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Preface

These notes are aimed at philosophy students who have taken an introductory course
in formal logic. They provide an introduction to modal logic, with may philosophical
applications. Along the way, they introduce general ideas that might be taught in an inter-
mediate logic course: different methods of proof, the concept of a model, soundness and
completeness, compactness, three-valued logics, free logics, supervaluation, properties
of relations and orders, etc.

Chapters 1–3 introduce the standard toolkit of modal propositional logic: Kripke mod-
els, frame correspondence, some popular systems, the tableau method and axiomatic
calculi. Chapter 4 goes through soundness and completeness. Chapters 5–8 turn to
philosophical applications. Each of these chapters also extends the toolkit from chapter
3. Chapter 5 introduces multi-modal logics, chapter 6 ordering models and neighbour-
hood semantics, chapter 6 two-dimensional semantics and supervaluationism, chapter 7
conditional logics and Lewis-Stalnaker models. Chapters 9 and 10 look at some of the
complexities that arise in first-order modal logic.

Apart from chapter 9, which sets the stage for chapter 10, every chapter after chapter
3 can be skipped or skimmed without affecting the accessibility of later chapters.

The best way to learn logic is by solving problems. That’s why the text is frequently
interrupted by exercises. As a student, you should try to do the exercises as soon as you
reach them, before continuing with the text.
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1 Modal Operators

1.1 A new language

Modal logic is an extension of propositional and predicate logic that is widely used to
reason about possibility and necessity, obligation and permission, the flow of time, the
processing of computer programs, and a range of other topics. Each of these applica-
tions begins by adding new symbols to the formal language of classical propositional or
predicate logic. Before we explore such additions, let’s briefly review why we use formal
languages in the first place.

When reasoning about a given topic, we sometimes want to make sure that the stated
conclusions really follow from the stated premises. If they do, we say that the reasoning
is valid. By this we mean that there is no conceivable scenario in which the premises are
true while the conclusions are false.

Here is an example of a valid argument.

All myriapods are oviparous.
Some arthropods are myriapods.
Therefore: Some arthropods are oviparous.

You can tell that this argument is valid even if you don’t understand the zoological terms,
because every argument of the same logical form is valid. The relevant logical form
might be expressed as follows.

All 𝐹 are 𝐺.
Some 𝐻 are 𝐹.
Therefore: Some 𝐻 are 𝐺.

No matter what descriptive terms you plug in for 𝐹, 𝐺, and 𝐻, you get a valid argument.
The argument about myriapods is therefore not just valid, but logically valid – valid in
virtue of its logical form.

In natural languages like English, the logical form of sentences is not always trans-
parent. ‘Every dog barked at a tree’ can mean either that there is a single tree at which
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1 Modal Operators

every dog barked, or that for each dog there is a tree at which it barked. The two readings
have different logical consequences, so it would be good to keep them apart. Worse, the
meaning of logical expressions (‘all’, ‘some’, ‘and’, etc.) in natural language is often un-
clear and complicated. ‘Paul and Paula got married and had children’ suggests that the
marriage came before the children. In ‘Paul went to the zoo and Paula stayed at home’,
the word ‘and’ does not seem to have this temporal meaning.

To get around these problems, we invent formal languages in which there are no am-
biguities of logical form and in which all logical expressions have determinate, precise
meanings. If we want to evaluate natural-language arguments for logical validity, we
first have to translate them into the formal language. (Sometimes an argument will be
valid on one translation and invalid on another.) With some practice, one can also reason
directly in a formal language.

Now consider the following argument.

It might be raining.
It is certain that we will get wet if it is raining.
Therefore: We might get wet.

The argument looks valid. Indeed, any argument of this form is plausibly valid:

It might be that 𝐴.
It is certain that 𝐵 if 𝐴.
Therefore: It might be that 𝐵.

But it’s hard to bring out the validity of these arguments in classical propositional or
predicate logic. We need formal expressions corresponding to ‘it might be that’ and ‘it
is certain that’. The languages of classical logic do not have such expressions.

So let’s add them. Let’s invent a new formal language with two new logical symbols.
It doesn’t matter what these look like; a popular choice is a diamond ♢ and a box □. We
use the diamond to formalize ‘it might be that’, and the box for ‘it is certain that’.

If we add these symbols to the language of propositional logic, we get the standard
language of modal propositional logic. If we add them to the language of predicate logic,
we get the standard language of modal predicate logic. We will stick with propositional
logics until chapter 9.

Let’s officially define the standard language of modal propositional logic.
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1 Modal Operators

Definition 1.1: The language 𝔏𝑀

A sentence letter of 𝔏𝑀 is any lower-case letter of the Latin alphabet (𝑎, 𝑏, 𝑐, … , 𝑧),
possibly followed by numerical subscripts (𝑎1, 𝑝18, …).
A sentence of 𝔏𝑀 is either a sentence letter of 𝔏𝑀 or an expression of the form ¬𝐴,
(𝐴 ∧ 𝐵), (𝐴 ∨ 𝐵), (𝐴 → 𝐵), (𝐴 ↔ 𝐵), □𝐴, or ♢𝐴, where 𝐴 and 𝐵 are 𝔏𝑀-sentences.

I use lower-case letters 𝑎, 𝑏, 𝑐, … as atomic 𝔏𝑀-sentences and upper-case letters 𝐴, 𝐵, 𝐶, …
when I want to talk about arbitrary 𝔏𝑀-sentences. To reduce clutter, I generally omit out-
ermost parentheses and quotation marks when I mention 𝔏𝑀-symbols or sentences: 𝑝∧𝑞
is treated as an abbreviation of ‘(𝑝 ∧ 𝑞)’.

Exercise 1.1
Which of these are 𝔏𝑀-sentences?
(a) 𝑝
(b) ♢
(c) ♢𝑝 ∨ (□𝑝 → 𝑝)
(d) □□𝑝
(e) □𝐴 → 𝐴
(f) (♢𝑟 ∧ ♢𝑞𝑟) ∧ ♢□♢□𝑝

Having new symbols is only the beginning. We also need to lay down rules for reason-
ing with these symbols. The rules should be motivated by what the symbols are supposed
to mean. So we shall also assign a more precise meaning to the diamond and the box
– just as classical logic assigns a precise meaning to the symbol ∧ that may or may not
exactly match the meaning of ‘and’ in English.

The meaning of ∧ can be given by a truth table:
A B 𝐴 ∧ 𝐵
T T T
T F F
F T F
F F F

This tells us how the truth-value of 𝐴 ∧ 𝐵 depends on the truth-value of 𝐴 and 𝐵: the
compound sentence is true iff (if and only if) both of its subsentences are true. If you
know this, you know all there is to know about the meaning of ∧. (You can see, for
example, that 𝐴 ∧ 𝐵 does not imply anything about the temporal order of 𝐴 and 𝐵.)
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1 Modal Operators

Exercise 1.2
Draw the truth tables for ¬, ∨, → , and ↔.

The sentence operators (or connectives) of classical propositional logic (¬, ∧, ∨, → ,
and ↔) are all truth-functional. Recall that an operator is truth-functional if the truth-
value of a compound sentence formed by applying the operator to other sentences is
always determined by the truth-value of these other sentences. The truth tables for the
classical operators spell out this dependence. They tell us how to compute the truth-value
of a compound sentence from the truth-values of its constituents.

The diamond operator can’t be truth-functional if it is supposed to mean anything like
‘it might be that’ in English. To see why, note first that ‘it might be that 𝑃’ can be true
if 𝑃 is true, but also if 𝑃 is false. ‘It might be raining’ doesn’t entail that it is actually
raining, nor that it isn’t raining. It merely says that our evidence is compatible with rain.
Now, if the diamond were truth-functional, then what would follow from the fact that
♢𝑝 is sometimes true when 𝑝 is true? It would follow that ♢𝑝 is always true when 𝑝 is
true. (Make sure you understand why.) Likewise, from the fact that ♢𝑝 is sometimes
true when 𝑝 is false, it would follow that ♢𝑝 is true whenever 𝑝 is false. ♢𝑝 would be a
logical truth. But ‘it might be raining’ is surely not a logical truth.

If an operator isn’t truth-functional, its meaning can’t be defined by a truth table. The
standard approach to defining the meaning of modal operators instead involves the con-
cept of possible worlds. Roughly, we’ll interpret ♢𝐴 as saying that 𝐴 is true at some
possible world, and □𝐴 as saying that 𝐴 is true at all possible worlds. Much more on this
later.

Exercise 1.3
Which of these English expressions are truth-functional?
(a) It used to be the case that …
(b) It is widely known that …
(c) It is false that …
(d) It is necessary that …
(e) I can see that …
(f) God believes that …
(g) Either 2+2=4 or it is practically feasible that …
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1 Modal Operators

1.2 Flavours of modality

‘It might be that’ and ‘it is certain that’ express an epistemic kind of possibility and
necessity, related to evidence and knowledge. There are other kinds – or flavours – of
possibility and necessity.

Consider ‘John must leave’. This expresses a kind of necessity, but it would typically
not be understood as a statement about the available evidence. On its most natural inter-
pretation, it says that some relevant norms require John to leave. This flavour of necessity
is called deontic (from Greek deontos: ‘of that which is binding’).

Other statements about possibility and necessity are neither deontic nor epistemic. If
I say that you can’t travel from Auckland to Sydney by train, I don’t just mean that my
information implies that you won’t make that journey; nor do I mean that you’re not
permitted to make it. Rather, I mean that relevant circumstances in the world – such as
the presence of an ocean between Auckland and Sydney – preclude the journey. This
flavour of modality is sometimes called circumstantial. It comes in many sub-flavours,
depending on what kinds of circumstances are in play.

Each of these flavours of modality corresponds to a branch of modal logic. Epistemic
logic formalizes reasoning about knowledge and information. Deontic logic deals with
norms, permissions, and obligations. A third branch of modal logic might be called
circumstantial logic, but nobody uses that label. Some authors speak of alethic modal
logic (from aletheia: ‘truth’), but this label is also not used widely, and it is used for
different things by different authors.

Confusingly, some philosophers use ‘modal logic’ for the logic of a certain sub-flavour
of circumstantial modality, known as metaphysical modality. Metaphysical modality is
concerned with what is or isn’t compatible with the nature of things. We will follow the
more common practice of using ‘modal logic’ as an umbrella term that covers all the
applications I have mentioned, as well as many others.

We will take a closer look at epistemic logic in chapter 5 and at deontic logic in chapter
6. In chapter 7 we are going to study a branch of modal logic called temporal logic that
is concerned with reasoning about time. Chapter 8 is on conditional logic. Here we will
introduce (non-truth-functional) two-place operators that are meant to formalise certain
‘if …then …’ constructions in English. In chapter 4, we will briefly look at provability
logic, which investigates formal properties of mathematical provability. What unifies
the different branches of modal logic is not a particular subject matter, but a loosely
defined collection of abstract ideas and techniques that turn out to be useful in all these
applications.

When we study some flavour of possibility or necessity, the diamond ♢ is generally
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1 Modal Operators

used for the relevant kind of possibility and the box □ for the corresponding kind of
necessity. In this context, you may pronounce the diamond ‘it is possible that’ and the
box ‘it is necessary that’. In general, however, I would recommend pronouncing the
diamond ‘diamond’ and the box ‘box’.

Different interpretations of the box and the diamond often motivate different rules for
reasoning with these expressions. Consider, for example, the inference from □𝑝 to 𝑝. If
the box expresses a circumstantial kind of necessity, then this inference is plausibly valid:
if the circumstances ensure that something is the case, then it really is the case. On a
deontic reading of the box, by contrast, the inference is invalid. We can easily imagine
scenarios in which, say, it is required that all library books are returned on time (□𝑝) and
yet it is not the case that all library books are returned on time (¬𝑝).

So we can’t say, once and for all, whether □𝑝 entails 𝑝. We will develop different
“logics” or “systems” of modal logic. In some systems, the inference is valid, in others
it is invalid.

The diamond and the box are sentence operators. English expressions for necessity
and possibility often don’t have this form. We can talk about what’s necessary or possible
using ‘must’, ‘might’, or ‘can’, which are (auxiliary) verbs. We can also use adjectives
like ‘feasible’, ‘certain’, and ’obligatory’, or adverbs like ‘possibly’, ‘certainly’, and ‘in-
evitably’.

