
9 Incompleteness

In this chapter, we’re going to prove several versions of Gödel’s First Incompleteness
Theorem. We’re also going to prove Tarski’s Theorem on the undefinability of truth,
and Church’s Theorem on the undecidability of first-order logic.

9.1 Preview

In Chapter 4, we studied axiomatic theories. The aim of axiomatizing an area of math-
ematics (or other discipline), is to put it on a firm foundation: instead of relying on a
hodgepodge of intuition and imperfectly understood techniques, all results in the area
should be derivable by pure logic from a set of precise and explicitly stated assumptions:
the axioms.
What should we want of an axiomatic theory? Obviously, all the axioms should be

true on their intended interpretation. Ideally, they should suffice to derive all truths in
the relevant area. These are semantic properties of theories, related to their intended
interpretation. But they entail syntactic properties. If all axioms of a theory are true, the
theorymust be consistent: it won’t contain a sentence𝐴 and its negation¬𝐴; equivalently,
it won’t contain ⊥. If a theory contains all truths on its intended interpretation, it will
be complete in the sense that for every sentence 𝐴 in its language, it contains either 𝐴 or
¬𝐴.
Note that this is not the sense of ‘complete’ in which the first-order calculus is com-

plete. When we talk about completeness of a proof system, we mean that the system can
prove every valid sentence. When we talk about completeness of a theory, we mean that
the theory decides every sentence: it contains 𝐴 or ¬𝐴, for every sentence 𝐴. This notion
of completeness is sometimes called negation-completeness.
Confusingly, ‘sound’ also has two meanings. A proof system is sound if it can only

prove valid sentences. A theory is called sound if all sentences in the theory are true on
their intended interpretation.
Consistency and completeness are defined syntactically, without reference to themean-

ing of the axioms. This makes them easier to study formally than semantic properties

167

9 Incompleteness

like soundness, which requires pinning down the intended interpretation independently
of the proposed axioms, so that one can compare what the axioms say with the structure
they are meant to describe.
Consistency may seem trivial: surely nobody would propose an inconsistent set of

axioms? But remember that this is exactly what happened to Frege. It also happened
to others, especially when trying to develop powerful systems to unify diverse areas
of mathematics. Many mathematicians were therefore wary of ZFC when it was first
proposed. Couldn’t it also turn out to be inconsistent?
David Hilbert saw how such fears could be put to rest. To check whether an axiomatic

theory is consistent, we only need to check whether there is deduction of ⊥ from its
axioms. Even if the theory itself, like ZFC, talks about highly infinitary matters, any
deduction from its axioms is finite. We should therefore be able to establish the consis-
tency of ZFC in a much weaker, finitary branch of mathematics that doesn’t study sets,
but proofs and deductions. In the same way, Hilbert hoped that we could prove the com-
pleteness of axiomatic theories: we should be able to verify (as seemed plausible in the
1920s) that the axioms of, say, Peano Arithmetic or ZFC decide every sentence in their
language.
This project for establishing the consistency and completeness of axiomatic theories

is known as Hilbert’s program. It was shattered by Gödel’s incompleteness theorems.
Gödel showed that sufficiently strong axiomatic theories can never be complete, unless
they are inconsistent. He also showed that there is no hope of establishing the consistency
of sufficiently strong theories from safe, finitary grounds. In the present chapter, we’ll
focus on the first of these results. We’ll turn to the second in Chapter 10.
Gödel realized that we don’t need a separate branch of mathematics to study proofs.

Since sentences and deductions are finite strings of symbols, they can be coded as num-
bers. We can therefore use arithmetical theories to reason indirectly about proofs. We
can, for example, construct an 𝔏𝐴-formula PROVPA(𝑥) so that PROVPA(𝑛) is true (in the
standard model of arithmetic 𝔄) iff there is a deduction of the sentence coded by 𝑛 from
the axioms of Peano Arithmetic.
Gödel then showed how to construct a sentence𝐺, coded by some number 𝑛, such that

𝐺 ↔ ¬PROVPA(𝑛) is true in 𝔄. Informally, 𝐺 says of itself that it is not provable (in PA):
it is true iff it is unprovable. It swiftly follows that PA can’t decide 𝐺, assuming that PA
is sound. To see this, note first that 𝐺 is true: if it were is false, it would be provable
(because 𝐺 is true iff it is unprovable), and so PA would prove a falsehood, contradicting
the assumption that PA is sound. So 𝐺 is true. And so 𝐺 can’t be proved in PA (because
𝐺 is true iff it is unprovable). Its negation ¬𝐺 can’t be proved either, as otherwise PA
would prove a falsehood.

168

9 Incompleteness

This argument assumes that PA is sound. For that reason, it is known as the “semantic”
version of the First Incompleteness Theorem. Gödel’s main result is a “syntactic” version
of the theorem that doesn’t require soundness. In its standard formulation, it shows that
every consistent axiomatic theory that is at least as strong as Q is incomplete.
The restriction to axiomatic theories is crucial. Consider the theory Th(𝔄) consisting

of all 𝔏𝐴-sentences that are true in the standard model of arithmetic 𝔄. This theory is
complete: every 𝔏𝐴-sentence is either true or false in 𝔄; if true, it is in Th(𝔄); if false,
its negation is in Th(𝔄). By definition, Th(𝔄) is also sound, and therefore consistent.
But it is not an axiomatic theory: I haven’t specified Th(𝔄) by giving a set of axioms,
and the Incompleteness Theorem implies that I couldn’t have done so.
Officially, theories are just sets of sentences closed under first-order consequence. The

same set of sentences can always be specified in many ways. Instead of speaking of
axiomatic theories, we should therefore speak of axiomatizable theories. Recall that a
theory is axiomatizable if there is a decidable set of axioms from which all and only the
sentences in the theory can be deduced: a set of axioms for which there is a mechanical
algorithm to check whether a given sentence is in it or not.
In Section 5.4, I introduced these concepts informally, using the pre-theoretical no-

tions of computability and algorithms. We can now give more formal definitions.
We say that a set of numbers is recursively decidable if the property of being in the

set is a recursive relation, as defined in Chapter 7; a set of sentences is recursively de-
cidable if the set of their code numbers is recursively decidable. A theory is recursively
axiomatizable if there is a recursively decidable set of axioms from which all and only
the sentences in the theory can be deduced. By Theorem 7.4, this is equivalent to saying
that there is a Turing machine that determines whether a given 𝔏𝐴-sentence is among the
axioms or not.
The syntactic version of Gödel’s First Incompleteness Theorem can now be stated as

follows: every consistent and recursively axiomatizable theory of arithmetic that is at
least as strong as Q is incomplete.

Exercise 9.1 Let 𝑇1 be the set of all 𝔏𝐴-sentences. Is 𝑇1 (a) a theory? (b) recur-
sively axiomatizable? (c) complete? (d) consistent? (Explain.)

Exercise 9.2 Let 𝑇2 be the set of 𝔏𝐴-sentences that are valid in first-order logic.
Is 𝑇2 (a) a theory? (b) recursively axiomatizable? (c) complete? (d) consistent?

169

9 Incompleteness

Exercise 9.3 Can you find an 𝔏𝐴-theory that is recursively axiomatizable, com-
plete, and consistent? (Hint: you only need one simple axiom.)

