9 Incompleteness

In this chapter, we’re going to prove several versions of Godel’s First Incompleteness
Theorem. We’re also going to prove Tarski’s Theorem on the undefinability of truth,
and Church’s Theorem on the undecidability of first-order logic.

9.1 Preview

In Chapter 4, we studied axiomatic theories. The aim of axiomatizing an area of math-
ematics (or other discipline), is to put it on a firm foundation: instead of relying on a
hodgepodge of intuition and imperfectly understood techniques, all results in the area
should be derivable by pure logic from a set of precise and explicitly stated assumptions:
the axioms.

What should we want of an axiomatic theory? Obviously, all the axioms should be
true on their intended interpretation. Ideally, they should suffice to derive all truths in
the relevant area. These are semantic properties of theories, related to their intended
interpretation. But they entail syntactic properties. If all axioms of a theory are true, the
theory must be consistent: it won’t contain a sentence A and its negation —A; equivalently,
it won’t contain L. If a theory contains all truths on its intended interpretation, it will
be complete in the sense that for every sentence A in its language, it contains either A or
-A.

Note that this is not the sense of ‘complete’ in which the first-order calculus is com-
plete. When we talk about completeness of a proof system, we mean that the system can
prove every valid sentence. When we talk about completeness of a theory, we mean that
the theory decides every sentence: it contains A or —A, for every sentence A. This notion
of completeness is sometimes called negation-completeness.

Confusingly, ‘sound’ also has two meanings. A proof system is sound if it can only
prove valid sentences. A theory is called sound if all sentences in the theory are true on
their intended interpretation.

Consistency and completeness are defined syntactically, without reference to the mean-
ing of the axioms. This makes them easier to study formally than semantic properties

167

9 Incompleteness

like soundness, which requires pinning down the intended interpretation independently
of the proposed axioms, so that one can compare what the axioms say with the structure
they are meant to describe.

Consistency may seem trivial: surely nobody would propose an inconsistent set of
axioms? But remember that this is exactly what happened to Frege. It also happened
to others, especially when trying to develop powerful systems to unify diverse areas
of mathematics. Many mathematicians were therefore wary of ZFC when it was first
proposed. Couldn’t it also turn out to be inconsistent?

David Hilbert saw how such fears could be put to rest. To check whether an axiomatic
theory is consistent, we only need to check whether there is deduction of L from its
axioms. Even if the theory itself, like ZFC, talks about highly infinitary matters, any
deduction from its axioms is finite. We should therefore be able to establish the consis-
tency of ZFC in a much weaker, finitary branch of mathematics that doesn’t study sets,
but proofs and deductions. In the same way, Hilbert hoped that we could prove the com-
pleteness of axiomatic theories: we should be able to verify (as seemed plausible in the
1920s) that the axioms of, say, Peano Arithmetic or ZFC decide every sentence in their
language.

This project for establishing the consistency and completeness of axiomatic theories
is known as Hilbert’s program. It was shattered by Godel’s incompleteness theorems.
Godel showed that sufficiently strong axiomatic theories can never be complete, unless
they are inconsistent. He also showed that there is no hope of establishing the consistency
of sufficiently strong theories from safe, finitary grounds. In the present chapter, we’ll
focus on the first of these results. We’ll turn to the second in Chapter 10.

Godel realized that we don’t need a separate branch of mathematics to study proofs.
Since sentences and deductions are finite strings of symbols, they can be coded as num-
bers. We can therefore use arithmetical theories to reason indirectly about proofs. We
can, for example, construct an £ 4-formula PROVp4 (x) so that PROVpy (77) is true (in the
standard model of arithmetic) iff there is a deduction of the sentence coded by n from
the axioms of Peano Arithmetic.

Godel then showed how to construct a sentence G, coded by some number 7, such that
G < —PROVp, (n) is true in . Informally, G says of itself that it is not provable (in PA):
it is true iff it is unprovable. It swiftly follows that PA can’t decide G, assuming that PA
is sound. To see this, note first that G is true: if it were is false, it would be provable
(because G is true iff it is unprovable), and so PA would prove a falsehood, contradicting
the assumption that PA is sound. So G is true. And so G can’t be proved in PA (because
G is true iff it is unprovable). Its negation -G can’t be proved either, as otherwise PA
would prove a falsehood.

168

9 Incompleteness

This argument assumes that PA is sound. For that reason, it is known as the “semantic”
version of the First Incompleteness Theorem. Godel’s main resultis a “syntactic” version
of the theorem that doesn’t require soundness. In its standard formulation, it shows that
every consistent axiomatic theory that is at least as strong as Q is incomplete.

The restriction to axiomatic theories is crucial. Consider the theory Th(2l) consisting
of all £4-sentences that are true in the standard model of arithmetic 2. This theory is
complete: every £,-sentence is either true or false in 2I; if true, it is in Th(Q); if false,
its negation is in Th(?f). By definition, Th(2[) is also sound, and therefore consistent.
But it is not an axiomatic theory: I haven’t specified Th(?l) by giving a set of axioms,
and the Incompleteness Theorem implies that I couldn’t have done so.

Officially, theories are just sets of sentences closed under first-order consequence. The
same set of sentences can always be specified in many ways. Instead of speaking of
axiomatic theories, we should therefore speak of axiomatizable theories. Recall that a
theory is axiomatizable if there is a decidable set of axioms from which all and only the
sentences in the theory can be deduced: a set of axioms for which there is a mechanical
algorithm to check whether a given sentence is in it or not.

In Section 5.4, I introduced these concepts informally, using the pre-theoretical no-
tions of computability and algorithms. We can now give more formal definitions.

