# **Logic, Computability and Incompleteness**

**Recursive Functions** 

**Wolfgang Schwarz** 

31 October 2025

# Recursive Functions

#### **Recursive Functions**

We'd like a precise, formal account of **algorithms**, so that we can study whether there is an algorithm for a given task.

Let's focus on algorithms for computing functions on  $\ensuremath{\mathbb{N}}.$ 

Gödel/Kleene's idea: an algorithm for computing a function breaks the function down into simpler functions combined by a few basic operations.

#### **Recursive Functions**

A function is (partial) **recursive** if it can be built from

- the zero function,
- the successor function,
- the projection functions

by applications of

- · composition,
- · primitive recursion, and
- minimization.

The partial recursive functions are exactly the Turing-computable functions.

#### Base functions:

- Successor s(x) = x + 1.
- Zero z(x) = 0.
- Projections  $\pi_i^n(x_1,\ldots,x_n)=x_i$ .

These are "computable in 1 step".

From computable functions f and g, we can build a new function h so that

$$h(x) = f(g(x)).$$

This is still computable.

$$\operatorname{Cn}[f,g](x)=f(g(x)).$$

From computable functions f and g, we can build a new function h so that

$$h(x,0) = f(x),$$
  
$$h(x,s(y)) = g(x,y,h(x,y)).$$

Example:

$$add(x,0) = x,$$
  
 $add(x,s(y)) = s(add(x,y)).$ 

From computable functions f and g, we can build a new function h so that

$$h(x,0) = f(x),$$
  
$$h(x,s(y)) = g(x,y,h(x,y)).$$

This is still computable: to compute h(x, 0), start at h(x, 0) and loop up to y.

Notation: Pr[f, g].

#### A function is **primitive recursive** if it can be built from

- the zero function,
- the successor function,
- the projection functions

#### by applications of

- composition and
- primitive recursion.

Primitive recursive functions are always total.

They can be computed using bounded loops.

#### **Examples:**

- Addition
- Multiplication
- Exponentiation
- Factorial
- Any function you can think of

#### **Diagonalizing out**

We can mechanically enumerate all primitive recursive functions:  $f_1, f_2, f_3, \ldots$ 

Define 
$$d(x) = f_{x}(x) + 1$$
.

This function is computable.

But it can't be primitive recursive, because it differs from every  $f_n$  at input n.

#### A function is **partial recursive** if it can be built from

- the zero function,
- the successor function,
- the projection functions

#### by applications of

- composition,
- · primitive recursion, and
- minimization.

The **minimization** of a function f(x, y) is a function h(x) that returns the least y such that

- (i) f(x, y) = 0, and
- (ii) for all z < y, f(x, z) is defined.

If f is computable, so is Mn[f]: to compute g(x), compute h(x,y) for  $y=0,1,2,\ldots$  until you hit o.

 $\operatorname{Mn}[f]$  can be turn a total function into a non-total function.

The **minimization** of a function f(x, y) is a function h(x) that returns the least y such that

- (i) f(x, y) = 0, and
- (ii) for all z < y, f(x, z) is defined.

A function f is **regular** if it is total and for all x there is some y with f(x, y) = 0.

**Regular minimization** is minimization applied to regular functions.

It always yields a total function.

#### A function is **partial recursive** if it can be built from

- the zero function,
- the successor function,
- the projection functions

#### by applications of

- composition,
- · primitive recursion, and
- minimization.

#### A function is (total) recursive if it can be built from

- the zero function,
- the successor function,
- the projection functions

#### by applications of

- composition,
- · primitive recursion, and
- regular minimization.

A function is partial recursive iff it is Turing-computable.

A total function is recursive iff it is Turing-computable.

#### The Church-Turing Thesis:

A total function is computable iff it is recursive/Turing-computable.

#### Right to left:

- 1. Assume that *f* is recursive.
- Then f can be constructed from the base functions by composition, primitive recursion, and regular minimization.
- This construction allows us to specify an algorithm for computing f.

#### The Church-Turing Thesis:

A total function is computable iff it is recursive/Turing-computable.

#### Left to right:

- 1. Assume that f is computable.
- 2. Then one can specify a mechanical, step-by-step algorithm for converting the input to f into f's output.
- 3. This algorithm will manipulate finite chunks of symbols at each step, according to predefined rules.
- 4. Any such algorithm can be implemented by a Turing machine.
- 5. So *f* is recursive/Turing-computable.