When translating from English into 𝔏𝑀 , it is often helpful to first paraphrase the En-
glish sentence with ‘it is necessary that’ and ‘it is possible that’ (or other suitable sentence
operators). For example,

You can’t go from Auckland to Sydney by train

might be paraphrased as

It is not possible [in light of relevant circumstances] that you go from Auck-
land to Sydney by train

An adequate translation is ¬♢𝑝, where 𝑝 represents ‘you go from Auckland to Sydney
by train’ and the diamond represents the relevant kind of circumstantial possibility.

Exercise 1.4
Translate the following sentences, as well as possible, into 𝔏𝑀 , assuming that the
diamond expresses epistemic possibility (‘it might be that’) and the box epistemic
necessity (‘it must be that’).
(a) I may have offended the principal.

12



1 Modal Operators

(b) It can’t be raining.
(c) Perhaps there is life on Mars.
(d) If the murderer escaped through the window, there must be traces on the

ground.
(e) If the murderer escaped through the window, there might be traces on the

ground.

Exercise 1.5
Translate the following sentences, as well as possible, into 𝐿𝑀 , assuming that the
diamond expresses deontic possibility (‘it is permitted that’) and the box deontic
necessity (‘it is obligatory that’).
(a) I must go home.
(b) You don’t have to come.
(c) You can’t have another beer.
(d) If you don’t have a ticket, you must pay a fine.

Exercise 1.6
Translate the following sentences, as well as possible, into 𝐿𝑀 , assuming that the
diamond expresses (some relevant sub-flavour of) circumstantial possibility and
the box circumstantial necessity.
(a) I could have studied architecture.
(b) The bridge is fragile.
(c) I can’t hear you if you’re talking to me from the kitchen.
(d) If you have a smartphone, you can use an electronic ticket.

Special care is required when translating English sentences that contain both modal
expressions and an ‘if’ clause. The surface form of English can be misleading. A good
strategy is to first rephrase the English sentence so that it no longer contains any con-
ditional expression, then translate that paraphrase. The paraphrase, and therefore the
translation, will often sound rather unlike the original sentence, but that’s OK. What’s
important is that it has the same truth-conditions. There should be no conceivable sce-
nario in which the original sentence is true and the paraphrase (or translation) false, or
the other way round.

13



1 Modal Operators

1.3 The turnstile

In section 1.1, I said that an argument is valid if there is no conceivable scenario in which
the premises are true and the conclusion is false. An argument is logically valid, I said,
if it is valid “in virtue of its logical form”. Can we make this more precise?

Consider this English argument.

Some cats are black.
Therefore: Some animals are black.

The argument is valid, but not logically valid. Its validity turns on the meaning of ‘cat’,
which we don’t consider a logical expression.

To bring out how the argument’s validity depends on the meaning of ‘cat’, we can
imagine a language that is much like English except that ‘cat’ means chair. In this lan-
guage, the argument just displayed is invalid. It is invalid because there are conceivable
scenarios in which there are black chairs but no black animals. In any such scenario, the
argument’s premise is true (in our imaginary language) while the conclusion is false.

When we say that an argument is valid “in virtue of its logical form”, we mean that its
validity does not depend on the meaning of the non-logical expressions. In other words,
there is no conceivable scenario in which the premises are true and the conclusion is
false, no matter what meaning we assign to the non-logical expressions.

The concept of validity for arguments is closely related to that of entailment. If an
argument is valid, we say that the premises entail the conclusion. If an argument is
logically valid, we say that the premises logically entail the conclusion. In logic, we’re
interested in logical entailment. We adopt the following definition.

Definition 1.2
Some sentences Γ (’gamma’) (logically) entail a sentence 𝐴 iff there is no con-
ceivable scenario in which all sentences in Γ are true and 𝐴 is false, under any
interpretation of the non-logical expressions.

Instead of saying that the sentences Γ logically entail 𝐴, we also say that 𝐴 is a logical
consequence of Γ, or that 𝐴 logically follows from Γ. Two sentences are (logically)
equivalent if either logically follows from the other.

Logicians often use the symbol ‘|=’ (the “double-barred turnstile”) for entailment. The
claim that □(𝑝 → 𝑞) and □𝑝 together entail 𝑞, for example, could be expressed as

□(𝑝 → 𝑞),□𝑝 |= 𝑞.

14



1 Modal Operators

This is not a sentence of 𝔏𝑀 . The comma and the turnstile belong to the meta-
language we use to talk about the object language 𝔏𝑀 . (The rest of our meta-language
is mostly English.) We use the turnstile to express a certain relationship between 𝔏𝑀-
sentences, not to construct further 𝔏𝑀-sentences.

Exercise 1.7
What do you think of this simpler alternative to definition 1.2? “Sentences Γ entail
a sentence 𝐴 iff there is no interpretation of non-logical expressions that renders
all sentences in Γ true and 𝐴 false.”

The following fact about logical consequence often proves useful.

Observation 1.1: If 𝐴 and 𝐵 are sentences and Γ is a (possibly empty) list of
sentences, then

Γ, 𝐴 |= 𝐵 iff Γ |= 𝐴 → 𝐵.

Proof. Look at the statement on the right-hand side of the ‘iff’. ‘Γ |= 𝐴 → 𝐵’ says that
there is no conceivable scenario in which all sentences in Γ are true while 𝐴 → 𝐵 is
false, under any interpretation of the non-logical expressions. By the truth-table for
‘ → ’, 𝐴 → 𝐵 is false iff 𝐴 is true and 𝐵 is false. So we can rephrase the statement on the
right-hand side as saying that there is no conceivable scenario and interpretation that
makes all sentences in Γ true and 𝐴 true and 𝐵 false. That’s just what the statement on
the left-hand side asserts.
Observation 1.1 tells us that if we start with a claim of the form 𝐴1, 𝐴2, 𝐴3 … |= 𝐵,

we can always generate an equivalent claim by moving the turnstile to the left of the
sentence that precedes it and putting an arrow in its original place. For example, instead
of

□(𝑝 → 𝑞),□𝑝 |= □𝑞

we can equivalently say

□(𝑝 → 𝑞) |= □𝑝 →□𝑞.

15



1 Modal Operators

We can go further to

|= □(𝑝 → 𝑞) → (□𝑝 →□𝑞).

This says that □(𝑝 → 𝑞) → (□𝑝 →□𝑞) logically follows from no premises at all. A sen-
tence that follows from no premises is called logically true or (logically) valid.

(So an argument is called valid if the conclusion follows from the premises, while a
sentence is called valid if it follows from no premises.)

Sentence validity is implicitly covered by definition 1.2, using an empty list of sen-
tences for Γ. But it’s worth making the definition more explicit.

Definition 1.3
A sentence 𝐴 is valid (for short, |= 𝐴) iff there is no conceivable scenario in which
𝐴 is false, under any interpretation of the non-logical expressions.

Make sure you don’t confuse the arrow with the turnstile. It’s not just that the two
symbols belong to different languages – one to 𝔏𝑀 , the other to our meta-language. They
also have very different meanings. 𝑝 → 𝑞 is true iff either 𝑝 is false or 𝑞 is true (or both).
𝑝 |= 𝑞, on the other hand, is true iff there is no conceivable scenario in which 𝑝 is true
and 𝑞 is false, under any interpretation of 𝑝 and 𝑞. Nonetheless, there is an important
connection between the arrow and the turnstile: 𝐴 |= 𝐵 is true iff 𝐴 → 𝐵 is valid.

The definitions of this section are still somewhat imprecise. Eventually we will want
to prove various claims about entailment and validity. To this end, we will need to give
rigorous meanings to ‘conceivable scenario’ and ‘interpretation of non-logical expres-
sions’. Let’s leave this task until the next chapter.

1.4 Duality

‘Neville can’t be the murderer’, says Watson. His claim could be paraphrased as ‘it is not
possible that Neville is the murderer’. This suggests that ¬♢𝑝 is an adequate translation
(where 𝑝 expresses that Neville is the murderer). But Watson’s claim might also be
paraphrased as ‘it is certain that Neville is not the murderer’, which we might translate
as □¬𝑝.

The two paraphrases are plausibly equivalent. In general, ‘it is not (epistemically)
possible that 𝐴’ seems to say the same as ‘it is certain that not 𝐴’. Similarly, ‘it is not
certain that 𝐴’ arguably says the same as ‘it is possible that not 𝐴’.
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Whether or not the equivalence holds in English, we stipulate that it holds in 𝔏𝑀 : for
any 𝔏𝑀-sentence 𝐴,

¬♢𝐴 is equivalent to □¬𝐴;(Dual1)
¬□𝐴 is equivalent to ♢¬𝐴.(Dual2)

Operators that stand in the relationship expressed by (Dual1) and (Dual2) are called
duals of each other. There is a convention in modal logic to use the symbols □ and ♢
only for concepts that are duals of each other.

Exercise 1.8
Find all pairs of duals among the following English expressions.
(a) It is necessary that …
(b) It is impossible that …
(c) It is possible that …
(d) It is possibly not the case that …
(e) It was at some point the case that …
(f) It will at some point be the case that …
(g) It has always been the case that …
(h) It will always be the case that …
(i) The law requires that …
(j) The law does not require that …
(k) The law allows that …
(l) It is true that …

(m) It is false that …

(Dual1) implies that ¬♢¬𝑝 is equivalent to □¬¬𝑝, choosing ¬𝑝 as the sentence 𝐴. In
standard modal logic, logically equivalent expressions are interchangeable. So we can
simplify □¬¬𝑝 to □𝑝, drawing on the equivalence between ¬¬𝑝 and 𝑝. So ¬♢¬𝑝 is
equivalent to □𝑝.

The same reasoning could be applied to any other sentence 𝐴 in place of 𝑝. (Dual1)
therefore implies that for any sentence 𝐴,

□𝐴 is equivalent to ¬♢¬𝐴.
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In the same way, (Dual2) implies that (for any sentence 𝐴)

♢𝐴 is equivalent to ¬□¬𝐴.

This shows that the box and the diamond can be defined in terms of one another. We
could have used a language whose only primitive modal operator is the box, and read
♢𝐴 as an abbreviation of ¬□¬𝐴. Alternatively, we could have used the diamond as the
only primitive modal operator and read □𝐴 as an abbreviation of ¬♢¬𝐴.

Exercise 1.9
Which of these sentences are equivalent to ♢♢¬𝑝? (a) ♢¬♢𝑝, (b) ♢¬□𝑝, (c)
¬□♢𝑝, (d) ¬♢□𝑝, (e) ¬□□𝑝

A digression: you might think that there is another connection between ‘possible’ and
‘necessary’. When we say that something is possible (or that it might be the case), we
often convey that it is not necessary (or not certain). This suggests that ♢𝑝 entails ¬□𝑝.
We’ve just assumed, however, that ♢𝑝 is equivalent to ¬□¬𝑝. If ♢𝑝 entails ¬□𝑝, we
would have to conclude that ¬□¬𝑝 entails ¬□𝑝. By contraposition, we could infer that
□𝑝 entails □¬𝑝. But ‘it is necessary that 𝑃’ surely doesn’t entail ‘it is necessary that
not-𝑃’!

We have to reject either the duality of ‘possible’ and ‘necessary’ or the apparent entail-
ment from ‘possible’ to ‘not necessary’. On reflection, the case for duality is stronger.
There is a good explanation of why ‘possible’ often appears to entail ‘not necessary’
even if it actually doesn’t.

Take an example. Suppose Watson says ‘Neville might be the murderer’. Let’s assume
that ‘might’ is the dual of ‘certain’, so that ‘it might be that 𝑃’ is equivalent to ‘it is not
certain that not 𝑃’. On this interpretation, what Watson said – that Neville might be the
murderer – is merely that it isn’t certain that Neville is not the murderer. It may well be
certain that Neville is the murderer. Why, then, does his statement convey that Neville’s
guilt is an open question?

Well, suppose Watson had known that Neville is the murderer. In that case, he shouldn’t
have said ‘Neville might be the murderer’. These words would still have been true – or so
we assume – but they would not have been helpful. Watson would have been in a position
to say something more informative: that Neville is the murderer, or that he is known to
be the murderer. We generally assume that speakers are trying to be helpful, that they
are not hiding relevant information. Assuming that Watson is trying to be helpful, his
statement that Neville might be the murderer implies that he considers Neville’s guilt
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an open question. This follows not from what he said, but from the fact that he said it,
together with the assumption that he is trying to be helpful.