We say that a set of numbers is recursively decidable if the property of being in the
set is a recursive relation, as defined in Chapter 7; a set of sentences is recursively de-
cidable if the set of their code numbers is recursively decidable. A theory is recursively
axiomatizable if there is a recursively decidable set of axioms from which all and only
the sentences in the theory can be deduced. By Theorem 7.4, this is equivalent to saying
that there is a Turing machine that determines whether a given £ 4-sentence is among the
axioms or not.

The syntactic version of Godel’s First Incompleteness Theorem can now be stated as
follows: every consistent and recursively axiomatizable theory of arithmetic that is at
least as strong as Q is incomplete.

Exercise 9.1 Let T be the set of all £4-sentences. Is T (a) a theory? (b) recur-
sively axiomatizable? (c) complete? (d) consistent? (Explain.)

Exercise 9.2 Let T, be the set of £4-sentences that are valid in first-order logic.
Is 7, (a) a theory? (b) recursively axiomatizable? (c) complete? (d) consistent?

169

9 Incompleteness

Exercise 9.3 Can you find an £,4-theory that is recursively axiomatizable, com-
plete, and consistent? (Hint: you only need one simple axiom.)

9.2 Arithmetization of syntax

As I mentioned above, Godel’s proof draws on the insight that we can use arithmetical
theories like PA to reason about their own syntax. After the work we’ve done in the
previous chapter, this should not be surprising. We’ve shown in Theorem 8.5 that every
computable property or relation is definable in &£4. Syntactic properties like coding an
£ 4-sentence or coding a deduction from the axioms of PA are clearly computable; so they
are definable in £4: there is an £,4-formula PRFp, (x,y) such that PRFpy (72, m) is true (in
) iff n codes a proof of the sentence coded by m from the axioms of PA. This is all we
need to run Godel’s argument. To fix ideas, I’ll nonetheless fill in some more details.

We want to talk about sentences and deductions in the language £ 4, whose non-logical
symbols are 0, s, +, and x. To this end, we code £4-strings as numbers, so that we can
indirectly refer an £ 4-string by the £ 4-numeral of its code. We’ll use Godel’s own coding
scheme, which I introduced in Section 5.5.

We first assign a symbol code to each primitive symbol of £ 4, like so:

Symbol: 0 s + x = = > VY () , x ¢ x

Code: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Then we use the prime exponent method to code sequences of symbol codes, and
thereby & 4-strings. The string ‘0 = 0’, for example, determines the sequence of symbol
codes (1,5, 1), which is coded as 21 - 39 - 51 = 2430. The exponents of the primes are
the symbol codes. In general, if p; is the ith prime number then the code number of an
£ 4-string A composed of symbols sys5 ... s, with symbol codes ¢y, c,, ..., ¢, is

#[A] = p]' - pP2 - ... pa.

From now on, we’ll call #[A] the Gddel number of A. Note that individual symbols of
£ 4 have both a Godel number and a symbol code: ‘-’ has symbol code 7 and Godel
number 27 = 128. We won’t talk about symbol codes any more.

170

9 Incompleteness

Since deductions are finite sequences of £4-sentences, we can use the prime exponent
method again to code them: the Godel number of a deduction A, A,, ..., A, is

#[A #[A #[A
#A|, Ay, ..., A, = pitl phlAal AL

The Godel number function # converts any £,4-string A into a number #[A]. This

number #[A] is denoted in £, by some numeral #[A]. So we can indirectly refer to any
€ 4-string A by the numeral #[A] of its Godel number.

We’ll abbreviate #[A] as "A". For example, since #[0 =0] = 2430, "0=0"1is 2430,
which is s(s(... s(0) ...)) with 2430 occurrences of s. In practice, you should treat the
corner quotes as a special kind of quote marks: we use "0=0" to denote the string ‘0=0’

via its Godel number.

Exercise 9.4 What are (a) #[0]? (b) #[0]? (c) "0™? (d) #["0"]?

Now consider a simple syntactic property: being a variable. In our coding scheme,
variables have Godel numbers 212,214 216 That is, a number n codes a variable iff
n = 212+2Y_for some y. This is a purely arithmetical property that can be expressed in
£ 4: there is an £ 4-formula VAR (x) such that VAR () is true (in) iff n codes a variable.
In this sense, VAR(n7) “says that” n codes a variable. But what it actually, explicitly says
is simply that there is a number y such that n = 212+27,

In the terminology of the previous chapter, the formula VAR(x) defines the property
of coding a variable. By Theorem 8.5, every recursive relation and function is definable
in L,. We can use this result to show that a wide range of syntactic notions are definable
in L,. Since our coding scheme can be implemented mechanically, it maps every com-
putable relation or function on £ 4-strings to a computable relation or function on N. By
the Church-Turing Thesis, that relation or function is recursive. By Theorem 8.5, it is
definable in L,.

For example, there is a mechanical procedure for checking whether a given string is
a well-formed sentence of £4. So there is also a mechanical procedure for checking
whether a given number is the Godel number of an £ 4-sentence. By the Church-Turing
Thesis, it follows that the property (call it Sent) of coding an £ 4-sentence is recursive.
By Theorem 8.5, it follows that there is an £ 4-formula SENT(x) such that SENT(n) is true
(in Q) iff n is the Godel number of an & 4-sentence.

