
Logic, Computability and Incompleteness
Turing Computability

Wolfgang Schwarz

31 October 2025



Turing Machines



Turing Machines

We’d like a precise, formal account of algorithms, so that we
can study whether there is an algorithm for a given task.

Informally, an algorithm is a mechanical, step-by-step
procedure for transforming inputs into outputs.

Turing’s idea: We can define a formal model of following an
algorithm.

Following an algorithm involves reading and writing symbols
etc. All this is condensed into the Turing machine model.



Turing Machines

A Turing machine consists of

• an unbounded tape divided into cells;
• a head that, at each step:

1. reads the current cell,
2. overwrites it with a stroke or a blank,
3. moves one cell left or right;

• a finite set of internal states.

A program for a Turing machine specifies for each
state/scanned symbol pair, what to write, which way to move,
and which state to enter next.



Turing Machines

Church-Turing Thesis

Any algorithm can be implemented by a Turing machine.



Turing Machines

https://turingmachine.io/

https://turingmachine.io/


Universal Turing machines



Universal Turing machines

A universal Turing machine U simulates any other machine M
on any input I.

Input to U: a code for M plus the data I.

Output: whatever M would output on I.

By the Church-Turing Thesis, U must exist.

We can also construct it explicitly.



The Halting Problem



The Halting Problem

The Halting Problem:
Decide, given a machine M and input I, whether M halts on I.

No Turing machine solves the Halting Problem.

Proof by diagonalization:

• Suppose H(M, I) solves the Halting Problem.
• Build D(M):

◦ on input <code of M>,
◦ ask H if M halts on input <code of M>;
◦ if yes, loop forever; if no, halt.

• Run D on its own code.
• D halts iff it doesn’t halt.



The undecidability of first-order logic



The undecidability of first-order logic

The Entscheidungsproblem: Is there an algorithm to decide
whether any first-order sentence is valid?

Turing’s strategy: reduce the Halting Problem to the
Entscheidungsproblem.

• For any machine M and input I, build two first-order
sentences:

◦ SM,I describes the behaviour of M on I,
◦ HM,I says “M halts on I”.

• M halts on I iff SM,I |= HM,I.
• If we could decide validity, we could decide Halting.


	Turing Machines
	Universal Turing machines
	The Halting Problem
	The undecidability of first-order logic