This kind of effect is studied in the field of pragmatics, where it is known as a scalar
implicature. Scalar implicatures arise when an utterance of a logically weaker sentence
conveys that a certain stronger sentence is false. ‘Some students passed the test’, for
example, conveys that not all students passed the test, although the statement would be
true even if all students had passed. In that case, however, it would not have been helpful:
the speaker should have used ‘all students passed’. End of digression.

I want to say a little more about duality. To do so, I need to introduce the concept of
a schema.

Formally, a schema (for 𝔏𝑀-sentences) is simply an 𝔏𝑀-sentence with upper-case
schematic variables in place of sentence letters. Every 𝔏𝑀-sentence that results from a
schema by (uniformly) replacing the schematic variables with object-language sentences
is called an instance of the schema.

□𝐴 → 𝐴, for example, is a schema. Three of its instances are □𝑝 → 𝑝 and □(𝑝 ∨
𝑞) → (𝑝∨𝑞) and□□𝑝 →□𝑝. The sentence□𝑝 → 𝑞 is not an instance: the same schematic
variable must always be replaced by the same object-language sentence. (That’s what I
meant by “uniformly”.)

Exercise 1.10
Which of the following expressions are instances of □(𝐴 →♢(𝐴 ∧ 𝐵))?
(a) □(𝑝 →♢(𝑞 ∧ 𝑝))
(b) □(♢𝑝 →♢(♢𝑝 ∧ 𝑝))
(c) □□(𝑝 →♢(𝑝 ∧ 𝑞))
(d) □((𝑝 →♢(𝑝 ∧ 𝑞)) →♢((𝑝 →♢(𝑝 ∧ 𝑞)) ∧ ♢𝑝))
(e) □((𝐴 ∧ 𝐶) →♢((𝐴 ∧ 𝐶) ∧ (𝐵 ∧ 𝐶)))

Schemas are useful when we want to talk about all 𝔏𝑀-sentences of a certain form. In
the next section, for example, we are going to define a system of modal logic by giving
a list of schemas all instances of which are considered valid.

Now compare the schemas □𝐴 → 𝐴 and 𝐴 →♢𝐴. Given the duality of the box and the
diamond, and the fact that logically equivalent expressions can be freely exchanged for
one another, we can show that every instance of one of them is equivalent to an instance of
the other. In this sense, the two schemas are equivalent. And because their equivalence
relies on the duality of the box and the diamond, the two schemas are called duals of one
another.
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To see why every instance of □𝐴 → 𝐴 is equivalent to an instance of 𝐴 →♢𝐴, take a
simple instance: □𝑝 → 𝑝. By the truth-table for the arrow, this is equivalent to ¬𝑝 → ¬□𝑝.
By (Dual2), ¬□𝑝 is equivalent to ♢¬𝑝. So ¬𝑝 → ¬□𝑝 is equivalent to ¬𝑝 →♢¬𝑝. And
this is an instance of 𝐴 →♢𝐴. The same line of reasoning obviously works for any other
sentence in place of 𝑝, and a similar line of reasoning shows the converse, that every
instance of 𝐴 →♢𝐴 is equivalent to an instance of □𝐴 → 𝐴.

It’s crucial that we’re talking about schemas here. We have not shown that the sentence
□𝑝 → 𝑝 is equivalent to 𝑝 →♢𝑝. In fact, the duality principles and the replacement of
equivalents don’t suffice to show that these sentences are equivalent.

The equivalence of the schemas, however, is enough to show that it doesn’t matter
which of them we use when we list schemas to define a logic. We can say that all instances
of □𝐴 → 𝐴 are valid in a certain logic, or we can say that all instances of 𝐴 →♢𝐴 are valid
– it amounts to the same thing, because every instance of either schema is equivalent to
an instance of the other.

The equivalence between □𝐴 → 𝐴 and 𝐴 →♢𝐴 is an example of a more general pattern.
Any schema with an arrow ( → or ↔) as the only truth-functional operator can be con-
verted into an equivalent schema – its dual – by swapping antecedent and consequent
and replacing every box with a diamond and every diamond with a box.

Exercise 1.11
Find the duals of (a) □𝐴 →□□𝐴, (b) ♢𝐴 →□♢𝐴, (c) □𝐴 →♢𝐴.

Exercise 1.12
A proposition is contingent if it neither necessary nor impossible. Let ∇ be a
sentence operator for ‘it is contingent that’. Reading the box as ‘it is necessary
that’ and the diamond as ‘it is possible that’, try to find
(a) a sentence whose only modal operator is □ that is equivalent to ∇𝑝;
(b) a sentence whose only modal operator is ♢ that is equivalent to ∇𝑝;
(c) a sentence whose only modal operator is ∇ that is equivalent to □𝑝.

1.5 A system of modal logic

Whether a sentence is logically valid, or logically entailed by other sentences, never
depends on the meaning of the non-logical expressions. But it may well depend on
the meaning of the logical expressions. In modal logic, the box and the diamond are
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treated as logical expressions, but their interpretation varies from application to appli-
cation. Sometimes the box means epistemic necessity, sometimes it means deontic ne-
cessity, sometimes it means something else. As I mentioned in section 1.2, this has the
consequence that we need to distinguish different “systems of modal logic”. In some
applications, we want □𝑝 to entail 𝑝, in others we don’t.

Suppose, now, that we want to fully spell out one of these “systems”. We want to com-
pletely specify which 𝔏𝑀-sentences are valid, and which are entailed by which others,
on a particular understanding of the modal operators.

There are many ways of approaching this task. We could, for example, define precise
notions of conceivable scenarios and interpretations and apply the definitions of the pre-
vious section. But let’s choose a more direct route. When we think about circumstantial
necessity, we can intuitively see that □𝑝 entails 𝑝, without going through sophisticated
considerations about scenarios and interpretations. Assume, then, that we simply start
with direct judgements about entailment and validity.

We still face a problem. There are infinitely many 𝔏𝑀-sentences. We can’t look at
every sentence and argument one by one. We need to find some shortcuts.

We can begin by drawing on a consequence of observation 1.1. Above I said that in
order to spell out a system of modal logic, we need to specify (i) which 𝔏𝑀-sentences
are valid and (ii) which 𝔏𝑀-sentences are entailed by which others. Observation 1.1 tells
us that we can ignore part (ii) of the task. Once we have fixed which sentences are valid,
we have implicitly also fixed which sentences entail which others. If, for example, we
decide that □𝑝 → 𝑝 is valid, we have also decided that □𝑝 entails 𝑝.

Our task of spelling out a system of modal logic therefore reduces to the task of spec-
ifying which 𝔏𝑀-sentences are valid. That’s why a system of modal logic is usually
defined simply as a set of 𝔏𝑀-sentences.

To make this more concrete, let’s look at a particular sub-flavour of circumstantial
necessity, sometimes called historical necessity. Something is historically necessary if
it is “settled”: it is true and there is nothing anyone can do about it. Facts about the past
are plausibly settled. Nothing we can do is going to make a difference to what happened
yesterday. By contrast, some facts about the future are intuitively “open”.

Let’s use the box to formalise this (admittedly vague) concept of historical necessity.
So □𝑝 says that 𝑝 is settled. Since the diamond is the dual of the box, ♢𝑝 expresses that
it not settled that 𝑝 is false. In other words, 𝑝 is either open or settled as true.

Our task is to specify all 𝔏𝑀-sentences that are valid on this understanding of the box
and the diamond. This will give us a system of modal logic, a set of 𝔏𝑀-sentences that
are valid on a certain interpretation of the box and the diamond. We want to know which
sentences are in the system – for short, which sentences are “in” – and which are not.
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If the box expresses historical necessity then □𝑝 clearly entails 𝑝. So □𝑝 → 𝑝 is in.
There is nothing special here about the sentence 𝑝. Whatever is settled is true. Every
instance of the schema □𝐴 → 𝐴 is in. (As mentioned in section 1.4, it follows that every
instance of 𝐴 →♢𝐴 is in as well.)

In the same vein, we may now look at other schemas. Arguably, all instances of the
following schemas – listed here with their conventional names – are valid, and therefore
in our target system:

¬♢𝐴 ↔ □¬𝐴(Dual)
□𝐴 → 𝐴(T)
□(𝐴 → 𝐵) → (□𝐴 →□𝐵)(K)
□𝐴 →□□𝐴(4)
♢𝐴 →□♢𝐴(5)

(Dual) corresponds to the duality principle (Dual1) from section 1.4. Its instances are
guaranteed to be valid by the fact that we have introduced the diamond as the dual of the
box.

We’ve already talked about (T).
(K) is a little easier to understand as a claim about entailment:

□(𝐴 → 𝐵),□𝐴 |= □𝐵.

On our present interpretation, this says that if a material conditional 𝐴 → 𝐵 is settled, and
its antecedent 𝐴 is settled, then its consequent 𝐵 is guaranteed to be settled as well. Why
should we accept this? Let 𝐴 and 𝐵 be arbitrary propositions, and assume that 𝐴 → 𝐵 and
𝐴 are both settled. It follows that they are both true. Since 𝐴 → 𝐵 and 𝐴 entail 𝐵, it follows
that 𝐵 is true as well. Could it be that 𝐵 is true but open? Arguably not: If we could bring
about a situation in which 𝐵 is false then we could also bring about a situation in which
either 𝐴 → 𝐵 or 𝐴 is false, since one of these is guaranteed to be false in any situation in
which 𝐵 is false. The assumption that 𝐴 → 𝐵 and 𝐴 are settled therefore implies that 𝐵 is
settled. So all instances of (K) are in.

(4) and (5) assert that facts about what is settled are themselves settled. (4) says that
if something is settled then it is settled that it is settled. (5) says that if something is
not settled then it is settled that it is not settled. Here it is important that we adopt a
consistent point of view. It is easy to think of situations in which something is open to us
(say, we could read a certain letter) and we can do something (say, burn the letter) that
would make it no longer open. This doesn’t contradict (5), since (5) concerns what is
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open and settled now. If something is now open, then arguably there is nothing we can
do that would change the fact that it is now open. Likewise, if something is now settled,
then arguably there is nothing we can do that would change the fact that it is now settled.

I could have listed further schemas. For example, whenever a conjunction is set-
tled, then both its conjuncts are plausibly settled as well. So every instance of □(𝐴 ∧
𝐵) → (□𝐴 ∧ □𝐵) should be in. There are, in fact, infinitely many further schemas, not
covered by the five above, whose instances belong to our target system.

That’s the bad news. The good news is that we don’t need to list any of them. We
can replace the whole lot by specifying two rules for generating new sentences from
sentences we have already classified as “in”.

The first of these rules captures the plausible thought that anything that follows from
a valid sentence by classical (non-modal) propositional logic is itself valid. Since we’ve
decided that □𝑝 → 𝑝 is valid (in the logic of historical necessity), we can, for example,
infer that (□𝑝 → 𝑝) ∨ 𝑞 is also valid, because 𝐴 ∨ 𝐵 follows from 𝐴 in classical propo-
sitional logic. Our system of modal logic thereby becomes an extension of classical
propositional logic.

To state the rule concisely, let Γ |=0 𝐴 mean that 𝐴 follows from Γ in classical propo-
sitional logic – as can be determined, for example, by the truth table method. Then our
rule says that for any list of sentences Γ and any sentence 𝐴,

If Γ |=0 𝐴 and all members of Γ are in, then 𝐴 is in.(CPL)

As a special case, (CPL) implies that every propositional tautology is “in”, since tau-
tologies follow in classical propositional logic from any premises whatsoever (and even
from no premises).

Our second rule reflects the idea that all logical truths are settled: For any sentence 𝐴,

If 𝐴 is in, then □𝐴 is in.(Nec)

And now we’re done. I claim – and this may seem rather mysterious at the moment
– that there is a natural understanding of historical necessity (of ‘settled’) on which the
sentences that are valid in the logic of historical necessity are precisely the sentences
that can be generated from instances of (T), (K), (4), (5) and (Dual) by (CPL) and (Nec).
(In fact, (4) is redundant: any instance of (4) can be derived from the remaining axioms
and rules.)

The system of modal logic defined by these schemas and rules is perhaps the best
known of all systems of modal logic. Its conventional name is ‘S5’ because it was in-
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troduced as the fifth system in an influential list of systems published by C.I. Lewis and
C.H. Langford in 1932.

Other systems of modal logic can be defined by different schemas or rules. Lewis and
Langford’s system S4, for example, is defined by (T), (K), (4), (Dual), (CPL) and (Nec),
without (5). This system is adequate for other interpretations of the box and the diamond,
where we don’t want to treat all instances of (5) as valid.