9.2 Arithmetization of syntax

As I mentioned above, Gödel’s proof draws on the insight that we can use arithmetical
theories like PA to reason about their own syntax. After the work we’ve done in the
previous chapter, this should not be surprising. We’ve shown in Theorem 8.5 that every
computable property or relation is definable in 𝔏𝐴. Syntactic properties like coding an
𝔏𝐴-sentence or coding a deduction from the axioms of PA are clearly computable; so they
are definable in 𝔏𝐴: there is an 𝔏𝐴-formula PRFPA(𝑥, 𝑦) such that PRFPA(𝑛, 𝑚) is true (in
𝔄) iff 𝑛 codes a proof of the sentence coded by 𝑚 from the axioms of PA. This is all we
need to run Gödel’s argument. To fix ideas, I’ll nonetheless fill in some more details.
Wewant to talk about sentences and deductions in the language 𝔏𝐴, whose non-logical

symbols are 0, 𝑠, +, and ×. To this end, we code 𝔏𝐴-strings as numbers, so that we can
indirectly refer an𝔏𝐴-string by the𝔏𝐴-numeral of its code. We’ll use Gödel’s own coding
scheme, which I introduced in Section 5.5.
We first assign a symbol code to each primitive symbol of 𝔏𝐴, like so:

Symbol: 0 𝑠 + × = ¬ → ∀ () , 𝑥1 𝑐1 𝑥2 𝑐2 …

Code: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

Then we use the prime exponent method to code sequences of symbol codes, and
thereby 𝔏𝐴-strings. The string ‘0 = 0’, for example, determines the sequence of symbol
codes ⟨1, 5, 1⟩, which is coded as 21 ⋅ 35 ⋅ 51 = 2430. The exponents of the primes are
the symbol codes. In general, if 𝑝𝑖 is the 𝑖th prime number then the code number of an
𝔏𝐴-string 𝐴 composed of symbols 𝑠1𝑠2 … 𝑠𝑛 with symbol codes 𝑐1, 𝑐2, … , 𝑐𝑛 is

#[𝐴] = 𝑝𝑐1
1 ⋅ 𝑝𝑐2

2 ⋅ … ⋅ 𝑝𝑐𝑛𝑛 .

From now on, we’ll call #[𝐴] the Gödel number of 𝐴. Note that individual symbols of
𝔏𝐴 have both a Gödel number and a symbol code: ‘→’ has symbol code 7 and Gödel
number 27 = 128. We won’t talk about symbol codes any more.

170

9 Incompleteness

Since deductions are finite sequences of 𝔏𝐴-sentences, we can use the prime exponent
method again to code them: the Gödel number of a deduction 𝐴1, 𝐴2, … , 𝐴𝑛 is

#[𝐴1, 𝐴2, … , 𝐴𝑛] = 𝑝#[𝐴1]
1 ⋅ 𝑝#[𝐴2]

2 ⋅ … ⋅ 𝑝#[𝐴𝑛]
𝑛 .

The Gödel number function # converts any 𝔏𝐴-string 𝐴 into a number #[𝐴]. This
number #[𝐴] is denoted in 𝔏𝐴 by some numeral #[𝐴]. So we can indirectly refer to any
𝔏𝐴-string 𝐴 by the numeral #[𝐴] of its Gödel number.
We’ll abbreviate #[𝐴] as ⌜𝐴⌝. For example, since #[0 = 0] = 2430, ⌜0 = 0⌝ is 2430,

which is 𝑠(𝑠(… 𝑠(0) …)) with 2430 occurrences of 𝑠. In practice, you should treat the
corner quotes as a special kind of quote marks: we use ⌜0=0⌝ to denote the string ‘0=0’
via its Gödel number.

Exercise 9.4 What are (a) #[0]? (b) #[0]? (c) ⌜0⌝? (d) #[⌜0⌝]?

Now consider a simple syntactic property: being a variable. In our coding scheme,
variables have Gödel numbers 212, 214, 216, …. That is, a number 𝑛 codes a variable iff
𝑛 = 212+2𝑦, for some 𝑦. This is a purely arithmetical property that can be expressed in
𝔏𝐴: there is an 𝔏𝐴-formula VAR(𝑥) such that VAR(𝑛) is true (in 𝔄) iff 𝑛 codes a variable.
In this sense, VAR(𝑛) “says that” 𝑛 codes a variable. But what it actually, explicitly says
is simply that there is a number 𝑦 such that 𝑛 = 212+2𝑦.
In the terminology of the previous chapter, the formula VAR(𝑥) defines the property

of coding a variable. By Theorem 8.5, every recursive relation and function is definable
in 𝐿𝐴. We can use this result to show that a wide range of syntactic notions are definable
in 𝐿𝐴. Since our coding scheme can be implemented mechanically, it maps every com-
putable relation or function on 𝔏𝐴-strings to a computable relation or function on ℕ. By
the Church-Turing Thesis, that relation or function is recursive. By Theorem 8.5, it is
definable in 𝐿𝐴.
For example, there is a mechanical procedure for checking whether a given string is

a well-formed sentence of 𝔏𝐴. So there is also a mechanical procedure for checking
whether a given number is the Gödel number of an 𝔏𝐴-sentence. By the Church-Turing
Thesis, it follows that the property (call it Sent) of coding an 𝔏𝐴-sentence is recursive.
By Theorem 8.5, it follows that there is an 𝔏𝐴-formula SENT(𝑥) such that SENT(𝑛) is true
(in 𝔄) iff 𝑛 is the Gödel number of an 𝔏𝐴-sentence.
Similarly, if a theory 𝑇 is axiomatized by a decidable set of axioms then there is a

mechanical procedure for checking whether a given sequence of 𝔏𝐴-sentences is a de-
duction of a given target sentence from these axioms: we only need to check whether

171

9 Incompleteness

the last sentence in the sequence is the target sentence, and whether each sentence in the
sequence is either an axiom of 𝑇 , an instance of the logical axioms A1–A6, or follows
from previous sentences byMP or Gen. All these checks can be performed mechanically.
Let Prf𝑇 be the relation that holds between numbers 𝑛 and 𝑚 iff 𝑛 codes a deduction (in-
formally, a “proof”) of the sentence coded by 𝑚 from a set of axioms that generates 𝑇 .
If 𝑇 is computably axiomatizable, Prf𝑇 is computable. By the Church-Turing Thesis, it
is recursive. By Theorem 8.5, it follows that it is definable in 𝐿𝐴: there is an 𝔏𝐴-formula
PRF𝑇(𝑥, 𝑦) such that PRF𝑇(𝑛, 𝑚) is true (in 𝔄) iff 𝑛 codes a proof of the sentence coded
by 𝑚 from the axioms of 𝑇 .
For a final example, let’s look at a function on 𝔏𝐴-strings. Consider the concatenation

function that takes two 𝔏𝐴-strings and returns the string consisting of the first followed by
the second. This is clearly computable. By the Church-Turing Thesis, the corresponding
function on Gödel numbers is recursive: there is a recursive function ∗ that maps the
Gödel numbers of any two 𝔏𝐴-strings to the Gödel number of the concatenation of these
strings. By Theorem 8.5, it follows that there is an 𝔏𝐴-formula CONCAT(𝑥, 𝑦, 𝑧) that
defines ∗ in 𝐿𝐴, so that CONCAT(𝑛, 𝑚, 𝑘) is true (in 𝔄) iff 𝑘 codes the concatenation of
the strings coded by 𝑛 and 𝑚. (I’ll write this as 𝑘 = 𝑛 ∗ 𝑚, rather than 𝑘 = ∗(𝑛, 𝑚)).