Similarly, if a theory T is axiomatized by a decidable set of axioms then there is a
mechanical procedure for checking whether a given sequence of £4-sentences is a de-
duction of a given target sentence from these axioms: we only need to check whether

171

9 Incompleteness

the last sentence in the sequence is the target sentence, and whether each sentence in the
sequence is either an axiom of 7', an instance of the logical axioms A1-A®6, or follows
from previous sentences by MP or Gen. All these checks can be performed mechanically.
Let Prf be the relation that holds between numbers n and m iff n codes a deduction (in-
formally, a “proof™) of the sentence coded by m from a set of axioms that generates 7.
If T is computably axiomatizable, Prf; is computable. By the Church-Turing Thesis, it
is recursive. By Theorem 8.5, it follows that it is definable in L, : there is an £4-formula
PRF7(x,y) such that PRFy (7, m) is true (in Q) iff n codes a proof of the sentence coded
by m from the axioms of 7.

For a final example, let’s look at a function on £ 4-strings. Consider the concatenation
function that takes two & 4-strings and returns the string consisting of the first followed by
the second. This is clearly computable. By the Church-Turing Thesis, the corresponding
function on Godel numbers is recursive: there is a recursive function * that maps the
Godel numbers of any two £ 4-strings to the Godel number of the concatenation of these
strings. By Theorem 8.5, it follows that there is an &£,-formula CONCAT(x,y, z) that
defines * in L4, so that CONCAT(n, m, E) is true (in Q) iff k codes the concatenation of
the strings coded by n and m. (I'll write this as kK = n * m, rather than k = *(n, m)).

Exercise 9.5 What is #[0 =] = #[0]?

I’ve appealed to the Church-Turing Thesis to argue that Sent, Prf; and s are recursive,
but we could have shown this directly: we could show that Sent, Prf; and % can be
constructed from zero, successor, and projection by composition, primitive recursion,
and regular minimization. In fact, we don’t need minimization: Sent, Prf; and = are
primitive recursive. I won’t go through the details for each case. But let me illustrate
what’s involved with the concatenation function % (which will play an important role in
the next section).

Recall that = maps two Godel numbers #[A] and #[B] to the Godel number #[AB] of
the concatenation of A and B. If B is a single symbol, it is easy to define this operation
arithmetically:

#[A] = #[s] = #[A] - pri(len(#[A])) "],

where pri(i) is the ith prime number and len(n) is the length of the string coded by n. In
Section 7.2, I showed that pri and len are primitive recursive. So the function

append(x,y) = x - pri(len(x))”

172

9 Incompleteness

is also primitive recursive.

Next, we need the function entry that takes two numbers n and i and returns the ex-
ponent of the ith prime in the prime factorization of n. I showed in Section 7.2 that this
function, too, is primitive recursive. Using append and entry, we define (by primitive
recursion) a function conc that takes three numbers n, m, and i and returns the code of
the string consisting of the string coded by n followed by the first i symbols of the string
coded by m:

conc(x,y,0) =x

conc(x,y, s(i)) = append(conc(x,y,i),entry(y, s(i))).

From this, we can define x * y as conc(x, y, len(y)).

9.3 The First Incompleteness Theorem

I’'ll now explain how Godel managed to construct a sentence that is true iff it is unprov-
able. The construction is so perplexing that it may help to first give a version for English.
I’'ll show how to construct an English sentence that is true iff it is unprovable. (Let’s
pretend we’ve specified what it means for an English sentence to be “provable”. You’ll
see that nothing hangs on this.)

In English, we can use quote marks to denote expressions of English. For example,

‘is English’

is a noun that denotes an English predicate. We can combine nouns like this with predi-
cates to form sentences:

(1) ‘is English’ is English.

(2) ‘is made of stone’ is made of stone.

(3) ‘is made of stone’ is English.
In (1) and (2), a predicate is applied to itself, using quote marks. Let’s call a sentence
that results by applying a predicate to itself in this manner the diagonalization of that
predicate. So (1) is the diagonalization of ‘is English’.

Now consider the predicate ‘has a diagonalization that is not provable’. If we diago-
nalize this predicate, we get

(4) ‘has a diagonalization that is not provable’ has a diagonalization that is not prov-
able.

173

9 Incompleteness

This is a sentence. What does it say? Well, it says that the predicate it quotes has an un-
provable diagonalization. Every predicate has a unique diagonalization. So (4) says that
the diagonalization of the quoted predicate (‘has a diagonalization that is not provable’)
is not provable. But (4) is the diagonalization of that predicate. So (4) says of itself that
it is not provable.

This trick obviously generalizes. We can replace ‘is not provable’ by any predicate P.
The argument shows that for any predicate English P, there is a sentence G that says of
itself that it is P.

We’ll now run this argument for £4. We use open formulas A(x) as predicates, and
Godel numerals "A(x)" (instead of quote marks) to refer to these predicates. For ex-
ample, if VAR(x) is the formula that defines the property of coding a variable, then
VAR("VAR(x)") is a sentence saying (falsely) that the code of VAR(x) codes a variable
— equivalently: that VAR(x) is a variable. We might call VAR("VAR(x)") the diagonal-
ization of VAR(x). However, it proves convenient to use a slightly more roundabout
definition.

For any £,-formula A, we define the diagonalization of A as the formula

Ix(x="A" ANA).

If x is free in A, which is the only case we care about, this is logically equivalent to
A(TAx)™).

With this definition, constructing the diagonalization of a formula is a trivial mechani-
cal task. Let diag be the corresponding function on Godel numbers: diag takes the Godel
number of a formula as input and returns the Godel number of the formula’s diagonal-
ization. This function is recursive. In fact, it is primitive recursive, and easily definable
with the concatenation function #:

diag(y) = #[Ix(x=YA] = y = #])].

By Theorem 8.5, all recursive functions are definable in £,. So there is a formula
DIAG(x,y) such that DIAG(n,m) is true (in) iff m codes the diagonalization of the
formula coded by n. We use this formula to construct, for any formula A(x) a sentence
that “says of itself” that it has the property expressed by A(x).

