
Logic, Computability and Incompleteness
Arithmetical Definability

Wolfgang Schwarz

14 November 2025



Recap



Recap

An algorithm is a step-by-step procedure for converting
inputs into outputs.

A finite algorithm can’t distinguish uncountably many
different inputs or outputs.

Any countable domain on which it might operate can be
effectively encoded into the natural numbers.

So we can focus on algorithms that operate on N.



Recap

An algorithm is a step-by-step procedure for converting
numbers into numbers.

An algorithm computes a function on N.

A function is computable iff there is an algorithm that
computes it.



Recap

A function is computable iff there is an algorithm that
computes it.

Two formal models of computable functions:

• A (total) function is computable iff it is computed by a
Turing machine.

• A (total) function is computable iff it can be built up from
the base functions z, s,pni using composition, regular
minimization, and primitive recursion.

The two models are equivalent.



Recap

A relation is computable (=decidable) iff there is an algorithm
that decides whether any given numbers stand in the relation.

A relation is computable iff its characteristic function is
computable.



Recap

We can reason about N in first-order theories.

The language LA of arithmetic has non-logical symbols 0, s, +,
and ×.



Recap

Robinson’s Q:

Q1 ∀x∀y (s(x) = s(y) → x = y)
Q2 ∀x 0 ̸= s(x)
Q3 ∀x (x ̸= 0 → ∃y x = s(y))
Q4 ∀x (x+ 0 = x)
Q5 ∀x∀y (x+ s(y) = s(x+ y))
Q6 ∀x (x× 0 = 0)

Q7 ∀x∀y (x× s(y) = (x× y) + x)



Recap

First-Order Peano Arithmetic (PA):

Q1 ∀x∀y (s(x) = s(y) → x = y)
Q2 ∀x 0 ̸= s(x)
Ind A(0) ∧ ∀x (A(x) → A(s(x))) → ∀x A(x)
Q4 ∀x (x+ 0 = x)
Q5 ∀x∀y (x+ s(y) = s(x+ y))
Q6 ∀x (x× 0 = 0)

Q7 ∀x∀y (x× s(y) = (x× y) + x)



Arithmetical definability



Arithmetical definability

Claim: All computable functions and relations on N are
definable in LA.

• x < y iff ∃z (x+ s(z) = y).
• x is prime iff
s(0) < x ∧ ∀y

(
∃z (z× y = x) → (y = s(0) ∨ y = x)

)
.

• x2 = y iff x× x = y.



Arithmetical definability

Claim: All computable functions and relations on N are
definable in LA.

Any computable function or relation can be defined in terms
of addition, multiplication, and logical operations.

Example:

The relation that holds between a sequence of LA-sentences
A1, . . . , An and a sentence B iff B is derivable from A1, . . . , An
from the axioms of PA.



Arithmetical definability

A formula A(x, y) defines a 2-place relation R if for all a,b ∈ N,

• R(a,b) iff A ⊩ A(a,b).

(a is the LA-term for the numeral of a.)

E.g.: ∃z (x+ s(z) = y) defines <.

(Definability is a semantic notion.)



Arithmetical definability

A formula A(x, y) defines a 1-place function f if for all a,b ∈ N,

• f(a) = b iff A ⊩ A(a,b).

E.g.: x× x = y defines the squaring function.



Arithmetical definability

All computable functions and relations on N are definable in
LA.

Proof strategy:

• Every computable function can be built up from the base
functions using composition, regular minimization, and
primitive recursion.

• The base functions (zero, successor, projections) are
definable in LA.

• Definability in LA is preserved under composition, regular
minimization, and primitive recursion.



Representability



Representability

A formula A(x, y) represents a 2-place relation R in a theory T
if for all a,b ∈ N:

• If R(a,b), then ⊢T A(a,b).
• If ¬R(a,b), then ⊢T ¬A(a,b).

E.g.: ∃z (x+ s(z) = y) represents < in Q.

(Representability is a syntactic notion.)



Representability

A formula A(x, y) represents a 1-place function f in a theory T
if for all a ∈ N:

• ⊢T A(a, f(a)).
• ⊢T ∀y (A(a, y) → y = f(a)).

E.g.: x+ y = z represents the addition function in Q.



Representability

Claim: All computable functions and relations on N are
representable in Q.

Since all axioms of Q are true in A, it follows that all
computable functions and relations are definable in LA.

• If R(a,b), then ⊢T A(a,b), then A ⊩ A(a,b).
• If ¬R(a,b), then ⊢T ¬A(a,b), then A ̸⊩ A(a,b).



Representability

Claim: All computable functions and relations on N are
representable in Q.

Proof strategy:

• Every computable function can be built up from the base
functions using composition, regular minimization, and
primitive recursion.

• The base functions (zero, successor, projections) are
representable in Q.

• Representability in Q is preserved under composition,
regular minimization, and primitive recursion.



Representability

In the lecture notes, I

• go through the base functions and the operations
(z, s,pni ,Cn,Pr,Mn) one by one,

• check for each what a theory T needs to prove so that the
result can be proved.

I arrive at six conditions, R1–R6.

Then I show that Q satisfies these conditions.



Representability

To show:

• The zero function is representable.
• The successor function is representable.
• The projection functions are representable.
• If f and g are representable, then so is Cn[f,g].
• If f and g are representable, then so is Pr[f,g].
• If f is representable, then so is Mn[f].

Most of this is easy.



Representability

To show:

• The zero function is representable.
• …

A(x, y) represents the zero function iff for all a:

(i) ⊢T A(a, 0),
(ii) ⊢T ∀y (A(a, y) → y = 0).

Let A(x, y) be x=x ∧ y=0, or simply y=0.



Representability

To show:

• …
• If f and g are representable, then so is Cn[f,g].
• …

If A(x, y) represents f and B(x, y) represents g then

∃v
(
B(x, v) ∧ A(v, y)

)
represents Cn[f,g].



Representability

To show:

• …
• If f and g are representable, then so is Pr[f,g].
• …

This one is hard.



Representability

Example: the factorial function f defined by

f(0) = 1

f(s(y)) = s(y)× f(y)

This defines a sequence f(0), f(1), f(2), . . ..

We construct a formula F(x, y) saying that

• there is a number c that codes the sequence
f(0), f(1), . . . , f(x), and

• y is the last element in that sequence.

∃z(SEQ(z, x) ∧ ENTRY(z, s(x), y)).



Representability

We’ve shown:

All computable functions and relations are

• definable in LA.
• representable in Q.


	Recap
	Arithmetical definability
	Representability