Exercise 9.5 What is #[0 =] ∗ #[0]?

I’ve appealed to the Church-Turing Thesis to argue that Sent, Prf𝑇 and ∗ are recursive,
but we could have shown this directly: we could show that Sent, Prf𝑇 and ∗ can be
constructed from zero, successor, and projection by composition, primitive recursion,
and regular minimization. In fact, we don’t need minimization: Sent, Prf𝑇 and ∗ are
primitive recursive. I won’t go through the details for each case. But let me illustrate
what’s involved with the concatenation function ∗ (which will play an important role in
the next section).
Recall that ∗ maps two Gödel numbers #[𝐴] and #[𝐵] to the Gödel number #[𝐴𝐵] of

the concatenation of 𝐴 and 𝐵. If 𝐵 is a single symbol, it is easy to define this operation
arithmetically:

#[𝐴] ∗ #[𝑠] = #[𝐴] ⋅ pri(len(#[𝐴]))#[𝑠],
where pri(𝑖) is the 𝑖th prime number and len(𝑛) is the length of the string coded by 𝑛. In
Section 7.2, I showed that pri and len are primitive recursive. So the function

append(𝑥, 𝑦) = 𝑥 ⋅ pri(len(𝑥))𝑦

172

9 Incompleteness

is also primitive recursive.
Next, we need the function entry that takes two numbers 𝑛 and 𝑖 and returns the ex-

ponent of the 𝑖th prime in the prime factorization of 𝑛. I showed in Section 7.2 that this
function, too, is primitive recursive. Using append and entry, we define (by primitive
recursion) a function conc that takes three numbers 𝑛, 𝑚, and 𝑖 and returns the code of
the string consisting of the string coded by 𝑛 followed by the first 𝑖 symbols of the string
coded by 𝑚:

conc(𝑥, 𝑦, 0) = 𝑥
conc(𝑥, 𝑦, 𝑠(𝑖)) = append(conc(𝑥, 𝑦, 𝑖), entry(𝑦, 𝑠(𝑖))).

From this, we can define 𝑥 ∗ 𝑦 as conc(𝑥, 𝑦, len(𝑦)).

9.3 The First Incompleteness Theorem

I’ll now explain how Gödel managed to construct a sentence that is true iff it is unprov-
able. The construction is so perplexing that it may help to first give a version for English.
I’ll show how to construct an English sentence that is true iff it is unprovable. (Let’s
pretend we’ve specified what it means for an English sentence to be “provable”. You’ll
see that nothing hangs on this.)
In English, we can use quote marks to denote expressions of English. For example,

‘is English’

is a noun that denotes an English predicate. We can combine nouns like this with predi-
cates to form sentences:

(1) ‘is English’ is English.
(2) ‘is made of stone’ is made of stone.
(3) ‘is made of stone’ is English.

In (1) and (2), a predicate is applied to itself, using quote marks. Let’s call a sentence
that results by applying a predicate to itself in this manner the diagonalization of that
predicate. So (1) is the diagonalization of ‘is English’.
Now consider the predicate ‘has a diagonalization that is not provable’. If we diago-

nalize this predicate, we get

(4) ‘has a diagonalization that is not provable’ has a diagonalization that is not prov-
able.

173

9 Incompleteness

This is a sentence. What does it say? Well, it says that the predicate it quotes has an un-
provable diagonalization. Every predicate has a unique diagonalization. So (4) says that
the diagonalization of the quoted predicate (‘has a diagonalization that is not provable’)
is not provable. But (4) is the diagonalization of that predicate. So (4) says of itself that
it is not provable.
This trick obviously generalizes. We can replace ‘is not provable’ by any predicate 𝑃.

The argument shows that for any predicate English 𝑃, there is a sentence 𝐺 that says of
itself that it is 𝑃.
We’ll now run this argument for 𝔏𝐴. We use open formulas 𝐴(𝑥) as predicates, and

Gödel numerals ⌜𝐴(𝑥)⌝ (instead of quote marks) to refer to these predicates. For ex-
ample, if VAR(𝑥) is the formula that defines the property of coding a variable, then
VAR(⌜VAR(𝑥)⌝) is a sentence saying (falsely) that the code of VAR(𝑥) codes a variable
– equivalently: that VAR(𝑥) is a variable. We might call VAR(⌜VAR(𝑥)⌝) the diagonal-
ization of VAR(𝑥). However, it proves convenient to use a slightly more roundabout
definition.
For any 𝔏𝐴-formula 𝐴, we define the diagonalization of 𝐴 as the formula

∃𝑥(𝑥 =⌜𝐴⌝ ∧ 𝐴).

If 𝑥 is free in 𝐴, which is the only case we care about, this is logically equivalent to
𝐴(⌜𝐴(𝑥)⌝).
With this definition, constructing the diagonalization of a formula is a trivial mechani-

cal task. Let diag be the corresponding function on Gödel numbers: diag takes the Gödel
number of a formula as input and returns the Gödel number of the formula’s diagonal-
ization. This function is recursive. In fact, it is primitive recursive, and easily definable
with the concatenation function ∗:

diag(𝑦) = #[∃𝑥(𝑥 =𝑦∧] ∗ 𝑦 ∗ #[)].

By Theorem 8.5, all recursive functions are definable in 𝔏𝐴. So there is a formula
DIAG(𝑥, 𝑦) such that DIAG(𝑛, 𝑚) is true (in 𝔄) iff 𝑚 codes the diagonalization of the
formula coded by 𝑛. We use this formula to construct, for any formula 𝐴(𝑥) a sentence
that “says of itself” that it has the property expressed by 𝐴(𝑥).

Lemma 9.1: The Semantic Diagonal Lemma
For every 𝔏𝐴-formula 𝐴(𝑥) there is a sentence 𝐺 such that 𝔄 ⊩ 𝐺 iff 𝔄 ⊩ 𝐴(⌜𝐺⌝).

174

9 Incompleteness

Proof. Let 𝐹(𝑥) be the formula ∃𝑦(DIAG(𝑥, 𝑦) ∧ 𝐴(𝑦)). Let 𝐺 be the diagonalization
of 𝐹(𝑥). So 𝐺 is ∃𝑥(𝑥 = ⌜𝐹(𝑥)⌝ ∧ 𝐹(𝑥)). This is logically equivalent to 𝐹(⌜𝐹(𝑥)⌝),
which expands to ∃𝑦(DIAG(⌜𝐹(𝑥)⌝, 𝑦) ∧ 𝐴(𝑦)). Since DIAG defines diag, 𝐺 is true in
𝔄 iff there is a number 𝑛 that codes the diagonalization of 𝐹(𝑥) and for which 𝐴(𝑛) is
true (in 𝔄). The diagonalization of 𝐹(𝑥) is 𝐺. So 𝐺 is true in 𝔄 iff 𝐴(𝑛) is true (in 𝔄)
of the number 𝑛 that codes 𝐺. In short 𝐺 is true in 𝔄 iff 𝐴(⌜𝐺⌝) is true in 𝔄. (If this
proof baffles you, have another look at the English version above!)