Exercise 1.13
Instead of reading the box as ‘it is settled that’, we might give it one of these
interpretations (with the diamond defined as the box’s dual):
(a) it is true that
(b) it is false that
(c) it is either true or false that
(d) it is logically true that
For each of these interpretations, evaluate whether the schemas (T), (K), (4), (5),
and the rules (CPL) and (Nec) are plausible.

Remember that a system of modal logic is just a set of 𝔏𝑀-sentences. I have defined
the system S5 in terms of (T), (K), (4), (5), or (Dual), (CPL) and (Nec), but the same
system can be defined by many other combinations of schemas and rules. (Lewis and
Langford used a very different definition.)

The schemas and rules that I have chosen are called an axiomatisation of S5. The
schemas – or more precisely, their instances – are called axioms because they are the
starting points if we want to show that a sentence is in the system.

To illustrate this point, think of how we could show that □(𝑝 ∧ 𝑞) →□𝑝 is in S5 (that
it is “S5-valid”). The sentence is not an instance of any of the schemas I have listed.
Instead, we may start with the non-modal sentence (𝑝 ∧ 𝑞) → 𝑝. This is a propositional
tautology, so (CPL) tells us that it is in S5. By (Nec), it follows that □((𝑝 ∧ 𝑞) → 𝑝) is in
S5 as well. Since all instance of (K) are in S5, the system contains

□((𝑝 ∧ 𝑞) → 𝑝) → (□(𝑝 ∧ 𝑞) →□𝑝).

By Modus Ponens, □((𝑝 ∧ 𝑞) → 𝑝) and □((𝑝 ∧ 𝑞) → 𝑝) → (□(𝑝 ∧ 𝑞) →□𝑝) entail our
target sentence □(𝑝 ∧ 𝑞) →□𝑝. By (CPL), this means the target sentence is also in S5.
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Here is a more streamlined presentation of this line of reasoning.

1. (𝑝 ∧ 𝑞) → 𝑝 (CPL)
2. □((𝑝 ∧ 𝑞) → 𝑝) (1, Nec)
3. □((𝑝 ∧ 𝑞) → 𝑝) → (□(𝑝 ∧ 𝑞) →□𝑝) (K)
4. □(𝑝 ∧ 𝑞) →□𝑝 (2, 3, CPL)

We can use the same streamlined format to show that, say, □𝑝 →♢𝑝 is S5-valid.

1. □¬𝑝 → ¬𝑝 (T)
2. ¬♢𝑝 ↔ □¬𝑝 (Dual)
3. ¬♢𝑝 → ¬𝑝 (1, 2, CPL)
4. 𝑝 →♢𝑝 (3, CPL)
5. □𝑝 → 𝑝 (T)
6. □𝑝 →♢𝑝 (4, 5, CPL)

These annotated lists look a lot like proofs. They are proofs. Every axiomatisation of
a logical system defines a corresponding axiomatic calculus. A proof in an axiomatic
calculus is simply a list of sentences each of which is either an axiom or follows from
earlier sentences in the list by one of the rules. (The annotations on the right are not
officially part of the proof. They are added to help understand where the lines come
from.)

Exercise 1.14
Try to find axiomatic proofs showing that the following sentences are in S5.
(a) □(□𝑝 → 𝑝)
(b) (□𝑝 ∧ □𝑞) →□(𝑝 ∧ 𝑞)
(c) ♢¬𝑝 ↔ ¬□𝑝

Exercise 1.15
In the axiomatic calculus for S5, (Nec) allows us to derive □𝐴 from 𝐴. Someone
might object that this inference is obviously invalid, since a sentence might be true
without being necessarily true. Can you explain why (Nec) is an acceptable rule
in the axiomatic calculus for S5?
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The axiomatic method is the oldest formal method of proof. It has many virtues, but
user-friendliness is not among them. Even simple facts are often hard to prove in an
axiomatic calculus. In the next chapter, we will meet a different method that is much
easier to use.
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2.1 The possible-worlds analysis of possibility and

necessity

An important breakthrough in the history of modal logic was the development of “possible-
worlds semantics” in the 1940s-60s. The core idea of possible-worlds semantics is to
analyze modal notions in terms of truth at possible worlds. In its simplest form, the
analysis goes like this:

A proposition is possible iff it is true at some possible world.
A proposition is necessary iff it is true at all possible worlds.

In philosophy jargon, a possible world is a maximally specific possibility. An example
of a possible world is the actual world – the totality of everything that is the case. In the
actual world, light travels faster than sound and the Conservatives are in government. In
other possible worlds, sound travels faster than light and Labour is in government.

The possible-worlds analysis translates modal statements into quantificational state-
ments about possible worlds. You may feel uneasy about this. Talking about merely
possible worlds may strike you as fanciful and unscientific. Besides, you may wonder if
anything is really gained by the translation, since we now face the question what sorts of
worlds should be classified as “possible”.

Remember that there are different flavours of modality. A proposition might be epis-
temically possible, historically possible, metaphysically possible, and so on. If we want
to analyse all these kinds of possibility in terms of possible worlds, we need different
flavours of worlds. There must be epistemically possible worlds, historically possible
worlds, metaphysically possible worlds, etc. And if we ask how these types of worlds
are defined it looks like we have to turn back to relevant features of the actual world. The
ultimate reason why you can’t go from Auckland to Sydney by train is surely that there
is no suitable train line here in our world, not that you don’t make the journey in some
non-actual worlds.
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These objections cast doubt on the possible-worlds analysis as a piece of reductive
metaphysics. But the metaphysics of modality is not our topic. When we use the possible-
world analysis, we don’t assume that the translation in terms of possible worlds reveals
the metaphysical grounds of the original modal statements. We merely assume that the
original statements can be paraphrased in the fanciful language of possible worlds.

For a first glimpse of why this might be useful, consider the following hypothesis.

□♢□𝑝 |= □𝑝

Is this true? If something is necessarily possibly necessary, does it follow that it is neces-
sary? Hard to say. We know that 𝐴 logically entails 𝐵 iff there is no conceivable scenario
in which 𝐴 is true and 𝐵 false, under any interpretation of the non-logical expressions.
The problem is that it is not obvious what a scenario would have to look like for □♢□𝑝
to be true, under a given interpretation of 𝑝.

The possible-worlds analysis can help clear things up. By the possible-worlds analysis,
□♢□𝑝 says that ♢□𝑝 is true at every possible world. The hypothesis that □♢□𝑝 is true
in a scenario therefore reduces to the hypothesis that ♢□𝑝 is true at every world in the
scenario. ♢□𝑝 says that □𝑝 is true at some world. So if ♢□𝑝 is true at every world in a
scenario then □𝑝 is true at some world in the scenario. And if □𝑝 is true at some world
in a scenario then 𝑝 is true at every world in the scenario. This is just what □𝑝 says. So
whenever □♢□𝑝 is true in a scenario (under some interpretation of 𝑝), then □𝑝 is true
in that scenario (under that interpretation). We’ve shown that □♢□𝑝 entails □𝑝.

Exercise 2.1
Explain, in the same informal manner, why ♢𝑝 does not entail □𝑝, assuming the
possible-worlds analysis of the box and the diamond.

2.2 Models

In section 1.3, I defined validity and entailment in terms of scenarios and interpretations.
A sentence is valid, I said, iff it is true in every conceivable scenario under every in-
terpretation of the non-logical expressions. This is a little vague. What, exactly, is a
conceivable scenario, and what counts as a relevant interpretation? Also, scenarios and
interpretations are unwieldy objects. It is difficult to give a full description of a scenario
and an interpretation. Fortunately, most of the details are irrelevant if all we care about
is which 𝔏𝑀-sentences are true and which are false in a scenario under a particular in-
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terpretation. This observation will lead us to a more precise definition of validity and
entailment.

Suppose I tell you the following about a scenario 𝑆 and an interpretation 𝐼 of the
sentence letters.

There are three worlds in 𝑆, 𝑤1, 𝑤2, and 𝑤3. Under the interpretation 𝐼 , the
sentence 𝑝 expresses a proposition that is true at 𝑤1, false at 𝑤2, and true at
𝑤3. All other sentence letters express propositions that are false at all three
worlds.

This tells you almost nothing about what the scenario looks like. You don’t know if
𝑤1 is a world at which it is currently raining. You don’t know who is in government at
𝑤2. You also don’t know what the sentence letters mean under my interpretation. Does 𝑝
mean that it is raining? That Labour is in government? I haven’t told you. Yet the sparse
information I have given is enough to determine the truth-value of every 𝔏𝑀-sentence at
every world.

Exercise 2.2
Which of the following sentences are true at 𝑤1 in my scenario 𝑆 under my inter-
pretation 𝐼?
(a) ¬𝑝
(b) ¬𝑝 →□𝑝
(c) □𝑝
(d) ♢□𝑝
(e) ♢♢𝑝 ∨ ♢□𝑝
(f) □(□𝑝 → 𝑝)

A joint representation of a scenario and an interpretation (of non-logical expressions)
that contains just enough information to determine the truth-value of every sentence is
called a model. Just as a model airplane often leaves out important aspects of a real
airplane – the motor, the seats, etc. – models in logic leave out many important aspects
of the scenarios and interpretations they represent.

Adopting the simple possible-worlds analysis of the box and the diamond, we can
define a model for 𝔏𝑀 as consisting of two parts. First, a model must specify a set of
things we call “worlds”. They don’t need to be genuine worlds. They can be arbitrary
(usually not further specified) objects whose job is to represent genuine worlds. Second,
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a model must specify an “interpretation function” that tells us for each sentence letter at
which of the worlds it is true.

Definition 2.1
A basic model of 𝔏𝑀 is a pair ⟨𝑊, 𝑉 ⟩ of
• a non-empty set 𝑊 , and
• a function 𝑉 that assigns to each sentence letter of 𝔏𝑀 a subset of 𝑊 .

In the next chapter, we will replace this definition by a slightly more complicated defini-
tion. That’s why I’ve called models of the present kind ‘basic’.

You should be familiar with elementary concepts of set theory. A set is a collection
of objects, called the members or elements of the set. Sets can be defined by listing
their members enclosed in curly braces: ‘{𝑎, 𝑏, 𝑐}’. The empty set, with no members, is
denoted by ‘∅’. A subset of a set 𝑋 is a set all whose members are members of 𝑋. A
function is a mapping – a kind of abstract machine that takes objects of a certain kind as
input and outputs objects of a possibly different kind.

The interpretation function 𝑉 in a model maps each sentence letter to the set of worlds
at which the sentence is true. For example, if 𝑊 contains three worlds 𝑤1, 𝑤2, and 𝑤3,
and 𝑉(𝑝) = {𝑤1, 𝑤3} – meaning that 𝑉 maps 𝑝 to the set {𝑤1, 𝑤3} –, then 𝑝 is true at 𝑤1
and 𝑤3 but not at 𝑤2.

Notice that an interpretation function only specifies at which worlds the sentence let-
ters are true. 𝑉 is defined for 𝑝, 𝑞, and 𝑟, but not for 𝑝 → 𝑞 or □𝑝 or ♢□𝑞. This is the key
idea behind the possible-worlds analysis. Once we know at which worlds each sentence
letter is true, we have all we need to determine the truth-value of every sentence at every
world.

To formally define how the truth-value of complex sentences is determined, I will use
(meta-linguistic) statements of the form

𝑀, 𝑤 |= 𝐴

as shorthand for

𝐴 is true at world 𝑤 in model 𝑀.

I use ‘𝑀, 𝑤 |≠ 𝐴’ for the negation of ‘𝑀, 𝑤 |= 𝐴’. I use ‘𝑀, 𝑤 |≠ 𝐴’ for the negation of
‘𝑀, 𝑤 |= 𝐴’.

Yes, it’s the same turnstile that we use for entailment and validity. This should cause
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no confusion because it is usually clear if the things to the left of the turnstile are 𝔏𝑀-
sentences or meta-linguistic expressions for a model and a world. (In its present use, the
turnstile is often pronounced ‘makes true’ or ‘satisfies’.)

The relation |= between a model, a world and an 𝔏𝑀-sentence is defined as follows.