Lemma 9.1: The Semantic Diagonal Lemma

For every £ 4-formula A (x) there is a sentence G such that 2 |- Gift A |F A("G").

174

9 Incompleteness

Proof. Let F(x) be the formula Jy(DIAG(x,y) A A(y)). Let G be the diagonalization
of F(x). So G is Ix(x = "F(x)" A F(x)). This is logically equivalent to F("F(x)"),
which expands to 3y(DIAG("F(x)",y) A A(y)). Since DIAG defines diag, G is true in
2l iff there is a number n that codes the diagonalization of F(x) and for which A(n) is
true (in A). The diagonalization of F(x) is G. So G is true in A iff A(n) is true (in A)
of the number 7 that codes G. In short G is true in A iff A("G™) is true in . (If this
proof baffles you, have another look at the English version above!)]

Now we’re ready to prove the semantic version of Godel’s First Incompleteness Theo-
rem. Let T be some recursively axiomatizable theory in &4, so that there is a recursively
decidable set of axioms I' from which all and only the members of T can be deduced.
I’1l say that a sentence is provable in T if it is deducible from some such set I'. As above,
let Prf be the relation that holds between numbers n and m iff n codes a deduction of
the sentence coded by m from I'. As explained in the previous section, Prf is recursive;
so is an £ 4-formula PRF7(x,y) such that 2 | PRF(n, m) iff n codes a deduction from
I' of the sentence coded by m. Let PROV(x) abbreviate 3y PRF7(y, x). By construction,
PROV7("A™) is true (in) iff A is provable in 7. So -PROV("A") is true iff A is unprov-
able in T. By diagonalising —-PROV(x), we get a sentence G that is true (in) iff it is
unprovable (in 7).

Theorem 9.1: Godel’s First Incompleteness Theorem, semantic version

Every sound and recursively axiomatizable £,-theory is incomplete.

Proof. Let T be a recursively axiomatizable & 4-theory. As I’ve just explained, there is
then an £ 4-formula PROVy (x) such that PROVy("A") is true in 2l iff A is provable in 7.
By the Semantic Diagonal Lemma (using -PROVy(x) for A(x)), there is a sentence G
such that A |- G iff A |- =PROVy("G").

Suppose G is provable in 7. Then A |- PROV,("G"), and so A }- G, contradicting our
assumption that 7 is sound. So G is not provable in 7. So A |- -PROVy("G"), and
so 2 |- G. It follows that =G isn’t provable in T either, as otherwise 7" would prove a
falsehood. [l

This is a beautiful argument, although the conclusion isn’t news to us: we’ve already
derived it from the unsolvability of the Halting Problem in Section 5.5 (which, of course,
wasn’t known when Godel published his result).

175

9 Incompleteness

Exercise 9.6 Theorem 9.1 shows that there is a true sentence G that is not prov-
able in a sound and recursively axiomatizable theory such as PA. Suppose we add
G as a new axiom to PA. Is the resulting theory complete? Is it sound?

Exercise 9.7 Explain why there are infinitely many £4-sentences that PA can’t
decide (assuming that PA is sound).

As I mentioned in Section 9.1, Godel also proved a syntactic version of the Incom-
pleteness Theorem that doesn’t require the relevant theory to be sound (true in), but
merely imposes some syntactic conditions on it.

The idea is to run through the proof of Theorem 9.1 inside the theory 7. Instead of
relying on the equivalence of G and —-PROV("G") in U, we’ll use the fact that T can
prove their equivalence: -y G < —PROVy("G"). This requires a different version of
the Diagonal Lemma, turning on the representability of diag in T, rather than on its
definability. Recall that a (one-place) function f is representable in a theory 7 iff there
is a formula A (x, y) such that for all n,

(i) F, A, f(n)), and
(i) 7 Yy(A[@Y) >y =Ff(n).
Equivalently: k7 Vy(A(71,y) < y = f(n)).

Lemma 9.2: The Syntactic Diagonal Lemma

If T is an £ 4-theory in which diag is representable, then for every & 4-formula A (x)
there is a sentence G such that-r G < A("G").

Proof. Let T be an £,-theory in which diag is representable. Let DIAG(x,y) be the
formula that represents diag in 7', and let F(x) be the formula Jy(DIAG(x,y) A A(y)).
Since DIAG represents diag in 7, T can prove

Yy (DIAG("F(x)",y) < y=diag("F(x)")). (1)
Let G be the diagonalization of F(x). So the following is logically true:

G < Jy(DIAG("F(x)",y) NA(Y)). (2)

176

9 Incompleteness

From (1) and (2), first-order logic yields
G < Jy(y=diag("F(x)") A A®)).

Since diag("F(x)") is "G, this simplifiesto G < Jy (y = "G™ A A(y)) and further
toG < A("G"). [l

Now assume that 7 is a recursively axiomatizable theory in which both diag and Prf,
are representable. As before, define PROV(x) as 3y PRF(y, x). The Syntactic Diagonal
Lemma gives us a sentence G (called the Godel sentence for T) such that

Fr G & —PROV,("G"). (D)

Let’s go through the reasoning in the proof of Theorem 9.1 to show that 7' can’t decide
G.

One of the two directions goes through smoothly: we can show that G isn’t provable
in T, unless T is inconsistent. For suppose T can prove 7. This means that there is a
deduction of G from a suitable set of axioms for 7. Since PRF7(x,y) represents Prf in 7',
it follows that there is a number 7 (the code of the deduction) such that -, PRF (17, "G™).
Since T is closed under first-order consequence, it follows that -7 PROV#("G™). By (D),
we have -7 =G, So T proves both G and -G.