Now we’re ready to prove the semantic version of Gödel’s First Incompleteness Theo-
rem. Let 𝑇 be some recursively axiomatizable theory in 𝔏𝐴, so that there is a recursively
decidable set of axioms Γ from which all and only the members of 𝑇 can be deduced.
I’ll say that a sentence is provable in 𝑇 if it is deducible from some such set Γ. As above,
let Prf𝑇 be the relation that holds between numbers 𝑛 and 𝑚 iff 𝑛 codes a deduction of
the sentence coded by 𝑚 from Γ. As explained in the previous section, Prf𝑇 is recursive;
so is an 𝔏𝐴-formula PRF𝑇(𝑥, 𝑦) such that 𝔄 ⊩ PRF𝑇(𝑛, 𝑚) iff 𝑛 codes a deduction from
Γ of the sentence coded by 𝑚. Let PROV𝑇(𝑥) abbreviate ∃𝑦 PRF𝑇(𝑦, 𝑥). By construction,
PROV𝑇(⌜𝐴⌝) is true (in 𝔄) iff 𝐴 is provable in 𝑇 . So ¬PROV𝑇(⌜𝐴⌝) is true iff 𝐴 is unprov-
able in 𝑇 . By diagonalising ¬PROV𝑇(𝑥), we get a sentence 𝐺 that is true (in 𝔄) iff it is
unprovable (in 𝑇).

Theorem 9.1: Gödel’s First Incompleteness Theorem, semantic version
Every sound and recursively axiomatizable 𝔏𝐴-theory is incomplete.

Proof. Let 𝑇 be a recursively axiomatizable 𝔏𝐴-theory. As I’ve just explained, there is
then an 𝔏𝐴-formula PROV𝑇(𝑥) such that PROV𝑇(⌜𝐴⌝) is true in 𝔄 iff 𝐴 is provable in 𝑇 .
By the Semantic Diagonal Lemma (using ¬PROV𝑇(𝑥) for 𝐴(𝑥)), there is a sentence 𝐺
such that 𝔄 ⊩ 𝐺 iff 𝔄 ⊩ ¬PROV𝑇(⌜𝐺⌝).
Suppose 𝐺 is provable in 𝑇 . Then 𝔄 ⊩ PROV𝑇(⌜𝐺⌝), and so 𝔄 ⊮ 𝐺, contradicting our
assumption that 𝑇 is sound. So 𝐺 is not provable in 𝑇 . So 𝔄 ⊩ ¬PROV𝑇(⌜𝐺⌝), and
so 𝔄 ⊩ 𝐺. It follows that ¬𝐺 isn’t provable in 𝑇 either, as otherwise 𝑇 would prove a
falsehood.
This is a beautiful argument, although the conclusion isn’t news to us: we’ve already

derived it from the unsolvability of the Halting Problem in Section 5.5 (which, of course,
wasn’t known when Gödel published his result).

175

9 Incompleteness

Exercise 9.6 Theorem 9.1 shows that there is a true sentence 𝐺 that is not prov-
able in a sound and recursively axiomatizable theory such as PA. Suppose we add
𝐺 as a new axiom to PA. Is the resulting theory complete? Is it sound?

Exercise 9.7 Explain why there are infinitely many 𝔏𝐴-sentences that PA can’t
decide (assuming that PA is sound).

As I mentioned in Section 9.1, Gödel also proved a syntactic version of the Incom-
pleteness Theorem that doesn’t require the relevant theory to be sound (true in 𝔄), but
merely imposes some syntactic conditions on it.
The idea is to run through the proof of Theorem 9.1 inside the theory 𝑇 . Instead of

relying on the equivalence of 𝐺 and ¬PROV𝑇(⌜𝐺⌝) in 𝔄, we’ll use the fact that 𝑇 can
prove their equivalence: ⊢𝑇 𝐺 ↔ ¬PROV𝑇(⌜𝐺⌝). This requires a different version of
the Diagonal Lemma, turning on the representability of diag in 𝑇 , rather than on its
definability. Recall that a (one-place) function 𝑓 is representable in a theory 𝑇 iff there
is a formula 𝐴(𝑥, 𝑦) such that for all 𝑛,
(i) ⊢𝑇 𝐴(𝑛, 𝑓 (𝑛)), and
(ii) ⊢𝑇 ∀𝑦(𝐴(𝑛, 𝑦) → 𝑦 = 𝑓 (𝑛)).

Equivalently: ⊢𝑇 ∀𝑦(𝐴(𝑛, 𝑦) ↔ 𝑦 = 𝑓 (𝑛)).

Lemma 9.2: The Syntactic Diagonal Lemma
If 𝑇 is an 𝔏𝐴-theory in which diag is representable, then for every 𝔏𝐴-formula 𝐴(𝑥)
there is a sentence 𝐺 such that ⊢𝑇 𝐺 ↔ 𝐴(⌜𝐺⌝).

Proof. Let 𝑇 be an 𝔏𝐴-theory in which diag is representable. Let DIAG(𝑥, 𝑦) be the
formula that represents diag in 𝑇 , and let 𝐹(𝑥) be the formula ∃𝑦(DIAG(𝑥, 𝑦) ∧ 𝐴(𝑦)).
Since DIAG represents diag in 𝑇 , 𝑇 can prove

∀𝑦 (DIAG(⌜𝐹(𝑥)⌝, 𝑦) ↔ 𝑦=diag(⌜𝐹(𝑥)⌝)). (1)

Let 𝐺 be the diagonalization of 𝐹(𝑥). So the following is logically true:

𝐺 ↔ ∃𝑦(DIAG(⌜𝐹(𝑥)⌝, 𝑦) ∧ 𝐴(𝑦)). (2)

176

9 Incompleteness

From (1) and (2), first-order logic yields

𝐺 ↔ ∃𝑦 (𝑦 = diag(⌜𝐹(𝑥)⌝) ∧ 𝐴(𝑦)).

Since diag(⌜𝐹(𝑥)⌝) is ⌜𝐺⌝, this simplifies to 𝐺 ↔ ∃𝑦 (𝑦 = ⌜𝐺⌝ ∧ 𝐴(𝑦)) and further
to 𝐺 ↔ 𝐴(⌜𝐺⌝).
Now assume that 𝑇 is a recursively axiomatizable theory in which both diag and Prf𝑇

are representable. As before, define PROV𝑇(𝑥) as ∃𝑦 PRF𝑇(𝑦, 𝑥). The Syntactic Diagonal
Lemma gives us a sentence 𝐺 (called the Gödel sentence for 𝑇) such that

⊢𝑇 𝐺 ↔ ¬PROV𝑇(⌜𝐺⌝). (D)

Let’s go through the reasoning in the proof of Theorem 9.1 to show that 𝑇 can’t decide
𝐺.
One of the two directions goes through smoothly: we can show that 𝐺 isn’t provable

in 𝑇 , unless 𝑇 is inconsistent. For suppose 𝑇 can prove 𝑇 . This means that there is a
deduction of𝐺 from a suitable set of axioms for 𝑇 . Since PRF𝑇(𝑥, 𝑦) represents Prf𝑇 in 𝑇 ,
it follows that there is a number 𝑛 (the code of the deduction) such that ⊢𝑇 PRF𝑇(𝑛, ⌜𝐺⌝).
Since 𝑇 is closed under first-order consequence, it follows that ⊢𝑇 PROV𝑇(⌜𝐺⌝). By (D),
we have ⊢𝑇 ¬𝐺, So 𝑇 proves both 𝐺 and ¬𝐺.
The other direction is trickier. Suppose 𝑇 can prove ¬𝐺. By (D), 𝑇 can then prove