Definition 2.2: Basic Possible-Worlds Semantics
If 𝑀 = ⟨𝑊, 𝑉 ⟩ is a basic model, 𝑤 is a member of 𝑊 , 𝑃 is any sentence letter, and
𝐴, 𝐵 are any 𝔏𝑀-sentences, then

(a) 𝑀, 𝑤 |= 𝑃 iff 𝑤 is in 𝑉(𝑃).
(b) 𝑀, 𝑤 |= ¬𝐴 iff 𝑀, 𝑤 |≠ 𝐴.
(c) 𝑀, 𝑤 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑤 |= 𝐴 and 𝑀, 𝑤 |= 𝐵.
(d) 𝑀, 𝑤 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑤 |= 𝐴 or 𝑀, 𝑤 |= 𝐵.
(e) 𝑀, 𝑤 |= 𝐴 → 𝐵 iff 𝑀, 𝑤 |≠ 𝐴 or 𝑀, 𝑤 |= 𝐵.
(f) 𝑀, 𝑤 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑤 |= 𝐴 → 𝐵 and 𝑀, 𝑤 |= 𝐵 → 𝐴.
(g) 𝑀, 𝑤 |= □𝐴 iff 𝑀, 𝑣 |= 𝐴 for all 𝑣 in 𝑊 .
(h) 𝑀, 𝑤 |= ♢𝐴 iff 𝑀, 𝑣 |= 𝐴 for some 𝑣 in 𝑊 .

Let’s go through the clauses in this definition.
Clause (a) says that a sentence letter is true at a world in a model iff the world is an

element of the set of worlds which the model’s interpretation function assigns to the
sentence letter. This is just what I explained above.

Clause (b) says that the negation ¬𝐴 of an 𝔏𝑀-sentence 𝐴 is true at a world in a model
iff 𝐴 is not true at that world in that model. In other words, the truth-table for negation
applies locally at every world: at any world, ¬𝐴 is true iff 𝐴 is not true. Clauses (c)–
(f) similarly tell us that the truth-tables for the other truth-functional connectives apply
locally at each world.

Clauses (g) and (h) spell out the possible-worlds analysis of the box and the diamond.
According to (g), a sentence □𝐴 is true at a world in a model iff 𝐴 is true at all worlds in
the model. According to (h), ♢𝐴 is true at a world in a model iff 𝐴 is true at some world
in the same model.

The whole definition is called a semantics because a semantics for a language is an
account of what the expressions in the language mean, and definition 2.2 can be seen as
giving the meaning of the logical expressions in 𝔏𝑀 . (The non-logical expressions in
𝔏𝑀 don’t have a fixed meaning.)

Since every 𝔏𝑀-sentence is built up from sentence letters with the operators covered
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in definition 2.2, the definition settles the truth-value of every sentence at every world in
every model.

Consider, for example, the following model 𝑀:

𝑊 = {𝑤1, 𝑤2}
𝑉(𝑝) = {𝑤1, 𝑤2}
𝑉(𝑞) = {𝑤1}
𝑉(𝑃) = ∅ for all other sentence letters 𝑃

This model contains only two worlds, 𝑤1 and 𝑤2. The interpretation function 𝑉 says
that 𝑝 is true at both worlds, 𝑞 is true at 𝑤1, and all other sentence letters are true
nowhere. With the help of definition 2.2, we can figure out at which of the two worlds,
say, □♢(□𝑞 →♢□𝑝) is true. We start with the smallest parts of the sentence.

1. 𝑝 is true at 𝑤1 and 𝑤2 (by clause (a) of definition 2.2).
2. 𝑞 is true at 𝑤1 and not true at 𝑤2 (by clause (a) of definition 2.2).
3. □𝑝 is true at 𝑤1 and 𝑤2 (by 1 and clause (g) of definition 2.2).
4. □𝑞 is true at no world (by 2 and clause (g) of definition 2.2).
5. ♢□𝑝 is true at 𝑤1 and 𝑤2 (by 3 and clause (h) of definition 2.2).
6. (□𝑞 →♢□𝑝) is true at 𝑤1 and 𝑤2 (by 4, 5, and clause (e) of definition 2.2).
7. ♢(□𝑞 →♢□𝑝) is true at 𝑤1 and 𝑤2 (by 6 and clause (h) of definition 2.2).
8. □♢(□𝑞 →♢□𝑞) is true at 𝑤1 and 𝑤2 (by 7 and clause (g) of definition 2.2).

Exercise 2.3
At which worlds in the model just described is ♢𝑝 → (𝑞 ∨ ♢□𝑝) true?

2.3 Basic entailment and validity

Using the concept of a model, we can sharpen the hand-wavy definitions of entailment
and validity from section 1.3.

Imagine a list of all conceivable scenarios and all possible interpretations of the sen-
tence letters. By definition 1.3, a sentence is valid iff it is true in all of these scenarios
under each of these interpretations. Every combination of a scenario 𝑆 and an interpre-
tation 𝐼 is represented by a model. The model contains enough information to figure
out whether any given sentence is true or false in 𝑆 under 𝐼 . Assuming that, conversely,
every model represents some combination of a scenario and an interpretation, it follows
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that a sentence is valid iff it is true in every model. In the same way, some sentences Γ
entail a sentence 𝐴 iff 𝐴 is true in every model in which all members of Γ are true.

That’s the idea. There is, however, a small problem. Take a model with two worlds,
𝑊 = {𝑤1, 𝑤2}, and assume that 𝑉(𝑝) = {𝑤1}. Is 𝑝 true in this model? We can’t say.
Definition 2.2 only specifies under what conditions a sentence is true at a world in a
model. We have not defined what it means for a sentence to be true in a model. So we
can’t say that a sentence is valid iff it is true in all models.

There are two ways to fix this. The conceptually cleaner response is to change the
definition of a model. Intuitively, the worlds in a scenario are not all on a par. Think of
a scenario in which it is raining although it might have been snowing. This scenario has
worlds at which it is raining and others at which it is snowing. One of these worlds – a
rain world – is special: it represents the actual world in the scenario. ‘It is raining’ is
true in the scenario because it is raining in the actual world of the scenario. Following
this line of thought, we could define a model to consist of three elements: a set of worlds
𝑊 , an interpretation function 𝑉 , and a “designated element of 𝑊” that indicates which
world in 𝑊 represents the actual world of the scenario. We could then say that a sentence
is true in a model iff it is true at the actual world of the model. Models of this type –
with a designated element of 𝑊 – are called pointed models.

We will adopt the more popular second response. Here we change the definition of
entailment and validity. Instead of saying that a sentence is valid iff it is true in every
model, we say that a sentence is valid iff it is true at every world in every model. Similarly,
we say that some sentences Γ entail a sentence 𝐴 iff 𝐴 is true at every world in every model
at which all members of Γ are true.

The two responses amount to the same thing. Since every world in every basic (un-
pointed) model could be chosen as the designated world, a sentence is true at all worlds
in all basic models iff it is true in all pointed models. The response we adopt has the
minor advantage of keeping models slightly simpler, and logicians want their models to
be as simple as possible.

Definition 2.3
A sentence 𝐴 is valid (for short: |= 𝐴) iff it is true at every world in every basic
model.
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Definition 2.4
Some sentences Γ (logically) entail a sentence 𝐴 (for short: Γ |= 𝐴) iff there is no
world in any basic model at which all sentences in Γ are true while 𝐴 is false.

Exercise 2.4
Call a sentence true throughout a model iff it is true at every world in the model.
What do you think of the following definition? ‘Γ |= 𝐴 iff there is no model
throughout which all sentences in Γ are true and throughout which 𝐴 is false.’ Is
this equivalent to definition 2.4? (Hint: consider the hypothesis that 𝑝 |= □𝑝.)

Above I mentioned an assumption implicit in our new definitions: that every model
represents a pair of a conceivable scenario and interpretation. This isn’t obvious. For
example, if our topic is metaphysical possibility and necessity, it may be hard to conceive
of a scenario with exactly two possible worlds. Is it really conceivable that there are only
two ways a world might have been, compatible with the nature of things? We could
stipulate that a model, at least for this application, must contain at least (say) a million
worlds, or infinitely many. It turns out, however, that this would make no difference to
the logic. The very same sentences are valid whether we impose the restriction or not.
So we’ll allow for models with very few worlds. Such models are often useful as toy
models to illustrate facts about entailment and validity.

2.4 Explorations in S5

By definition 2.3, a sentence is valid iff it is true at all worlds in all (basic) models. Defi-
nition 2.1 explains what a (basic) model is; definition 2.2 specifies the truth-value of any
sentence at any world in any model. Together, these definitions settle which sentences
are valid.

Take, for instance, □𝑝 → 𝑝. This is valid on our definitions. To see why, let 𝑤 be an
arbitrary world in an arbitrary model 𝑀. Either 𝑝 is true at 𝑤 or not. If 𝑝 is true at 𝑤,
then by clause (e) of definition 2.2, □𝑝 → 𝑝 is also true at 𝑤. If 𝑝 is not true at 𝑤, then
by clause (g) of definition 2.2, □𝑝 is not true at 𝑤 in 𝑀, and then □𝑝 → 𝑝 is true at 𝑤 by
clause (e). Either way, □𝑝 → 𝑝 is true at 𝑤. Since 𝑤 and 𝑀 were chosen arbitrarily, this
shows that □𝑝 → 𝑝 is true at every world in every model.

(In the previous chapter, I mentioned that for some applications of modal logic, we
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don’t want □𝑝 → 𝑝 to be valid. In the next chapter, we will see how this can be achieved,
by adding a slight tweak to the definitions of the present chapter.)

How about, say, □𝑝 →□□𝑝? If something is necessary, is it necessarily necessary?
Our semantics says yes. Let 𝑤 be an arbitrary world in an arbitrary model. If □𝑝 is false
at 𝑤, then □𝑝 →□□𝑝 is true at 𝑤, by clause (e) of definition 2.2. Suppose then that □𝑝
is true at 𝑤. In that case, 𝑝 is true at all worlds, by clause (g) of definition 2.2. And then
□𝑝 is true at all worlds, again by clause (g). And so □□𝑝 is also true at all worlds, by
clause (g). So whenever □𝑝 is true at a world in a model, then so is □□𝑝. By clause (e)
of definition 2.2, it follows that □𝑝 →□□𝑝 is true at every world in every model.

Exercise 2.5
Show that □𝑝 →♢𝑝 is valid.

There is a shorter way to show that □𝑝 →□□𝑝 is valid. Definition 2.2 entails that if
a sentence starts with a modal operator, then its truth-value never varies from world to
world. For example, if ♢𝑝 is true at some world 𝑤 in some model, then ♢𝑝 is true at all
worlds in the model. It follows that if a sentence starts with a modal operator, then its
truth-value doesn’t change if you stack further modal operators in front. If ♢𝑝 is true at
a world in a model, then so are □♢𝑝 and ♢♢𝑝.

This means that any sentence that begins with a sequence of modal operators is equiv-
alent to the same sentence with all but the last operator removed. ♢□□♢♢𝑝 is equivalent
to ♢𝑝. □□𝑝 is equivalent to □𝑝. Since replacing logically equivalent sentences inside
a larger sentence never affects the larger sentence’s truth-value at any world, □□𝑝 →□𝑝
is equivalent to □𝑝 →□𝑝. And this is obviously valid.

Do not conflate the concepts of necessity and validity. Necessity means truth at all
worlds (or so we currently assume). Validity means truth at all worlds in all models.
Whether an 𝔏𝑀-sentence is necessary generally varies from model to model. In a model
whose interpretation function makes 𝑝 true at all worlds, 𝑝 is necessary insofar as □𝑝 is
true at all worlds. In a model whose interpretation function makes 𝑝 false at some world,
□𝑝 is false at all worlds. Validity, by contrast, is not relative to a model. The sentence 𝑝
is definitely not valid. The sentence □𝑝 → 𝑝 is.

Exercise 2.6
Show that if a sentence 𝐴 is valid, then so is □𝐴.
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Here is an example of an invalid sentence:

□(𝑝 ∨ 𝑞) → (□𝑝 ∨ □𝑞)

How could we show that this is invalid? By definition 2.3, a sentence is valid iff it is true
at all worlds in all models. So we have to find some model in which there is some world
at which the sentence is false. Such a model is called a countermodel for the sentence.
The following model is a countermodel for the sentence above, as you should verify with
the help of definition 2.2.

𝑊 = {𝑤, 𝑣}
𝑉(𝑝) = {𝑤}
𝑉(𝑞) = {𝑣}

I haven’t explained at which worlds sentence letters other than 𝑝 and 𝑞 are true, because
it doesn’t matter.

Exercise 2.7
Show that 𝑝 →□𝑝 is invalid (and thus 𝑝 |≠ □𝑝), by giving a countermodel. Explain
why this doesn’t contradict the previous exercise.