The other direction is trickier. Suppose T can prove -~G. By (D), T can then prove
PROV7("G"), which is short for 3y PRFy(y,"G™). If T is consistent, there is no deduction
of G from T’s axioms. So Prf;(n,"G") is false for every number n. Since PRFy(x,y)
represents Prfy in T, it follows that -7 —PRF(n, "G ") for every number n.

We now have the following situation: 7" proves 3y PRF(y, "G "), butalso -PRFy(n, "G ")
for every number n. The theory says that there is a number of a certain kind, but also
denies that any particular number 0,1,2,...is of that kind. This isn’t inconsistency, but it
is almost as bad. Godel called it “w-inconsistency”: a theory is w-inconsistent if there
is a formula A (x) such that

(i) F7 3xA(x), but
(i) for every number n, 7 -A(n).
A theory is w-consistent if it is not w-inconsistent.
Clearly, no sound theory can be w-inconsistent. So w-consistency is another purely

syntactic condition (besides consistency) that is entailed by soundness.
We’ve established the main result of Godel’s 1931 paper:

177

9 Incompleteness

Theorem 9.2: Godel’s First Incompleteness Theorem

Every recursively axiomatizable and w-consistent theory in which all recursive
functions are representable is incomplete.

I won’t go through the details of the proof again, as we’re going to prove a strictly
stronger result in the next section, showing that mere consistency (as opposed to w-
consistency) is enough. We will derive this from another important result, Tarski’s The-
orem. But I want to mention that there is also a way to establish it directly, following
Godel’s line of reasoning. The trick, due to J. Barkley Rosser, is to make a slight change
to the sentence G. Instead of using a sentence that says of itself that it is unprovable,
Rosser uses a sentence saying that for every proof of it, there is a shorter proof of its
negation. More formally, Rosser’s version of the argument uses the diagonalization R of
the following formula in place of G:

Yy(PRF(y,x) = Jz(z<y A Yv(CONCAT("=",x,v) - PRFr(z,V))).

One can show that if Prf; and diag are representable in 7', T is consistent, and 7" knows
a few facts about arithmetic, then it can prove neither R nor —R.

Exercise 9.8 Let G be the Godel sentence for PA. We know that G is not provable
in PA. How about PROVp, ("G ")? How about —=PROVpp ("G ")?

Exercise 9.9 Explain why PROVp, (x) doesn’t represent provability in PA. (Hint:
use the previous exercise.)

Exercise 9.10 Show that every w-consistent theory is consistent.

Exercise 9.11 Let T be an w-inconsistent, but consistent theory. By the com-
pleteness of first-order logic, 7" has a model. Can you describe what such a model
might look like?

178

9 Incompleteness

9.4 Tarski’s Theorem

Recall that a formula A (x) represents a property P in a theory 7 iff for every £,-sentence
B,

(i) if P(B), then - A("B"), and
(ii) if ~P(B), then 7 —A("B").

In exercise 9.9, you showed that PROVpy (x) does not represent provability in PA. Offi-
cially, PA is just the set of all sentences that are provable in PA. You therefore showed
that PROVp, (x) does not represent membership in PA.

This result can be strengthened. The following theorem, due to Alfred Tarski (1933),
shows that no £,4-formula represents membership in PA. Indeed, no formula represents
membership in any consistent theory in which diag is representable.

Theorem 9.3: Tarski’s Theorem

If T is consistent and diag is representable in 7', then membership in 7 is not
representable in 7.

Proof. Suppose T (x) represents membership in 7. By the Diagonal Lemma, there is
a sentence G such that
Fr G e -T("G") (1)

Since T (x) represents membership in 7', we have

if -7 G, then 4 T("G))
if ¥ G, then Fy ~T("G") 3)

Either -+ G or f+ G. Suppose - G. Then 7 =T ("G™) by (1), and -7 T("G™) by
(2); so T is inconsistent. Alternatively, suppose 7+ G. Then -7 T("G™) by (1), and
Fr =T ("G") by (3); again, T is inconsistent.]

Note that Tarski’s Theorem isn’t restricted to axiomatizable theories. It even holds
for Th(?f). Since representability in Th(2l) implies definability in £ 4, it follows that no
€ 4-formula defines membership in Th(Q/):

179

9 Incompleteness

Theorem 9.4

Arithmetical truth is not definable in £4: there is no £,-formula 7' (x) such that
AW T("AY) iff A | A.

Proof. Th(Q) is consistent extension of Q. By Theorem 8.3, it follows that diag is
representable in Th(Q). By Theorem 9.3, it follows that membership in Th(2[) is not
representable in Th(?l): there is no £4-formula 7' (x) such that

() if A |- A then o |- T("A™), and
(ii) if o - A then o |- =T ("A").

So there is no £4-formula that defines truth in 2. O]

Exercise 9.12 Use the Semantic Diagonal Lemma to prove Theorem 9.4, with-
out invoking Theorem 9.3.

Tarski’s Theorem shows that while £4 can formalize its own syntax (we can define
¢ 4-properties like being a variable or being a sentence), it can’t express the most basic
concept of its own semantics. This isn’t just true for £ 4. Loosely speaking, no sufficiently
powerful language that can express its own syntax can express its own semantics.

We can bring this out a little more clearly by considering the concept of a truth predi-
cate. As Tarski pointed out, the central feature of the predicate ‘is true’ in English is that
when it is applied to a sentence, the result is equivalent to that sentence:

(1) ‘Snow is white’ is true iff snow is white.
(2) 2+2=4’ is true iff 2+2=4.