PROV𝑇(⌜𝐺⌝), which is short for ∃𝑦 PRF𝑇(𝑦, ⌜𝐺⌝). If 𝑇 is consistent, there is no deduction
of 𝐺 from 𝑇 ’s axioms. So Prf𝑇(𝑛, ⌜𝐺⌝) is false for every number 𝑛. Since PRF𝑇(𝑥, 𝑦)
represents Prf𝑇 in 𝑇 , it follows that ⊢𝑇 ¬PRF𝑇(𝑛, ⌜𝐺⌝) for every number 𝑛.
We nowhave the following situation: 𝑇 proves ∃𝑦 PRF𝑇(𝑦, ⌜𝐺⌝), but also¬PRF𝑇(𝑛, ⌜𝐺⌝)

for every number 𝑛. The theory says that there is a number of a certain kind, but also
denies that any particular number 0,1,2,…is of that kind. This isn’t inconsistency, but it
is almost as bad. Gödel called it “𝜔-inconsistency”: a theory is 𝜔-inconsistent if there
is a formula 𝐴(𝑥) such that
(i) ⊢𝑇 ∃𝑥 𝐴(𝑥), but
(i) for every number 𝑛, ⊢𝑇 ¬𝐴(𝑛).

A theory is 𝜔-consistent if it is not 𝜔-inconsistent.
Clearly, no sound theory can be 𝜔-inconsistent. So 𝜔-consistency is another purely

syntactic condition (besides consistency) that is entailed by soundness.
We’ve established the main result of Gödel’s 1931 paper:

177

9 Incompleteness

Theorem 9.2: Gödel’s First Incompleteness Theorem
Every recursively axiomatizable and 𝜔-consistent theory in which all recursive
functions are representable is incomplete.

I won’t go through the details of the proof again, as we’re going to prove a strictly
stronger result in the next section, showing that mere consistency (as opposed to 𝜔-
consistency) is enough. We will derive this from another important result, Tarski’s The-
orem. But I want to mention that there is also a way to establish it directly, following
Gödel’s line of reasoning. The trick, due to J. Barkley Rosser, is to make a slight change
to the sentence 𝐺. Instead of using a sentence that says of itself that it is unprovable,
Rosser uses a sentence saying that for every proof of it, there is a shorter proof of its
negation. More formally, Rosser’s version of the argument uses the diagonalization 𝑅 of
the following formula in place of 𝐺:

∀𝑦(PRF𝑇(𝑦, 𝑥) → ∃𝑧(𝑧<𝑦 ∧ ∀𝑣(CONCAT(⌜¬⌝, 𝑥, 𝑣) → PRF𝑇(𝑧, 𝑣))).

One can show that if Prf𝑇 and diag are representable in 𝑇 , 𝑇 is consistent, and 𝑇 knows
a few facts about arithmetic, then it can prove neither 𝑅 nor ¬𝑅.

Exercise 9.8 Let𝐺 be the Gödel sentence for PA.We know that𝐺 is not provable
in PA. How about PROVPA(⌜𝐺⌝)? How about ¬PROVPA(⌜𝐺⌝)?

Exercise 9.9 Explain why PROVPA(𝑥) doesn’t represent provability in PA. (Hint:
use the previous exercise.)

Exercise 9.10 Show that every 𝜔-consistent theory is consistent.

Exercise 9.11 Let 𝑇 be an 𝜔-inconsistent, but consistent theory. By the com-
pleteness of first-order logic, 𝑇 has a model. Can you describe what such a model
might look like?

178

9 Incompleteness

9.4 Tarski’s Theorem

Recall that a formula 𝐴(𝑥) represents a property 𝑃 in a theory 𝑇 iff for every 𝔏𝐴-sentence
𝐵,
(i) if 𝑃(𝐵), then ⊢𝑇 𝐴(⌜𝐵⌝), and
(ii) if ¬𝑃(𝐵), then ⊢𝑇 ¬𝐴(⌜𝐵⌝).

In exercise 9.9, you showed that PROVPA(𝑥) does not represent provability in PA. Offi-
cially, PA is just the set of all sentences that are provable in PA. You therefore showed
that PROVPA(𝑥) does not represent membership in PA.
This result can be strengthened. The following theorem, due to Alfred Tarski (1933),

shows that no 𝔏𝐴-formula represents membership in PA. Indeed, no formula represents
membership in any consistent theory in which diag is representable.

Theorem 9.3: Tarski’s Theorem
If 𝑇 is consistent and diag is representable in 𝑇 , then membership in 𝑇 is not
representable in 𝑇 .

Proof. Suppose 𝑇(𝑥) represents membership in 𝑇 . By the Diagonal Lemma, there is
a sentence 𝐺 such that

⊢𝑇 𝐺 ↔ ¬𝑇(⌜𝐺⌝) (1)

Since 𝑇(𝑥) represents membership in 𝑇 , we have

if ⊢𝑇 𝐺, then ⊢𝑇 𝑇(⌜𝐺⌝) (2)
if ⊬𝑇 𝐺, then ⊢𝑇 ¬𝑇(⌜𝐺⌝) (3)

Either ⊢𝑇 𝐺 or ⊬𝑇 𝐺. Suppose ⊢𝑇 𝐺. Then ⊢𝑇 ¬𝑇(⌜𝐺⌝) by (1), and ⊢𝑇 𝑇(⌜𝐺⌝) by
(2); so 𝑇 is inconsistent. Alternatively, suppose ⊬𝑇 𝐺. Then ⊢𝑇 𝑇(⌜𝐺⌝) by (1), and
⊢𝑇 ¬𝑇(⌜𝐺⌝) by (3); again, 𝑇 is inconsistent.

Note that Tarski’s Theorem isn’t restricted to axiomatizable theories. It even holds
for Th(𝔄). Since representability in Th(𝔄) implies definability in 𝔏𝐴, it follows that no
𝔏𝐴-formula defines membership in Th(𝔄):

179

9 Incompleteness

Theorem 9.4
Arithmetical truth is not definable in 𝔏𝐴: there is no 𝔏𝐴-formula 𝑇(𝑥) such that
𝔄 ⊩ 𝑇(⌜𝐴⌝) iff 𝔄 ⊩ 𝐴.

Proof. Th(𝔄) is consistent extension of Q. By Theorem 8.3, it follows that diag is
representable in Th(𝔄). By Theorem 9.3, it follows that membership in Th(𝔄) is not
representable in Th(𝔄): there is no 𝔏𝐴-formula 𝑇(𝑥) such that

(i) if 𝔄 ⊩ 𝐴 then 𝔄 ⊩ 𝑇(⌜𝐴⌝), and
(ii) if 𝔄 ⊮ 𝐴 then 𝔄 ⊩ ¬𝑇(⌜𝐴⌝).

So there is no 𝔏𝐴-formula that defines truth in 𝔄.

Exercise 9.12 Use the Semantic Diagonal Lemma to prove Theorem 9.4, with-
out invoking Theorem 9.3.