Exercise 2.8
Show that for any sentences 𝐴, 𝐵, if |= 𝐴 → 𝐵, then also |= □𝐴 →□𝐵.

Earlier in this section, I showed that □𝑝 → 𝑝 and □𝑝 →□□𝑝 are valid. The arguments
I gave easily generalise to other sentences in place of 𝑝. So all instances of the following
schemas are valid: □𝐴 → 𝐴 and □𝐴 →□□𝐴.

You may remember these schemas as the schemas (T) and (4) from section 1.5. You
may also remember that I defined the system S5 by stipulating that it contains all in-
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stances of the following schemas:

¬♢𝐴 ↔ □¬𝐴(Dual)
□𝐴 → 𝐴(T)
□(𝐴 → 𝐵) → (□𝐴 →□𝐵)(K)
□𝐴 →□□𝐴(4)
♢𝐴 →□♢𝐴(5)

You can check that all instances of these schemas are valid by the definitions of the
present chapter.

I also specified two rules for S5. The first says that any truth-functional consequence
of any sentences in S5 is itself in S5. The second says that whenever a sentence 𝐴 is in
S5, then so is □𝐴. As we will show chapter 4, these rules preserve validity (as defined
in the previous section). Indeed, you will learn how to show that the sentences that are
valid by our present definitions are precisely the sentences in S5.

In the meantime, let’s prove a simpler fact to which I have appealed above (as well as
on page 17 in the previous chapter): that replacing logically equivalent sentences inside
a larger sentence never affects the larger sentence’s truth-value at any world.

To show this, I am going to use a technique called induction on complexity. It works
like this. Suppose we want to show that every sentence of a language has a certain prop-
erty. To do so, we first show that all simple, atomic sentences of the language have the
property. The atomic sentences of 𝔏𝑀 are the sentence letters. In a second step, we then
show that the logical operators preserve the property, meaning that if an operator (like
‘∧’ or ‘□’) is applied to one or more sentences, and these sentences have the property,
then the resulting sentence (that we get by applying the operator) still has the property. In
this second step, we therefore assume that the sentences to which the operator is applied
have the property. This is called the induction hypothesis. Based on this assumption, we
show that the more complex resulting sentence still has the property.

Observation 2.1: If 𝐴 is an 𝔏𝑀-sentence and 𝐴′ results from 𝐴 by replacing a
subsentence of 𝐴 with a logically equivalent sentence, then 𝐴 and 𝐴′ are logically
equivalent.

Proof. Remember that two sentences are logically equivalent if each entails the other.
By definition 2.4, this means that the two sentences are true at the same worlds in every
model.
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Now let 𝐴 be an arbitrary 𝔏𝑀-sentence and assume that 𝐴′ results from 𝐴 by replac-
ing a subsentence of 𝐴 with a logically equivalent sentence. To show that 𝐴 and 𝐴′ are
equivalent, we first consider the case where 𝐴 is a sentence letter. In this case, 𝐴 has
no sentences as proper parts and the target hypothesis is vacuously true: there is no
way of turning 𝑝 into a non-equivalent sentence by replacing a subsentence within 𝑝.

Next we consider the case where 𝐴 is a complex sentence that results by applying
some logical operator to one or more simpler sentences. We assume (as our induction
hypothesis) that the target hypothesis holds for the simpler sentences.

Assume that 𝐴 is the negation of another sentence 𝐵. So 𝐴 is ¬𝐵 and 𝐴′ is ¬𝐵′ for
some sentence 𝐵′ that is either equivalent to 𝐵 (if 𝐵 is the subsentence of 𝐴 that has
been replaced to yield 𝐴′) or that results from 𝐵 by replacing a subsentence within 𝐵 by
an equivalent sentence (if the subsentence of 𝐴 that has been replaced to yield 𝐴′ isn’t
𝐵). In the latter case, our assumption that the observation holds for sentences simpler
than 𝐴 implies that 𝐵 and 𝐵′ are equivalent. Either way, then, 𝐵 and 𝐵′ are logically
equivalent: they are true at the same worlds in every model. By clause (b) of definition
2.2, it follows that 𝐴 and 𝐴′ are also true at the same worlds in every model.

Essentially the same reasoning applies in the case where 𝐴 is a conjunction 𝐵 ∧ 𝐶,
a disjunction 𝐵 ∨ 𝐶, a conditional 𝐵 → 𝐶, a biconditional 𝐵 ↔ 𝐶, a box sentence □𝐵,
and a diamond sentence ♢𝐵. I won’t bore you by going through all of them. Here is
the case for □𝐵.

Assume that 𝐴 has the form □𝐵. So 𝐴 is □𝐵 and 𝐴′ is □𝐵′ for some sentence 𝐵′

that is equivalent to 𝐵 (by the same reasoning as before). By clause (g) of definition
2.2 it follows that 𝐴 and 𝐴′ are also equivalent.

2.5 Trees

I will now introduce a streamlined method for working through definition 2.2 to check
whether a sentence is valid: the method of analytic tableau or tree proofs. (You may
be familiar with this method for non-modal logic. If so, good. If not, no problem.) It is
best introduced by example.

Let’s check if ♢𝑝 →□𝑝 is valid. We do this by trying to construct a countermodel. A
countermodel for ♢𝑝 →□𝑝 is a model in which there is some world 𝑤 at which ♢𝑝 →□𝑝
is false. We start our construction by assuming that the negation of ♢𝑝 →□𝑝 is true at
𝑤. We write this down as follows.

1. ¬(♢𝑝 →□𝑝) (𝑤) (Ass.)
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‘1.’ and ‘(Ass.)’ are for book-keeping; ‘Ass.’ is short for ‘Assumption’, since we’re
assuming that ¬(♢𝑝 →□𝑝) is true at 𝑤. Now we unfold this assumption in accordance
with definition 2.2. The definition tells us that a conditional 𝐴 → 𝐵 is false at a world 𝑤
iff the antecedent 𝐴 is true at 𝑤 and the consequent 𝐵 is false at 𝑤. So the assumption
on line 1 implies that ♢𝑝 is true at 𝑤 and that □𝑝 is false at 𝑤. We expand our “tree” (or
“tableau”) by adding these consequences.

1. ¬(♢𝑝 →□𝑝) (𝑤) (Ass.) ✓
2. ♢𝑝 (𝑤) (1)
3. ¬□𝑝 (𝑤) (1)

I have ticked off line 1 (with ‘✓’) to mark that we won’t need to look at it again. All the
information in line 1 is contained in lines 2 and 3. The parenthetical ‘(1)’ at lines 2 and
3 reminds us that these lines are derived from line 1.

We continue drawing out further consequences. What does the truth of ♢𝑝 at 𝑤 imply
for the subsentence 𝑝? By definition 2.2, there must be some world – let’s call it 𝑣 – at
which 𝑝 is true.

1. ¬(♢𝑝 →□𝑝) (𝑤) (Ass.) ✓
2. ♢𝑝 (𝑤) (1) ✓
3. ¬□𝑝 (𝑤) (1)
4. 𝑝 (𝑣) (2)

Line 3 claims that □𝑝 is false at 𝑤. By definition 2.2, □𝑝 is true at 𝑤 iff 𝑝 is true at
all worlds. So if □𝑝 is false at 𝑤, there must be some world at which 𝑝 is false. Let’s
introduce such a world, naming it 𝑢. Our tree looks as follows.

1. ¬(♢𝑝 →□𝑝) (𝑤) (Ass.) ✓
2. ♢𝑝 (𝑤) (1) ✓
3. ¬□𝑝 (𝑤) (1) ✓
4. 𝑝 (𝑣) (2)
5. ¬𝑝 (𝑢) (3)

Now the only unprocessed lines are hypotheses about sentence letters and negations
of sentence letters. Sentence letters don’t have (non-trivial) subsentences, so we can’t
use definition 2.2 to further break down 4 or 5. The tree is complete. We have found a
countermodel for ♢𝑝 →□𝑝.
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Let’s read off the countermodel. There are three worlds in our tree: 𝑤, 𝑣, and 𝑢. So
𝑊 = {𝑤, 𝑢, 𝑣}. By line 4, 𝑝 is true at 𝑣. By line 5, 𝑝 is false at 𝑢. We don’t know whether
𝑝 is true or false at 𝑤, and it doesn’t matter – otherwise the tree would say. Let’s assume
that 𝑉(𝑝) = {𝑣}. As you can verify, ♢𝑝 →□𝑝 is indeed false at world 𝑤 in this model.

One more example, before I state the general rules. Let’s try to find a countermodel
for □(𝑝 → 𝑞) → (𝑝 →□𝑞). That’s another conditional, so we begin as before.

1. ¬(□(𝑝 → 𝑞) → (𝑝 →□𝑞)) (𝑤) (Ass.) ✓
2. □(𝑝 → 𝑞) (𝑤) (1)
3. ¬(𝑝 →□𝑞) (𝑤) (1)

Line 1 assumes that the negation of the conditional is true at some world 𝑤. Lines 2
and 3 break down this assumption, using the fact that ¬(𝐴 → 𝐵) is true (at a world) iff
𝐴 is true and 𝐵 false. We could deal with line 2 next, but it’s better to ignore it for the
moment and process 3 first, which is yet another negated conditional.

4. 𝑝 (𝑤) (3)
5. ¬□𝑞 (𝑤) (3)

Line 5 tells us that □𝑞 is false at 𝑤. We can infer that there is a world – call it 𝑣 – at
which 𝑞 is false.

6. ¬𝑞 (𝑣) (5)

Now we need to return to line 2. What can we infer from the hypothesis that □(𝑝 → 𝑞)
is true at 𝑤 about the subsentence 𝑝 → 𝑞? By definition 2.2, 𝑝 → 𝑞 must be true at every
world. So, in particular, 𝑝 → 𝑞 must be true at 𝑤. Let’s write that down. We’ll add another
line for 𝑣 later, so we don’t check off node 2.

7. 𝑝 → 𝑞 (𝑤) (2)

If you are used to proofs in the natural deduction style, you may now be tempted to
apply modus ponens and infer that 𝑞 is true at 𝑤, from lines 4 and 7. In the tree method,
however, we try not to draw inferences from multiple premises. We simply look at any
lines that can still be processed and check what definition 2.2 tells us about the immediate
subsentences of the sentence on that line. So we process line 7 without looking at line
4.
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What can we infer from the truth of 𝑝 → 𝑞 at 𝑤 about the subsentences 𝑝 and 𝑞? By
definition 2.2, 𝑝 → 𝑞 is true at 𝑤 if 𝑝 is false at 𝑤 or 𝑞 is true at 𝑤. We have to keep track of
both possibilities. Our (upside down) tree will branch. Here is the full tree at its present
stage.

1. ¬(□(𝑝 → 𝑞) → (𝑝 →□𝑞)) (𝑤) (Ass.) ✓
2. □(𝑝 → 𝑞) (𝑤) (1)
3. ¬(𝑝 →□𝑞) (𝑤) (1) ✓
4. 𝑝 (𝑤) (3)
5. ¬□𝑞 (𝑤) (3) ✓
6. ¬𝑞 (𝑣) (5)
7. 𝑝 → 𝑞
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hh
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(𝑤) (2) ✓

8. ¬𝑝
x

(𝑤) (7) 9. 𝑞 (𝑤) (7)

So far, I have called the numbered items on a tree ‘lines’. The proper term is nodes.
Since nodes 8 and 9 are visually on the same line, it would be confusing to call them
lines. While we’re at it, a branch of a tree is series of nodes that extends from the top
(or “root”) node all the way down to a node below which there is no other node. The
present tree has two branches, both of which contain 8 nodes.

What does this tree tell us? Remember that our aim is to construct a model in which the
sentence at node 1 is true at world 𝑤. At this stage, the tree tells us that this model contains
two worlds 𝑤 and 𝑣; nodes 4 and 6 tell us something about the model’s interpretation
function: 𝑝 is true at 𝑤, 𝑞 is false at 𝑣. After node 7, the tree branches. This means that
there are two ways of extending the model we have construed so far. On the left branch,
we explore an extension of the model in which 𝑝 is false at 𝑤. On the right branch, we
explore an extension in which 𝑞 is true at 𝑤. But hold on. We already know that 𝑝 is
true at 𝑤 (from node 4). There’s no model in which 𝑝 is both true and false at 𝑤. So the
possibility explored on the left branch is a dead-end. it doesn’t lead to a countermodel.
That’s why I’ve closed the left branch by drawing a cross below node 8.