Sentences like (1) and (2) are called Tarski biconditionals. A theory that can reason
about truth should be able to prove all Tarski biconditionals for its language. Thus a
formula W (x) is called a truth predicate for a theory T iff Fr W("A™) < A for every
sentence A in T’s language. An argument similar to the one used in Theorem 9.3 shows
that no sufficiently powerful theory can have a truth predicate, unless it is inconsistent.
This result is also called “Tarski’s Theorem”.

Theorem 9.5: Also Tarski’s Theorem

If diag is representable in a consistent theory 7 then 7 has no truth predicate.

180

9 Incompleteness

Proof. Suppose W (x) is a truth predicate for 7. By the Syntactic Diagonal Lemma,
there is a sentence L such that -7 L << -W("L"). Since W (x) is a truth predicate for
T,Fr W('L") & L. Sotky L < —L. So T is inconsistent. [

While Godel’s sentence G says of itself that it is unprovable, the sentence L that figures
in this proof says of itself that it is not true. It is a formal analogue of the Liar sentence
‘This sentence is false’. The existence of such a sentence leads to paradox: if L is true
then L is false, and if L is false then L is true. Theorem 9.5 concludes that L can’t exist.
By the Diagonal Lemma, it would exist if there were a truth predicate for 7. So there
can be no truth predicate for 7. By contrast, it is not an option to deny the existence of
G. By the Diagonal Lemma, G can be constructed from PROV7(x). The existence of
PROV(x) is guaranteed by the fact that (for suitable choices of T') Prfr is recursive.

Exercise 9.13 Show that if 7 is a sound theory then there is no truth predicate
for T.

We’ll now use Tarski’s Theorem to derive both the undecidability of first-order logic
and strengthened versions of Godel’s First Incompleteness Theorem. We begin with two
small lemmas.

-

Lemma 9.3

Every consistent theory in which all recursive functions are representable is recur-
sively undecidable.

Proof. Let T be a consistent theory in which all recursive functions are representable.
By Theorem 9.3, membership in 7 is not representable in 7. So membership in 7 is not
recursive: the set of Godel numbers of sentences in 7 is not recursively decidable. [l

Lemma 9.4

Let Q be the conjunction of the seven axioms of Q. The set of £ 4-sentences of the
form Q — A is recursively decidable.

Proof. Let P be the property of coding sentences of the form Q »A. P(n) can be
defined as 3y < n (Sent(y) A (n = FQA - " xy)). So P(n) is (primitive) recursive. [

181

9 Incompleteness

Theorem 9.6: Church’s Theorem

The set of valid first-order sentence is recursively undecidable.

Proof. By Theorem 8.3, all recursive functions are representable in Q. Since Q is con-
sistent, it follows by Lemma 9.3 that Q is recursively undecidable. As in the previous
proof, let O be the conjunction of Q’s axioms. If the set of valid first-order sentences
were recursively decidable, the set of valid £ ,-sentences of the form O — A would also
be recursively decidable, by Lemma 9.4 and the fact that the intersection of two re-
cursively decidable sets is recursively decidable. By the soundness and completeness
of first-order logic, Q — A is valid iff Fo A. So Q would be recursively decidable,
contradicting what we just established.]

Church’s Theorem shows that Hilbert’s Entscheidungsproblem has no solution: there
is no mechanical procedure that decides whether an arbitrary first-order sentence is valid.

Exercise 9.14 In Section 6.4, I explained how Theorem 9.6 can be derived from
the unsolvability of the Halting Problem. Explain in outline how we could derive
the unsolvability of the Halting Problem from Theorem 9.6. (Hint: Given a first-
order sentence A, we could mechanically go through all first-order proofs until we
find a proof of A, in which case we halt and output ‘yes’.)

Exercise 9.15 Explain why there can be no recursive bound on the length of a
proof for a sentence in the first-order calculus: for every recursive function f, there
is a sentence with length n that is provable, but whose proof requires more than
f(n) lines.

Now for the strengthened version of the syntactic Incompleteness Theorem. In Sec-
tion 5.4 (Proposition 5.5), I showed that every axiomatizable and complete first-order
theory is decidable. Together with Lemma 9.3, this immediately gives us the what we
seek: every axiomatizable and consistent theory in which all recursive functions are
representable is incomplete.

However, Proposition 5.5 used the informal concept of computable axiomatizability;
so this argument relies on the Church-Turing Thesis. Let’s prove a parallel result for
recursive axiomatizability.

182

9 Incompleteness

Lemma 9.5

Every recursively axiomatizable and complete first-order theory is recursively de-
cidable.

Proof. Let T be a recursively axiomatizable and complete first-order theory. As in
the previous section, let Prf be the relation that holds between numbers n and m iftf n
codes a deduction of m from some recursively decidable set of axioms for 7. We know
that Prf is recursive. We can now define the property W of coding a member of T as
follows:

W (x) iff Pry (up[Prfy(p,x) v Prip(p,#[-] * x)],x)

To see how this works, let A be any sentence, and x its Godel number. up[Prf;(p,x) v
Prf(p,#[—] = x)] finds the (Godel number of the) first proof of either A or —A in T.
Since at least one of A and —A must be in T by completeness, this search is guaranteed
to terminate. The outer Prf; then checks whether the proof that has been found is a
proof of A. O]

Theorem 9.7: Also Go6del’s First Incompleteness Theorem

Every consistent and recursively axiomatizable theory in which all recursive func-
tions are representable is incomplete.

Proof. Let T be a consistent and recursively axiomatizable theory in which all recursive
functions are representable. By Lemma 9.3, T is undecidable. By Lemma 9.5, it
follows that T is incomplete.]