Tarski’s Theorem shows that while 𝔏𝐴 can formalize its own syntax (we can define
𝔏𝐴-properties like being a variable or being a sentence), it can’t express the most basic
concept of its own semantics. This isn’t just true for𝔏𝐴. Loosely speaking, no sufficiently
powerful language that can express its own syntax can express its own semantics.
We can bring this out a little more clearly by considering the concept of a truth predi-

cate. As Tarski pointed out, the central feature of the predicate ‘is true’ in English is that
when it is applied to a sentence, the result is equivalent to that sentence:

(1) ‘Snow is white’ is true iff snow is white.
(2) ‘2+2=4’ is true iff 2+2=4.

Sentences like (1) and (2) are called Tarski biconditionals. A theory that can reason
about truth should be able to prove all Tarski biconditionals for its language. Thus a
formula 𝑊(𝑥) is called a truth predicate for a theory 𝑇 iff ⊢𝑇 𝑊(⌜𝐴⌝) ↔ 𝐴 for every
sentence 𝐴 in 𝑇 ’s language. An argument similar to the one used in Theorem 9.3 shows
that no sufficiently powerful theory can have a truth predicate, unless it is inconsistent.
This result is also called “Tarski’s Theorem”.

Theorem 9.5: Also Tarski’s Theorem
If diag is representable in a consistent theory 𝑇 then 𝑇 has no truth predicate.

180

9 Incompleteness

Proof. Suppose 𝑊(𝑥) is a truth predicate for 𝑇 . By the Syntactic Diagonal Lemma,
there is a sentence 𝐿 such that ⊢𝑇 𝐿 ↔ ¬𝑊(⌜𝐿⌝). Since 𝑊(𝑥) is a truth predicate for
𝑇 , ⊢𝑇 𝑊(⌜𝐿⌝) ↔ 𝐿. So ⊢𝑇 𝐿 ↔ ¬𝐿. So 𝑇 is inconsistent.

While Gödel’s sentence𝐺 says of itself that it is unprovable, the sentence 𝐿 that figures
in this proof says of itself that it is not true. It is a formal analogue of the Liar sentence
‘This sentence is false’. The existence of such a sentence leads to paradox: if 𝐿 is true
then 𝐿 is false, and if 𝐿 is false then 𝐿 is true. Theorem 9.5 concludes that 𝐿 can’t exist.
By the Diagonal Lemma, it would exist if there were a truth predicate for 𝑇 . So there
can be no truth predicate for 𝑇 . By contrast, it is not an option to deny the existence of
𝐺. By the Diagonal Lemma, 𝐺 can be constructed from PROV𝑇(𝑥). The existence of
PROV𝑇(𝑥) is guaranteed by the fact that (for suitable choices of 𝑇) Prf𝑇 is recursive.

Exercise 9.13 Show that if 𝑇 is a sound theory then there is no truth predicate
for 𝑇 .

We’ll now use Tarski’s Theorem to derive both the undecidability of first-order logic
and strengthened versions of Gödel’s First Incompleteness Theorem. We begin with two
small lemmas.

Lemma 9.3
Every consistent theory in which all recursive functions are representable is recur-
sively undecidable.

Proof. Let 𝑇 be a consistent theory in which all recursive functions are representable.
By Theorem 9.3, membership in 𝑇 is not representable in 𝑇 . So membership in 𝑇 is not
recursive: the set of Gödel numbers of sentences in 𝑇 is not recursively decidable.

Lemma 9.4
Let ̂𝑄 be the conjunction of the seven axioms of Q. The set of 𝔏𝐴-sentences of the
form ̂𝑄 → 𝐴 is recursively decidable.

Proof. Let 𝑃 be the property of coding sentences of the form ̂𝑄 → 𝐴. 𝑃(𝑛) can be
defined as ∃𝑦 ≤ 𝑛 (Sent(𝑦) ∧ (𝑛 = ⌜ ̂𝑄 → ⌝ ∗ 𝑦)). So 𝑃(𝑛) is (primitive) recursive.

181

9 Incompleteness

Theorem 9.6: Church’s Theorem
The set of valid first-order sentence is recursively undecidable.

Proof. By Theorem 8.3, all recursive functions are representable in Q. Since Q is con-
sistent, it follows by Lemma 9.3 that Q is recursively undecidable. As in the previous
proof, let ̂𝑄 be the conjunction of Q’s axioms. If the set of valid first-order sentences
were recursively decidable, the set of valid 𝔏𝐴-sentences of the form ̂𝑄 → 𝐴 would also
be recursively decidable, by Lemma 9.4 and the fact that the intersection of two re-
cursively decidable sets is recursively decidable. By the soundness and completeness
of first-order logic, 𝑄̂ → 𝐴 is valid iff ⊢𝑄 𝐴. So Q would be recursively decidable,
contradicting what we just established.

Church’s Theorem shows that Hilbert’s Entscheidungsproblem has no solution: there
is no mechanical procedure that decides whether an arbitrary first-order sentence is valid.

Exercise 9.14 In Section 6.4, I explained how Theorem 9.6 can be derived from
the unsolvability of the Halting Problem. Explain in outline how we could derive
the unsolvability of the Halting Problem from Theorem 9.6. (Hint: Given a first-
order sentence 𝐴, we could mechanically go through all first-order proofs until we
find a proof of 𝐴, in which case we halt and output ‘yes’.)

Exercise 9.15 Explain why there can be no recursive bound on the length of a
proof for a sentence in the first-order calculus: for every recursive function 𝑓 , there
is a sentence with length 𝑛 that is provable, but whose proof requires more than
𝑓 (𝑛) lines.

Now for the strengthened version of the syntactic Incompleteness Theorem. In Sec-
tion 5.4 (Proposition 5.5), I showed that every axiomatizable and complete first-order
theory is decidable. Together with Lemma 9.3, this immediately gives us the what we
seek: every axiomatizable and consistent theory in which all recursive functions are
representable is incomplete.
However, Proposition 5.5 used the informal concept of computable axiomatizability;

so this argument relies on the Church-Turing Thesis. Let’s prove a parallel result for
recursive axiomatizability.

182

9 Incompleteness

Lemma 9.5
Every recursively axiomatizable and complete first-order theory is recursively de-
cidable.

Proof. Let 𝑇 be a recursively axiomatizable and complete first-order theory. As in
the previous section, let Prf𝑇 be the relation that holds between numbers 𝑛 and 𝑚 iff 𝑛
codes a deduction of 𝑚 from some recursively decidable set of axioms for 𝑇 . We know
that Prf𝑇 is recursive. We can now define the property 𝑊 of coding a member of 𝑇 as
follows:

𝑊(𝑥) iff Prf𝑇(𝜇𝑝[Prf𝑇(𝑝, 𝑥) ∨ Prf𝑇(𝑝, #[¬] ∗ 𝑥)], 𝑥)
To see how this works, let 𝐴 be any sentence, and 𝑥 its Gödel number. 𝜇𝑝[Prf𝑇(𝑝, 𝑥) ∨
Prf𝑇(𝑝, #[¬] ∗ 𝑥)] finds the (Gödel number of the) first proof of either 𝐴 or ¬𝐴 in 𝑇 .
Since at least one of 𝐴 and ¬𝐴 must be in 𝑇 by completeness, this search is guaranteed
to terminate. The outer Prf𝑇 then checks whether the proof that has been found is a
proof of 𝐴.

Theorem 9.7: Also Gödel’s First Incompleteness Theorem
Every consistent and recursively axiomatizable theory in which all recursive func-
tions are representable is incomplete.

