𝑛, then 𝑇 can prove ¬𝐴(𝑎1, … , 𝑎𝑛).
Since 𝑇 is consistent, it never proves both 𝐴(𝑎1, … , 𝑎𝑛) and ¬𝐴(𝑎1, … , 𝑎𝑛). By Propo-
sition 5.4, every computably axiomatizable first-order theory is computably enumer-
able: we can define an algorithm that lists all sentences provable in 𝑇 . This gives us
an algorithm for deciding 𝑅: to check whether 𝑅 holds of some numbers 𝑎1, … , 𝑎𝑛,
we wait until either 𝐴(𝑎1, … , 𝑎𝑛) or ¬𝐴(𝑎1, … , 𝑎𝑛) appears on the list of sentences
provable in 𝑇 . By the Church-Turing thesis, it follows that 𝑅 is recursive.

163



8 Arithmetical Definability

Finally, let’s return to definability. As I announced in Section 8.2, our result about
representability shows that all recursive functions and relations can be defined in 𝔏𝐴:

Theorem 8.5
All recursive functions and relations are definable in 𝔏𝐴.

Proof. By Theorem 8.3, all recursive functions and relations are representable in Q.
All axioms of Q are true in the standard model of arithmetic 𝔄. So Q ⊆ Th(𝔄). By
Proposition 8.1, every formula that represents a function or relation in Q therefore also
defines that function or relation in 𝔏𝐴

Exercise 8.13 Are all recursive functions and relations representable in Th(𝔄)?

Exercise 8.14 Using the Church-Turing theses, explain why all computably enu-
merable relations are definable in 𝔏𝐴. (Hint: use Proposition 5.3.)

Exercise 8.15 Are all computably enumerable relations representable in Q?

Exercise 8.16 Say that a relation 𝑅 is weakly represented by an 𝔏𝐴-formula
𝐴(𝑥1, … , 𝑥𝑛) in a theory 𝑇 iff for all numbers 𝑎1, … , 𝑎𝑛,

𝑅(𝑎1, … , 𝑎𝑛) iff ⊢𝑇 𝐴(𝑎1, … , 𝑎𝑛).

Explain the following facts:

(a) A relation can be weakly representable in a theory without being repre-
sentable in that theory.

(b) If 𝑅 is weakly representable in a computably axiomatizable and consistent
theory then 𝑅 is computably enumerable. (Compare Theorem 8.4.)

(c) All recursive relations are weakly representable in any 𝔏𝐴-theory that is con-
sistent with Q. (Hint: We know that every recursive relation 𝑅 is represented
in Q by some formula 𝐴. Let ̂𝑄 be the conjunction of the seven axioms of
Q, and consider the formula ̂𝑄 → 𝐴.)

164