Exercise 9.16 Let 7 be a consistent theory in which diag is representable. By
Theorem 9.3, there is no formula W (x) such that

(i) if -7 A, then 7 W("A"), and
(ii) if fr A, then - -W("A").

But there could be formula W (x) such that
(i*) FrAiff-7 W("A™).

In the terminology of exercise 8.16, this formula weakly represents membership
in 7. Show that if such a formula exists then T is incomplete.

183

9 Incompleteness

(Hint: use the Diagonal Lemma to infer that there is a sentence G such that -,
G < ~W("G"); show that neither G nor -G isin T.)

Since all recursive functions are representable in every extension of Q (Theorem 8.3),
Theorem 9.7 is often stated as saying that every consistent and recursively axiomatizable
extension of Q is incomplete. We can prove an even stronger result by strengthening
Lemma 9.3.

Lemma 9.6

Every £ ,-theory consistent with Q is recursively undecidable.

Proof. Let T be an £4-theory consistent with Q, and suppose for reductio that T is
recursively decidable: the set W of Godel numbers of sentences in 7 is recursive. Since
diag is recursive, so is the property P that holds of a number x iff diag(x) is notin W.
By exercise 8.16.(c), all recursive relations are weakly representable in any £ 4-theory
consistent with Q. So P is weakly representable in 7": there is a formula A (x) such that
Fr A(n) iff P(n). So:

Fr A(TA(x) ") iff P(#[A(x)])
iff diag(#[A(x)]) ¢ W
iff #[Ix(x="A(x)"AA(x))] ¢ W
iff frIx(x="A(x)"ANA(xX))
iff Y ACAM)Y).

Contradiction.]

Theorem 9.8

Every recursively axiomatizable & 4-theory that is consistent with Q is incomplete.

Proof. Let T be a recursively axiomatizable £,-theory that is consistent with Q. By
Lemma 9.6, T is recursively undecidable. By Lemma 9.5, it follows that T is incom-
plete. [

184

9 Incompleteness

9.5 The arithmetical hierarchy

Let’s take stock. Since all recursive functions are representable in PA, Godel’s Theorem
shows that PA is incomplete (unless it is inconsistent). The incompleteness can’t be
fixed by simply adding more axioms: as long as the resulting theory is consistent and
axiomatizable, it will remain incomplete.

The result carries over to more powerful theories like ZFC, in virtue of the fact that
PA is interpretable in these theories (see Section 4.3). More generally, Godel’s Theorem
applies whenever a theory’s language is rich enough to express central aspects of its
own syntax. This isn’t always the case. For example, consider a fragment of £, whose
only non-logical symbols are 0, s, and +, without x. In the previous chapter, we needed
multiplication to define the recursive functions and relations. Without multiplication,
Prf; and * are no longer definable. As a consequence, the Incompleteness Theorems
don’t apply. Indeed, if you restrict the axioms of PA to this weaker language, and remove
the two axioms for multiplication, you get a complete theory. (This theory is called
Presburger Arithmetic.)

Return to PA. We know that there are (infinitely many) true sentences that PA can’t
prove. But what do they look like? This is important to assess the practical significance
of Godel’s result. If PA can’t prove that 2+2=4, that’s a serious problem. If the only
arithmetical truths that PA can’t prove take a trillion years to state, incompleteness may
be harmless in practice.

Godel’s original proof (unlike the proof via Tarski’s Theorem) gives us an example
of an unprovable sentence: the “Godel sentence” G. As I'll explain below, this sentence
states (in a very roundabout way) that a certain complicated equation between polyno-
mials has no solution in the natural numbers. If it weren’t for Godel’s Theorem, no one
would ever have considered this equation. Until the 1960s, the only sentences known
to be unprovable in PA were of this kind. Since then, more natural examples have been
found. The simplest is probably Goodstein’s Theorem. (See Section 7.3.) Goodstein’s
Theorem states an interesting fact about the natural numbers, but its proof involves trans-
finite ordinals: it is provable in ZFC, but not in PA. For ZFC itself, we already know of
a “natural” statement that it can’t decide: the Continuum Hypothesis. There are many
other examples.

To get a sense of which £4-sentences are provable and which might be unprovable in
PA, it is useful to classify the £ 4-sentences by their construction from atomic formulas.
Since the only predicate letter in £ 4 is the identity predicate ‘=’, all atomic formulas of
£, are identity statements: they have the form #; = #,. From these, complex formulas
are constructed using truth-functional connectives and quantifiers. We’ll divide them

185

9 Incompleteness

into stages.

At the first stage, we have all identity statements ¢; = t,, all inequalities of the form
17 < tp, and all formulas that can be constructed from these by truth-functional con-
nectives and bounded quantification, where a bounded quantification of a formula A is
a formula of the form Vx(x <t - A) or 3x(x <t A A), with x not occurring in ¢.
(Officially, of course, t; < t, is short for 3z(#; + s(z) = t,).) The formulas in this class
are called A-formulas. Intuitively, a Ay-formula is any £, -formula that doesn’t involve
unbounded quantification.

At the next stage, we consider all sentences that can be formed from A-formulas
by prefixing unbounded universal quantifiers or unbounded existential quantifiers. A
Ao-formula with a string of universal quantifiers in front is called a I1,-formula; a A,-
formula with a string of existential quantifiers in front is called a X | -formula. For exam-
ple, VxVy(x + y = y + x) is a [1;-formula, while Ix3y(x + y = y + x) is a X;-formula.

Prefixing universal quantifiers to a X-formula yields a Il,-formula; prefixing exis-
tential quantifiers to a I1,-formula yields a X,-formula. Thus Vx3y(x +y = y +x) is I15,
and IxVy(x +y = y + x) is £,. And so on.