Proof. Let 𝑇 be a consistent and recursively axiomatizable theory in which all recursive
functions are representable. By Lemma 9.3, 𝑇 is undecidable. By Lemma 9.5, it
follows that 𝑇 is incomplete.

Exercise 9.16 Let 𝑇 be a consistent theory in which diag is representable. By
Theorem 9.3, there is no formula 𝑊(𝑥) such that

(i) if ⊢𝑇 𝐴, then ⊢𝑇 𝑊(⌜𝐴⌝), and
(ii) if ⊬𝑇 𝐴, then ⊢𝑇 ¬𝑊(⌜𝐴⌝).

But there could be formula 𝑊(𝑥) such that
(i*) ⊢𝑇 𝐴 iff ⊢𝑇 𝑊(⌜𝐴⌝).

In the terminology of exercise 8.16, this formula weakly represents membership
in 𝑇 . Show that if such a formula exists then 𝑇 is incomplete.

183

9 Incompleteness

(Hint: use the Diagonal Lemma to infer that there is a sentence 𝐺 such that ⊢𝑇
𝐺 ↔ ¬𝑊(⌜𝐺⌝); show that neither 𝐺 nor ¬𝐺 is in 𝑇 .)

Since all recursive functions are representable in every extension of Q (Theorem 8.3),
Theorem 9.7 is often stated as saying that every consistent and recursively axiomatizable
extension of Q is incomplete. We can prove an even stronger result by strengthening
Lemma 9.3.

Lemma 9.6
Every 𝔏𝐴-theory consistent with Q is recursively undecidable.

Proof. Let 𝑇 be an 𝔏𝐴-theory consistent with Q, and suppose for reductio that 𝑇 is
recursively decidable: the set𝑊 of Gödel numbers of sentences in 𝑇 is recursive. Since
diag is recursive, so is the property 𝑃 that holds of a number 𝑥 iff diag(𝑥) is not in 𝑊 .
By exercise 8.16.(c), all recursive relations are weakly representable in any 𝔏𝐴-theory
consistent with Q. So 𝑃 is weakly representable in 𝑇 : there is a formula 𝐴(𝑥) such that
⊢𝑇 𝐴(𝑛) iff 𝑃(𝑛). So:

⊢𝑇 𝐴(⌜𝐴(𝑥)⌝) iff 𝑃(#[𝐴(𝑥)])
iff diag(#[𝐴(𝑥)]) ∉ 𝑊
iff #[∃𝑥(𝑥 =⌜𝐴(𝑥)⌝ ∧ 𝐴(𝑥))] ∉ 𝑊
iff ⊬𝑇 ∃𝑥(𝑥 =⌜𝐴(𝑥)⌝ ∧ 𝐴(𝑥))
iff ⊬𝑇 𝐴(⌜𝐴(𝑥)⌝).

Contradiction.

Theorem 9.8
Every recursively axiomatizable 𝔏𝐴-theory that is consistent with Q is incomplete.

Proof. Let 𝑇 be a recursively axiomatizable 𝔏𝐴-theory that is consistent with Q. By
Lemma 9.6, 𝑇 is recursively undecidable. By Lemma 9.5, it follows that 𝑇 is incom-
plete.

184

9 Incompleteness

9.5 The arithmetical hierarchy

Let’s take stock. Since all recursive functions are representable in PA, Gödel’s Theorem
shows that PA is incomplete (unless it is inconsistent). The incompleteness can’t be
fixed by simply adding more axioms: as long as the resulting theory is consistent and
axiomatizable, it will remain incomplete.
The result carries over to more powerful theories like ZFC, in virtue of the fact that

PA is interpretable in these theories (see Section 4.3). More generally, Gödel’s Theorem
applies whenever a theory’s language is rich enough to express central aspects of its
own syntax. This isn’t always the case. For example, consider a fragment of 𝔏𝐴 whose
only non-logical symbols are 0, 𝑠, and +, without ×. In the previous chapter, we needed
multiplication to define the recursive functions and relations. Without multiplication,
Prf𝑇 and ∗ are no longer definable. As a consequence, the Incompleteness Theorems
don’t apply. Indeed, if you restrict the axioms of PA to this weaker language, and remove
the two axioms for multiplication, you get a complete theory. (This theory is called
Presburger Arithmetic.)
Return to PA. We know that there are (infinitely many) true sentences that PA can’t

prove. But what do they look like? This is important to assess the practical significance
of Gödel’s result. If PA can’t prove that 2+2=4, that’s a serious problem. If the only
arithmetical truths that PA can’t prove take a trillion years to state, incompleteness may
be harmless in practice.
Gödel’s original proof (unlike the proof via Tarski’s Theorem) gives us an example

of an unprovable sentence: the “Gödel sentence” 𝐺. As I’ll explain below, this sentence
states (in a very roundabout way) that a certain complicated equation between polyno-
mials has no solution in the natural numbers. If it weren’t for Gödel’s Theorem, no one
would ever have considered this equation. Until the 1960s, the only sentences known
to be unprovable in PA were of this kind. Since then, more natural examples have been
found. The simplest is probably Goodstein’s Theorem. (See Section 7.3.) Goodstein’s
Theorem states an interesting fact about the natural numbers, but its proof involves trans-
finite ordinals: it is provable in ZFC, but not in PA. For ZFC itself, we already know of
a “natural” statement that it can’t decide: the Continuum Hypothesis. There are many
other examples.
To get a sense of which 𝔏𝐴-sentences are provable and which might be unprovable in

PA, it is useful to classify the 𝔏𝐴-sentences by their construction from atomic formulas.
Since the only predicate letter in 𝔏𝐴 is the identity predicate ‘=’, all atomic formulas of
𝔏𝐴 are identity statements: they have the form 𝑡1 = 𝑡2. From these, complex formulas
are constructed using truth-functional connectives and quantifiers. We’ll divide them

185

9 Incompleteness

into stages.
At the first stage, we have all identity statements 𝑡1 = 𝑡2, all inequalities of the form

𝑡1 < 𝑡2, and all formulas that can be constructed from these by truth-functional con-
nectives and bounded quantification, where a bounded quantification of a formula 𝐴 is
a formula of the form ∀𝑥(𝑥 < 𝑡 → 𝐴) or ∃𝑥(𝑥 < 𝑡 ∧ 𝐴), with 𝑥 not occurring in 𝑡.
(Officially, of course, 𝑡1 < 𝑡2 is short for ∃𝑧(𝑡1 + 𝑠(𝑧) = 𝑡2).) The formulas in this class
are called Δ0-formulas. Intuitively, a Δ0-formula is any 𝔏𝐴-formula that doesn’t involve
unbounded quantification.
At the next stage, we consider all sentences that can be formed from Δ0-formulas

by prefixing unbounded universal quantifiers or unbounded existential quantifiers. A
Δ0-formula with a string of universal quantifiers in front is called a Π1-formula; a Δ0-
formula with a string of existential quantifiers in front is called a Σ1-formula. For exam-
ple, ∀𝑥∀𝑦(𝑥 + 𝑦 = 𝑦 + 𝑥) is a Π1-formula, while ∃𝑥∃𝑦(𝑥 + 𝑦 = 𝑦 + 𝑥) is a Σ1-formula.
Prefixing universal quantifiers to a Σ1-formula yields a Π2-formula; prefixing exis-

