
Logic, Computability and Incompleteness
Recursive Functions

Wolfgang Schwarz

31 October 2025

Recursive Functions

Recursive Functions

We’d like a precise, formal account of algorithms, so that we
can study whether there is an algorithm for a given task.

Let’s focus on algorithms for computing functions on N.

Gödel/Kleene’s idea: an algorithm for computing a function
breaks the function down into simpler functions combined by
a few basic operations.

Recursive Functions

A function is (partial) recursive if it can be built from

• the zero function,
• the successor function,
• the projection functions

by applications of

• composition,
• primitive recursion, and
• minimization.

The partial recursive functions are exactly the
Turing-computable functions.

Primitive recursive functions

Primitive recursive functions

Base functions:

• Successor s(x) = x+ 1.
• Zero z(x) = 0.
• Projections πni (x1, . . . , xn) = xi.

These are “computable in 1 step”.

Primitive recursive functions

From computable functions f and g, we can build a new
function h so that

h(x) = f(g(x)).

This is still computable.

Cn[f,g](x) = f(g(x)).

Primitive recursive functions

From computable functions f and g, we can build a new
function h so that

h(x, 0) = f(x),
h(x, s(y)) = g(x, y,h(x, y)).

Example:

add(x, 0) = x,
add(x, s(y)) = s(add(x, y)).

Primitive recursive functions

From computable functions f and g, we can build a new
function h so that

h(x, 0) = f(x),
h(x, s(y)) = g(x, y,h(x, y)).

This is still computable: to compute h(x, 0), start at h(x, 0) and
loop up to y.

Notation: Pr[f,g].

Primitive recursive functions

A function is primitive recursive if it can be built from

• the zero function,
• the successor function,
• the projection functions

by applications of

• composition and
• primitive recursion.

Primitive recursive functions

Primitive recursive functions are always total.

They can be computed using bounded loops.

Examples:

• Addition
• Multiplication
• Exponentiation
• Factorial
• Any function you can think of

Primitive recursive functions

Diagonalizing out

We can mechanically enumerate all primitive recursive
functions: f1, f2, f3,

Define d(x) = fx(x) + 1.

This function is computable.

But it can’t be primitive recursive, because it differs from
every fn at input n.

Unbounded search

Unbounded search

A function is partial recursive if it can be built from

• the zero function,
• the successor function,
• the projection functions

by applications of

• composition,
• primitive recursion, and
• minimization.

Unbounded search

The minimization of a function f(x, y) is a function h(x) that
returns the least y such that

(i) f(x, y) = 0, and
(ii) for all z < y, f(x, z) is defined.

If f is computable, so is Mn[f]: to compute g(x), compute
h(x, y) for y = 0, 1, 2, . . . until you hit 0.

Mn[f] can be turn a total function into a non-total function.

Unbounded search

The minimization of a function f(x, y) is a function h(x) that
returns the least y such that

(i) f(x, y) = 0, and
(ii) for all z < y, f(x, z) is defined.

A function f is regular if it is total and for all x there is some y
with f(x, y) = 0.

Regular minimization is minimization applied to regular
functions.

It always yields a total function.

Unbounded search

A function is partial recursive if it can be built from

• the zero function,
• the successor function,
• the projection functions

by applications of

• composition,
• primitive recursion, and
• minimization.

Unbounded search

A function is (total) recursive if it can be built from

• the zero function,
• the successor function,
• the projection functions

by applications of

• composition,
• primitive recursion, and
• regular minimization.

The Church-Turing Thesis

The Church-Turing Thesis

A function is partial recursive iff it is Turing-computable.

A total function is recursive iff it is Turing-computable.

The Church-Turing Thesis

The Church-Turing Thesis:
A total function is computable iff it is
recursive/Turing-computable.

Right to left:

1. Assume that f is recursive.
2. Then f can be constructed from the base functions by
composition, primitive recursion, and regular
minimization.

3. This construction allows us to specify an algorithm for
computing f.

The Church-Turing Thesis

The Church-Turing Thesis:
A total function is computable iff it is
recursive/Turing-computable.

Left to right:

1. Assume that f is computable.
2. Then one can specify a mechanical, step-by-step
algorithm for converting the input to f into f’s output.

3. This algorithm will manipulate finite chunks of symbols at
each step, according to predefined rules.

4. Any such algorithm can be implemented by a Turing
machine.

5. So f is recursive/Turing-computable.

	Recursive Functions
	Primitive recursive functions
	Unbounded search
	The Church-Turing Thesis