We continue on the right-hand branch. Here we expand node 2 again, this time for
world 𝑣, which leads to another branching.
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1. ¬(□(𝑝 → 𝑞) → (𝑝 →□𝑞)) (𝑤) (Ass.) ✓
2. □(𝑝 → 𝑞) (𝑤) (1)
3. ¬(𝑝 →□𝑞) (𝑤) (1) ✓
4. 𝑝 (𝑤) (3)
5. ¬□𝑞 (𝑤) (3) ✓
6. ¬𝑞 (𝑣) (5)
7. 𝑝 → 𝑞
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(𝑤) (2) ✓

8. ¬𝑝
x

(𝑤) (7) 9. 𝑞 (𝑤) (7)
10. 𝑝 → 𝑞

hhhh
hhhh

hhhh
hh

VVVV
VVVV

VVVV
VV

(𝑣) (2)

11. ¬𝑝 (𝑣) (10) 12. 𝑞
x

(𝑣) (10)

On the right-most branch, 𝑞 is true at 𝑣 (by node 12) but also false at 𝑣 (by node 6), so that
branch is closed. But the middle possibility is still open, and there are no more nodes to
unfold. We have found a countermodel.

The countermodel is given by all the nodes on the middle branch, the one that remained
open. (The other branches were dead-ends and can be ignored.) We have two worlds,
𝑊 = {𝑤, 𝑣}. The interpretation function 𝑉 makes 𝑝 true at 𝑤 (node 4) and false at 𝑣
(node 11); 𝑞 is also true at 𝑤 (node 9) and false at 𝑣 (node 6). Again, you may verify that
the sentence on node 1 is true at world 𝑤 in this model.

Now for the general rules.
In order to find a countermodel for a sentence 𝐴 with the help of the tree method, you

always begin by assuming that the negation of 𝐴 is true at world 𝑤:

1. ¬𝐴 (𝑤) (Ass.)

You then expand this node, and you continue expanding new nodes that appear on the
tree, until no more nodes can be expanded.

To expand a node with a non-negated sentence, you consider what the truth of that
sentence at the node’s world implies for the truth-value of the sentence’s immediate parts.
The result may be added to the end of any open branch containing the node.

(The immediate parts of a sentence of the form 𝐴 ∧ 𝐵, 𝐴 ∨ 𝐵, 𝐴 → 𝐵, or 𝐴 ↔ 𝐵 are the
corresponding sentences 𝐴 and 𝐵; the only immediate part of □𝐴, ♢𝐴, and ¬𝐴 is 𝐴.)
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To expand a node with a negation ¬𝐴, you consider what the falsity of the relevant
sentence 𝐴 at the node’s world implies for the immediate parts of 𝐴. The result may again
be added to the end of any open branch containing the node.

The following diagrams summarize how the different kinds of nodes are expanded. I
use ‘𝜔’ and ‘𝜈’ as placeholders for arbitrary world variables.

𝐴 ∧ 𝐵 (𝜔)
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¬𝐴 (𝜔)
¬𝐵 (𝜔)
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¬□𝐴 (𝜔) ✓
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¬¬𝐴 (𝜔)

𝐴 (𝜔)

If a branch of a tree contains a sentence 𝐴 as well as its negation ¬𝐴, for the same
world 𝜔, then the branch is closed with an x at the bottom.

The rule for □𝐴 says that from the assumption that □𝐴 is true at a world 𝜔 you may
infer that 𝐴 is true at any “old” world 𝜈, by which I mean any world that already occurs
on the branch to which you want to add a node. You’re not allowed to introduce a new
world variable (‘𝑣’, ‘𝑢’, etc.) when expanding□𝐴 nodes. The same is true for ¬♢𝐴 nodes
(which by duality means the same as □¬𝐴). When you expand a ♢𝐴 node (or a ¬□𝐴
node), by contrast, you must introduce a new world variable.

Nodes of type □𝐴 and ¬♢𝐴 can be expanded several times, once for every world
variable on any branch containing the node.

If you have expanded a node that is not of type □𝐴 or ¬♢𝐴, and you have added the
new nodes to every open branch containing the node, then you can tick off the node. You
don’t need to look at it again. Nodes of type □𝐴 and ¬♢𝐴 are never ticked off.

I have added a checkmark next to the rules for ♢𝐴 and ¬□𝐴 as a reminder that these
rules can only applied once on each open branch. If you’ve already introduced a new
world by expanding a ♢𝐴 or ¬□𝐴 node, you’re not allowed to introduce further new
worlds on the same branch by expanding the same node again.

If no more rules can be applied, the tree is complete. Any open branch on a complete
tree defines a countermodel for the target sentence.

Exercise 2.9
Use the tree method to find countermodels for the following sentences. (Spell out
the countermodel, in addition to drawing the tree.)
(a) 𝑝 → 𝑞
(b) 𝑝 →□(𝑝 ∨ 𝑞)
(c) □𝑝 ∨ □¬𝑝
(d) ♢(𝑝 → 𝑞) → (♢𝑝 →♢𝑞)
(e) □♢𝑝 → 𝑝

What if all branches on a tree close? Then there is no countermodel for the target
sentence. If there is no countermodel for a sentence, then the sentence is valid. This is
how the tree method is used to show that a sentence is valid.
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The following tree shows that ♢¬𝑝 ↔ ¬□𝑝 is valid. Make sure you understand each
step. (I’ve omitted the check marks since these are only useful during the construction
phase.)

1. ¬(♢¬𝑝 ↔ ¬□𝑝)
hhhh

hhhh
hhhh

hh

VVVV
VVVV

VVVV
VV

(𝑤) (Ass.)

2. ♢¬𝑝 (𝑤) (1) 4. ¬♢¬𝑝 (𝑤) (1)
3. ¬¬□𝑝 (𝑤) (1) 5. ¬□𝑝 (𝑤) (1)
6. □𝑝 (𝑤) (3) 9. ¬𝑝 (𝑣) (5)
7. ¬𝑝 (𝑣) (2) 10. ¬¬𝑝

x
(𝑣) (4)

8. 𝑝
x

(𝑣) (6)

A similar tree could obviously be drawn for ♢¬𝑞 ↔ ¬□𝑞, and for any other formula
of the form ♢¬𝐴 ↔ ¬□𝐴: we would simply replace each occurrence of 𝑝 on the tree
with 𝐴.

To show that all instances of a schema are valid, we can also directly draw schematic
trees in which we use schematic variables ‘𝐴’, ‘𝐵’, ‘𝐶’ instead of sentence letters.

Exercise 2.10
Use the tree method to show that all instances of the following schemas are valid.

(K) □(𝐴 → 𝐵) → (□𝐴 →□𝐵)
(T) □𝐴 → 𝐴
(4) □𝐴 →□□𝐴
(5) ♢𝐴 →□♢𝐴

Exercise 2.11
For each of the following sentences, either show that it is valid or give a counter-
model to show that it is invalid, using the tree method.
(a) 𝑝 →□♢𝑝
(b) ♢♢𝑝 →♢𝑝
(c) ♢(𝑝 ∧ 𝑞) → (♢𝑝 ∧ ♢𝑞)
(d) (♢𝑝 ∧ ♢𝑞) →♢(𝑝 ∧ 𝑞)
(e) ♢(𝑝 ∨ 𝑞) ↔ (♢𝑝 ∨ ♢𝑞)
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(f) □♢𝑝 →♢□𝑝

When constructing a tree, you often have a choice of which node to expand next. In
that case, a good idea is to start with any ♢𝐴 or ¬□𝐴 nodes. If there are none, choose a
node of type 𝐴 ∧ 𝐵, ¬(𝐴 ∨ 𝐵) or ¬(𝐴 → 𝐵). Choose a node of another type only if none
of the above are available. This heuristic often helps to keep trees small, but it is not part
of the official tree rules.

Exercise 2.12
Can we use the tree method to show that some premises 𝐴1, … , 𝐴𝑛 entail a con-
clusion 𝐵? Can we use it to show that two sentences 𝐴 and 𝐵 are equivalent?
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3.1 Variable modality

I have given two kinds of interpretation for the box and the diamond. First I said that we
use □𝐴 to express that 𝐴 is certain, or historically necessary, or obligatory, etc. Then I
said that □𝐴 means that 𝐴 is true at all possible worlds. These were not meant to be com-
peting interpretations. Rather, I have assumed that the ordinary concepts of certainty,
historical necessity, obligation, and so on, can be analysed – at least to some approxima-
tion – as universal quantifiers over possible worlds.

Take historical necessity. Informally, 𝐴 is historically necessary if there is nothing we
can do that might render 𝐴 false. Let’s say that a world is open if there is something
we can do that might bring about that world (in the sense that if we were to perform
the relevant action, then we might live in that world). Now, if you think about it, 𝐴 is
historically necessary iff 𝐴 is true at all open worlds. So we can use □𝐴 to mean both
that 𝐴 is historically necessary and that 𝐴 is true at all possible worlds, where ‘possible’
means ‘open’.

Other flavours of modality are associated with other domains of worlds. Suppose the
box formalizes ‘it is obligatory that’. To a first approximation, 𝐴 is obligatory (relative to
some norms) iff it is true at all worlds at which the norms are respected. (Think about it!)
These worlds are also called ideal. So we can use □𝐴 to mean both that 𝐴 is obligatory
and that 𝐴 is true at all possible worlds, where ‘possible’ now means ‘ideal’.

Exercise 3.1
Try to analyse the following concepts in terms of universal quantification over
possible worlds of a suitable kind.
(a) It is physically necessary that 𝐴.
(b) We know that 𝐴.
(c) It is true that 𝐴.

Unfortunately, there are good reasons to think that this approach won’t always work.
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Remember that the possible-worlds semantics from the previous chapter determines a
particular logic: S5. And this logic is not appropriate for every application of modal
logic. In deontic logic, for example, we don’t want the schema

□𝐴 → 𝐴(T)

to be valid. We can easily conceive of scenarios in which □𝑝 is true (on some interpre-
tation of 𝑝) even though 𝑝 is false.

The semantics from the previous chapter renders the (T)-schema valid. Whenever a
sentence □𝐴 is true at a world 𝑤 in a model then 𝐴 is true at 𝑤 as well, because the
box quantifies over all worlds, including 𝑤. To make room for deontic logic, we need a
semantics in which not all worlds in 𝑊 are among the “possible” worlds over which the
modal operators quantify. Not all worlds are ideal.

We might also want to allow that the worlds over which the modal operators quantify
depend on the world at which the relevant sentence is evaluated. Perhaps you are obli-
gated to do the dishes in worlds where you have promised to do the dishes, but not in
worlds where you haven’t made the promise. Worlds in which you don’t do the dishes
are then ideal relative to the second kind of world, but not relative to the first.

This type of variability is also needed for other flavours of modality. Suppose the box
quantifies over all worlds that are compatible with our knowledge. Which worlds are
compatible with our knowledge depends on what we know. But we don’t always know
what we know. Sometimes we believe that we know something, but don’t actually know
it because it is false. We don’t know it, without knowing that we don’t know it. Among
the worlds compatible with our knowledge are then worlds in which we know more than
we actually do. What’s compatible with our knowledge in these worlds is different from
what’s compatible with our knowledge in the actual world.

Let’s assume, then, that for any world in any scenario there is a set of worlds that are
possible relative to 𝑤. We assume that □𝑝 as true at 𝑤 iff 𝑝 is true at all worlds that are
possible relative to 𝑤. If a world 𝑣 is possible relative to 𝑤 we also say that 𝑣 is accessible
from 𝑤, or (informally) that 𝑤 can see 𝑣.

Accessibility means different things in different applications. In epistemic logic, a
world 𝑣 is accessible from 𝑤 iff 𝑣 is compatible with what is known at 𝑤. In the logic of
historical necessity, 𝑣 is accessible from 𝑤 iff 𝑣 can be brought about at 𝑤. And so on.

Since facts about accessibility matter to the truth-value of modal sentences, they must
be represented by our models. From now on, a model for 𝔏𝑀 will therefore specify
which worlds in 𝑊 are accessible from which others (and from themselves). This marks
the difference between a “basic model” and a “Kripke model” – named after Saul Kripke,
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who popularised models of this kind.

Definition 3.1
A Kripke model of 𝔏𝑀 is a triple ⟨𝑊, 𝑅, 𝑉 ⟩ consisting of
• a non-empty set 𝑊 ,
• a binary relation 𝑅 on 𝑊 , and
• a function 𝑉 that assigns to each sentence letter of 𝔏𝑀 a subset of 𝑊 .