tential quantifiers to a Π1-formula yields a Σ2-formula. Thus ∀𝑥∃𝑦(𝑥 +𝑦 = 𝑦 +𝑥) is Π2,
and ∃𝑥∀𝑦(𝑥 + 𝑦 = 𝑦 + 𝑥) is Σ2. And so on.
This somewhat complicated classification is motivated by the computational proper-

ties of the relations defined by the relevant formulas. The relations expressed by Δ0-
formulas are all primitive recursive. Since Δ0-formulas don’t involve unbounded quan-
tification, one can check whether they hold of some numbers by simple checks, without
unbounded loops. By contrast, to check whether a Σ1-formula ∃𝑥 𝐴(𝑥) holds of some
number, one may need to search through all numbers until one finds a witness for 𝐴(𝑥).
Many Σ1-formulas therefore express relations that are not primitive recursive. Some of
them are merely recursive. In fact, every recursive relation is definable by a Σ1-formula.
But not every relation defined by a Σ1-formula is recursive.
Some are just recursively enumerable. A relation 𝑅 is recursively enumerable if

there is a recursive relation 𝑆 such that 𝑅(𝑥1, … , 𝑥𝑛) holds iff ∃𝑦 𝑆(𝑥1, … , 𝑥𝑛, 𝑦). By the
Church-Turing Thesis, the recursively enumerable relations are precisely the computably
enumerable relations. (See Propositions 5.2 and 5.3 in Section 5.4.)

Theorem 9.9
A relation is recursively enumerable iff is definable in 𝔏𝐴 by a Σ1-formula.

Proof sketch. I assume for readability that 𝑅 is one-place.
From right to left, assume that 𝑅 is defined by a Σ1-formula ∃𝑦 𝐴(𝑥, 𝑦), where 𝐴 is Δ0.

186

9 Incompleteness

We can then mechanically enumerate all 𝑛 for which 𝑅(𝑛) holds by going through all
pairs of numbers (𝑛, 𝑚) and check whether 𝐴(𝑛, 𝑚) holds.
For the other direction, we need show that every recursive relation is defined by a
Σ1-formula. Since prefixing existential quantifiers to a Σ1-formula yields another Σ1-
formula, the result extends to every recursively enumerable relation.
The proof that every recursive function is defined by a Σ1-formula proceeds by induc-
tion on the construction of recursive functions. In chapter 8, I showed that the base
functions (zero, successor, projection) are definable in 𝔏𝐴, and that definability-in-𝔏𝐴
is closed under composition, primitive recursion, and minimization. By going through
each part of this proof, we can check that the defining formulas are all Σ1. This is obvi-
ous for the base functions, which I explicitly defined usingΔ0-formulas. (For example,
I showed that zero is defined by 𝑥 = 0.) Closure under composition is also straightfor-
ward. I showed that Cn[𝑓 , 𝑔1] is defined by ∃𝑣1(𝐹(𝑦, 𝑣1) ∧ 𝐺1(𝑣1, 𝑥1, … , 𝑥𝑛)). Since
any initial existential quantifiers in 𝐹 and 𝐺1 can simply be pulled to the front, so the
whole formula is Σ1 if 𝐹 and 𝐺1 are.
Regularminimization requires amorework. I showed thatMn[𝑓] is defined by𝐹(𝑥, 𝑦, 0)∧
∀𝑧(𝑧 < 𝑦 → ¬𝐹(𝑥, 𝑧, 0)). We need to show that any initial existential quantifiers in
𝐹 can be pulled to the front. This is possible because ∀𝑧(𝑧 < 𝑦 → ¬∃𝑤𝐹(𝑥, 𝑧, 0)) is
equivalent to ∃𝑐∀𝑧(𝑧 < 𝑦 → ¬𝐹(𝑥, 𝑧, BETA(𝑐, 𝑧)): the beta term BETA(𝑐, 𝑧) retrieves
the witness for 𝐹(𝑥, 𝑧, 0) from the code 𝑐. By going through the construction of BETA,
one can show that it is definable by a Δ0-formula.
Finally, for primitive recursion, I showed that Pr[𝑓 , 𝑔1] is defined by ∃𝑐(SEQ(𝑐, 𝑥, 𝑘) ∧
BETA(𝑐, 𝑠(𝑘), 𝑦)), where SEQ(𝑐, 𝑥, 𝑘) is defined in terms of 𝐹 and 𝐺1 and BETA. I’ve
already mentioned that BETA is definable by a Δ0-formula. Using the beta function
trick that we’ve just used for minimization, one can show that SEQ(𝑐, 𝑥, 𝑘) is definable
by a Σ1-formula, by pulling existential quantifiers to the front.

We can use Theorem 9.9 to get an idea of what the unprovable Gödel sentence 𝐺 for
PA might look like. Recall that 𝐺 is equivalent in PA to ¬ProvPA(⌜𝐺⌝). Since ProvPA
is defined by existential quantification from the recursive relation PrfPA, it is recursively
enumerable. By Theorem 9.9, it is definable by a Σ1-formula. So the Gödel sentence
𝐺 is equivalent in PA to the negation of a Σ1-sentence. This makes it equivalent to a
Π1-sentence. Gödel’s result therefore shows that there are undecidable Π1-sentences.
Theorem 9.9 can be strengthened:

187

9 Incompleteness

Theorem 9.10: The MRDP Theorem
A relation is recursively enumerable iff it is definable in 𝔏𝐴 by a formula of the
form ∃𝑥1 … ∃𝑥𝑛 𝑡1 = 𝑡2.

Since every 𝔏𝐴-term expresses a polynomial, the MRDP Theorem shows that every
recursively enumerable relation is expressed by a formula stating that a certain equation
between polynomials has a solution in the natural numbers. That’s why I said that the
Gödel sentence is equivalent to the statement that some equation between polynomials
has no solution in the natural numbers. The proof of the MRDP theorem is too difficult
to be even sketched here.
Let’s return once more to Tarski and Gödel. By Theorem 9.4, arithmetical truth is

not definable in 𝔏𝐴. With our new understanding of the arithmetical hierarchy, we can
now strengthen the semantic Incompleteness Theorem. As stated in Theorem 9.1, the
semantic Theorem says that every sound and recursively axiomatizable 𝔏𝐴-theory is in-
complete. It is easy to see that a theory is recursively axiomatizable iff the set of Gödel
numbers of its members is recursively enumerable. Theorem 9.1 therefore applies to
all theories whose members are defined by a Σ1-formula. We can extend the result to
non-axiomatizable theories that are only definable by Π2-formulas or Σ12-formulas.
Let’s say that a theory 𝑇 is definable in 𝔏𝐴 if there is an 𝔏𝐴-formula 𝑊(𝑥) such that

for all sentences 𝐵, 𝔄 ⊩ 𝑊(⌜𝐵⌝) iff 𝐵 ∈ 𝑇 .

Theorem 9.11
Every sound 𝔏𝐴-theory that is definable in 𝔏𝐴 is incomplete.

Proof. If 𝑇 is sound and complete then 𝑇 = Th(𝔄). By Theorem 9.4, Th(𝔄) is not
definable in 𝔏𝐴. So if 𝑇 is sound and definable in 𝔏𝐴 then it is incomplete.

Exercise 9.17 Explain why a theory is recursively axiomatizable iff the set of
Gödel numbers of its members is recursively enumerable. (Hint: if 𝑇 is recursively
axiomatizable then Prf𝑇 is recursive.)

188