This somewhat complicated classification is motivated by the computational proper-
ties of the relations defined by the relevant formulas. The relations expressed by Ag-
formulas are all primitive recursive. Since A,-formulas don’t involve unbounded quan-
tification, one can check whether they hold of some numbers by simple checks, without
unbounded loops. By contrast, to check whether a X -formula 3x A(x) holds of some
number, one may need to search through all numbers until one finds a witness for A(x).
Many X -formulas therefore express relations that are not primitive recursive. Some of
them are merely recursive. In fact, every recursive relation is definable by a X -formula.
But not every relation defined by a X -formula is recursive.

Some are just recursively enumerable. A relation R is recursively enumerable if
there is a recursive relation S such that R(xq, ..., x,,) holds iff 3y S(x{, ..., x,,y). By the
Church-Turing Thesis, the recursively enumerable relations are precisely the computably
enumerable relations. (See Propositions 5.2 and 5.3 in Section 5.4.)

Theorem 9.9

A relation is recursively enumerable iff is definable in £4 by a X -formula.

Proof sketch. 1 assume for readability that R is one-place.

From right to left, assume that R is defined by a £ -formula 3y A(x, y), where A is A.

186

9 Incompleteness

We can then mechanically enumerate all n for which R(n) holds by going through all
pairs of numbers (n, m) and check whether A (n, m) holds.

For the other direction, we need show that every recursive relation is defined by a
2 -formula. Since prefixing existential quantifiers to a X -formula yields another X, -
formula, the result extends to every recursively enumerable relation.

The proof that every recursive function is defined by a X -formula proceeds by induc-
tion on the construction of recursive functions. In chapter 8, I showed that the base
functions (zero, successor, projection) are definable in £,, and that definability-in-£ 4
is closed under composition, primitive recursion, and minimization. By going through
each part of this proof, we can check that the defining formulas are all X,. This is obvi-
ous for the base functions, which I explicitly defined using A-formulas. (For example,
I showed that zero is defined by x = 0.) Closure under composition is also straightfor-
ward. I showed that Cn[f, g;] is defined by 3v{ (F(y,vy) A G (v, X1, ...,X,)). Since
any initial existential quantifiers in ' and G; can simply be pulled to the front, so the
whole formula is £ if F' and G, are.

Regular minimization requires a more work. I showed that Mn[f] is defined by F'(x, y, 0) A
Yz(z <y - =F(x,z,0)). We need to show that any initial existential quantifiers in
F can be pulled to the front. This is possible because Vz(z <y - —-3wF(x,z0)) is
equivalent to 3¢Vz(z <y - —F(x,z,BETA(c,z)): the beta term BETA(c, z) retrieves
the witness for F'(x, z,0) from the code c. By going through the construction of BETA,
one can show that it is definable by a A,-formula.

Finally, for primitive recursion, I showed that Pr[f, g;] is defined by 3¢ (SEQ(c, x, k) A
BETA(c, s(k),y)), where SEQ(c, x, k) is defined in terms of ' and G and BETA. I've
already mentioned that BETA is definable by a Ay-formula. Using the beta function
trick that we’ve just used for minimization, one can show that SEQ(c, x, k) is definable
by a X -formula, by pulling existential quantifiers to the front.]

We can use Theorem 9.9 to get an idea of what the unprovable Godel sentence G for
PA might look like. Recall that G is equivalent in PA to —Provp, ("G™). Since Provpy
is defined by existential quantification from the recursive relation Prfp,, it is recursively
enumerable. By Theorem 9.9, it is definable by a X {-formula. So the Gddel sentence
G is equivalent in PA to the negation of a X-sentence. This makes it equivalent to a
IT, -sentence. Godel’s result therefore shows that there are undecidable I1,-sentences.

Theorem 9.9 can be strengthened:

187

9 Incompleteness

Theorem 9.10: The MRDP Theorem

A relation is recursively enumerable iff it is definable in £4 by a formula of the
form E'Xl Hxn tl = l2.

Since every £,-term expresses a polynomial, the MRDP Theorem shows that every
recursively enumerable relation is expressed by a formula stating that a certain equation
between polynomials has a solution in the natural numbers. That’s why I said that the
Godel sentence is equivalent to the statement that some equation between polynomials
has no solution in the natural numbers. The proof of the MRDP theorem is too difficult
to be even sketched here.

Let’s return once more to Tarski and Godel. By Theorem 9.4, arithmetical truth is
not definable in £,. With our new understanding of the arithmetical hierarchy, we can
now strengthen the semantic Incompleteness Theorem. As stated in Theorem 9.1, the
semantic Theorem says that every sound and recursively axiomatizable £ 4-theory is in-
complete. It is easy to see that a theory is recursively axiomatizable iff the set of Godel
numbers of its members is recursively enumerable. Theorem 9.1 therefore applies to
all theories whose members are defined by a X-formula. We can extend the result to
non-axiomatizable theories that are only definable by I1,-formulas or X ,-formulas.

Let’s say that a theory T is definable in £, if there is an £ ,-formula W (x) such that
for all sentences B, 2 |- W("B") if Be T.

Theorem 9.11

Every sound & 4-theory that is definable in £, is incomplete.

Proof. If T is sound and complete then 7 = Th(2f). By Theorem 9.4, Th(?) is not
definable in £ 4. So if T is sound and definable in £4 then it is incomplete.]

Exercise 9.17 Explain why a theory is recursively axiomatizable iff the set of
Godel numbers of its members is recursively enumerable. (Hint: if 7 is recursively
axiomatizable then Prf; is recursive.)

188