𝑅 is the accessibility relation. It is called a relation “on 𝑊” because it holds between
members of 𝑊 . We write ‘𝑤𝑅𝑣’ to express that 𝑅 holds between 𝑤 and 𝑣.

We also need to update definition 2.2, which settles under what conditions an 𝔏𝑀-
sentence is true at a world in a model. The old definition had the following clauses for
the box and the diamond:

(g) 𝑀, 𝑤 |= □𝐴 iff 𝑀, 𝑣 |= 𝐴 for all 𝑣 in 𝑊 .
(h) 𝑀, 𝑤 |= ♢𝐴 iff 𝑀, 𝑣 |= 𝐴 for some 𝑣 in 𝑊 .

In the new semantics, the box and the diamond only quantify over accessible worlds:

(g) 𝑀, 𝑤 |= □𝐴 iff 𝑀, 𝑣 |= 𝐴 for all 𝑣 in 𝑊 such that 𝑤𝑅𝑣.
(h) 𝑀, 𝑤 |= ♢𝐴 iff 𝑀, 𝑣 |= 𝐴 for some 𝑣 in 𝑊 such that 𝑤𝑅𝑣.

Here is the full definition, for completeness.

Definition 3.2: Kripke Semantics
If 𝑀 = ⟨𝑊, 𝑅, 𝑉 ⟩ is a Kripke model, 𝑤 is a member of 𝑊 , 𝑃 is any sentence letter,
and 𝐴, 𝐵 are any 𝔏𝑀-sentences, then

(a) 𝑀, 𝑤 |= 𝑃 iff 𝑤 is in 𝑉(𝑃).
(b) 𝑀, 𝑤 |= ¬𝐴 iff 𝑀, 𝑤 |≠ 𝐴.
(c) 𝑀, 𝑤 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑤 |= 𝐴 and 𝑀, 𝑤 |= 𝐵.
(d) 𝑀, 𝑤 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑤 |= 𝐴 or 𝑀, 𝑤 |= 𝐵.
(e) 𝑀, 𝑤 |= 𝐴 → 𝐵 iff 𝑀, 𝑤 |≠ 𝐴 or 𝑀, 𝑤 |= 𝐵.
(f) 𝑀, 𝑤 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑤 |= 𝐴 → 𝐵 and 𝑀, 𝑤 |= 𝐵 → 𝐴.
(g) 𝑀, 𝑤 |= □𝐴 iff 𝑀, 𝑣 |= 𝐴 for all 𝑣 in 𝑊 such that 𝑤𝑅𝑣.
(h) 𝑀, 𝑤 |= ♢𝐴 iff 𝑀, 𝑣 |= 𝐴 for some 𝑣 in 𝑊 such that 𝑤𝑅𝑣.
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When I speak of truth at a world in a Kripke model, this should always be understood
in accordance with definition 3.2. Definition 2.2 defines truth at a world in a basic model.

To see definition 3.2 in action, consider a simple model with two worlds, 𝑤 and 𝑣.
World 𝑣 is accessible from world 𝑤, but 𝑤 is not accessible from 𝑣. Neither world can
access itself. The interpretation function assigns {𝑣} to 𝑝 and the empty set ∅ to all
other sentence letters. The model can be pictured as follows, with an arrow representing
accessibility:

𝑤
𝑝
𝑣

Using definition 3.2, we can figure out which 𝔏𝑀-sentences are true at which worlds in
the model. For example:

• By clause (a) of definition 3.2, 𝑝 is true at 𝑣 and false at 𝑤.
• By clause (h), ♢𝑝 is true at 𝑤 because 𝑝 is true at 𝑣 and 𝑣 is accessible from 𝑤. ♢𝑝 is

false at 𝑣 because there is no world accessible from 𝑣 at which 𝑝 is true.
• By clause (g), □♢𝑝 is false at 𝑤 because ♢𝑝 is false at 𝑣 and 𝑣 is accessible from 𝑤.
□♢𝑝 is true at 𝑣 because there is no world accessible from 𝑣 at which ♢𝑝 is false.

Note that ♢𝑝 and □♢𝑝 have different truth-values at 𝑤 (and at 𝑣). In the new semantics,
we can no longer ignore all but the last in a string of modal operators. Note also that □𝑝
is true at 𝑤 even though 𝑝 is false; □𝑝 → 𝑝 is no longer valid.

Exercise 3.2
Explain why every sentence of the form □𝐴 is true at world 𝑣 in the above model.

The next three exercises refer to the following model:

𝑝
𝑤1 𝑤2

𝑝
𝑤3

𝑞
𝑤4
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Exercise 3.3
At which worlds in the model are the following sentences true?
(a) 𝑝 ∨ ¬𝑞
(b) □(𝑝 ∨ ¬𝑞)
(c) ♢(¬𝑝 ∧ ¬𝑞)
(d) ♢□𝑞
(e) ♢♢□𝑞

Exercise 3.4
For each world in the model, find an 𝔏𝑀-sentence that is true only at that world.

Exercise 3.5
Can you draw a diagram of a smaller model (with fewer worlds) in which the exact
same 𝔏𝑀-sentences are true at 𝑤1?

3.2 The systems K and S5

As in the previous chapter, we call a sentence valid if it is true at all worlds in all models.
But we now use a different conception of models, and a different definition of truth at a
world in a model. To avoid confusion, it is best to use different expressions for different
kinds of validity. Let’s call the new kind of validity K-validity. (‘K’ for Kripke.) The
old kind will henceforth be called S5-validity, because the sentences that are valid by the
definition from the previous chapter are precisely the sentences in C.I. Lewis’s system
S5.

Definition 3.3
A sentence 𝐴 is K-valid (for short, |=𝐾 𝐴) iff 𝐴 is true at every world in every
Kripke model.

The same distinction applies to the concept of entailment. Entailment in the old sense
(definition 2.4) will henceforth be called S5-entailment. Our new definition of models
and truth lead to the concept of K-entailment.
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Definition 3.4
Some sentences Γ K-entail a sentence 𝐴 (for short: Γ |=𝐾 𝐴) iff there is no world
in any Kripke model at which all sentences in Γ are true while 𝐴 is false.

The set of K-valid sentences is a system of modal logic. This system did not figure in
C.I. Lewis’s list of systems. It is known as system K.

K is weaker than S5, by which we mean that not all S5-valid sentences are K-valid.
□𝑝 → 𝑝, for example, is S5-valid but not K-valid. Conversely, however, every K-valid
sentence is S5-valid. Let’s prove this.

Observation 3.1: Every K-valid sentence is S5-valid.

Proof: In essence, observation 3.1 holds because the basic models from the previous
chapter can be simulated by Kripke models in which all worlds have access to all worlds.
If a sentence 𝐴 is K-valid, meaning that 𝐴 is true throughout every Kripke model, then
𝐴 is true throughout every Kripke model of this kind, and so 𝐴 is also true in every
basic model.

It is worth going through this more carefully. For any basic model 𝑀 = ⟨𝑊, 𝑉⟩, let
𝑀∗ be the Kripke model ⟨𝑊, 𝑅, 𝑉⟩ with the same worlds 𝑊 and the same interpretation
function 𝑉 , and with an accessibility relation 𝑅 that holds between all worlds in 𝑊 .
That is, every world in 𝑀∗ can see every other world as well as itself. If every world can
see every world, then it makes no difference whether we use definition 2.2 or definition
3.2 to evaluate the truth of sentences at a world. That’s because the two definitions only
differ for the case of the modal operators, which definition 2.2 interprets as quantifiers
over all worlds, while definition 3.2 interprets them as quantifiers over the accessible
worlds. So we have:

(*) A sentence is true at a world 𝑤 in a basic model 𝑀 iff it is true at 𝑤 in
the corresponding Kripke model 𝑀∗.

(A full proof of (*) would proceed by induction on complexity of the sentence.)
Now suppose a sentence 𝐴 is not S5-valid, meaning that it is false at some world 𝑤

in some basic model 𝑀. By (*), it follows that 𝐴 is also false at some world in some
Kripke model – namely, at the same world 𝑤 in 𝑀∗. And if 𝐴 is false at some world
in some Kripke model, then 𝐴 is not K-valid. By contraposition, it follows that if 𝐴 is
K-valid, then 𝐴 is S5-valid.
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You may remember from section 1.5 that S5 can be axiomatized by five axiom schemas
and two rules:

¬♢𝐴 ↔ □¬𝐴(Dual)
□(𝐴 → 𝐵) → (□𝐴 →□𝐵)(K)
□𝐴 → 𝐴(T)
□𝐴 →□□𝐴(4)
♢𝐴 →□♢𝐴(5)
If 𝐴 is in the system, then so is □𝐴.(Nec)
If Γ |=0 𝐴 and all members of Γ are in the system, then so is 𝐴.(CPL)

All instances of (Dual), (K), (T), (4), and (5) are S5-valid, and all and only the S5-valid
sentences can be derived from instances of these axioms by (Nec) and (CPL).

The system K can be axiomatized by dropping three of the axiom schemas: (T), (4),
and (5), leaving only (Dual) and (K). All and only the K-valid sentences can be derived
from instances of (Dual) and (K) by (Nec) and (CPL).

(Many authors define □ as ¬♢¬ or ♢ as ¬□¬, in which case (Dual) is true by defini-
tion. The only remaining axiom schema is then (K). Don’t confuse the schema (K) with
the system K!)

Exercise 3.6
(a) Describe a Kripke model in which some instance of (4) is false at some world.
(b) Describe a Kripke model in which some instance of (5) is false at some world.

Exercise 3.7
Can you find an instance of the (T)-schema □𝐴 → 𝐴 that is K-valid?

Exercise 3.8
Show that □(𝑝 ∨ ¬𝑝) is K-valid, using definition 3.2.

3.3 Some other normal systems

For many applications of modal logic, we need a concept of validity that lies in between
K-validity and S5-validity. Suppose, for example, we read the box as physical necessity
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and the diamond as physical possibility, understood as compatibility with the laws of
nature. On a popular conception of what it means to be a law of nature, nothing that
happens is ever incompatible with the laws of nature. Equivalently, anything that is
physically necessary is actually the case. We therefore want □𝐴 to entail 𝐴. On the other
hand, it is not clear if □𝐴 should entail □□𝐴: if 𝐴 is physically necessary, can we infer
that it is physically necessary that 𝐴 is physically necessary? Below I will argue that we
can’t. If that is right, then the logic of physical necessity is neither K nor S5. We want
a logic with (T) (□𝐴 → 𝐴) but without (4) (□𝐴 →□□𝐴). S5 gives us both, K gives us
neither.

Our current semantics makes it easy to define systems in between K and S5 by putting
restrictions on the accessibility relation in Kripke models.

Let’s say that an 𝔏𝑀-sentence is valid in a class of Kripke models iff the sentence is
true at every world in every model that belongs to the class. K-validity is validity in the
class of all Kripke models. S5-validity is validity in the class of Kripke models in which
every world has access to every world (as mentioned earlier, in the proof of observation
3.1).

If you inspect countermodels to the K-validity of □𝑝 → 𝑝, you may notice that all of
them involve worlds that don’t have access to themselves. If we require that every world
can see itself then all instances of the (T)-schema become valid.

Observation 3.2: All instances of (T) are valid in the class of Kripke models in
which every world is accessible from itself.

Proof: According to clause (e) of definition 3.2, an instance of □𝐴 → 𝐴 is false at a
world 𝑤 only if □𝐴 is true at 𝑤 and 𝐴 is false; but if □𝐴 is true at 𝑤 and 𝑤 has access
to itself, then by clause (g) of definition 3.2, 𝐴 is true at 𝑤. So if □𝐴 → 𝐴 is false at 𝑤,
and 𝑤 is accessible from itself, then 𝐴 is both true and false at 𝑤, which is impossible.
Hence □𝐴 → 𝐴 is true at every world in every model in which every world is accessible
from itself.
A relation 𝑅 on a set 𝑊 is called reflexive if each member of 𝑊 is 𝑅-related to itself.

If the accessibility relation in a Kripke model is reflexive, we also call the model itself
reflexive. Observation 3.2 therefore states that all instances of (T) are valid in the class
of reflexive Kripke models.

The set of all sentences that are valid in the class of reflexive Kripke models is known
as system T. Accordingly, any sentence that is valid in this class of Kripke models (every
member of system T) is called T-valid.
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System T is stronger than K, but weaker than S5. The system can be axiomatized by
adding the axiom schema (T) to the axioms and rules of K. We don’t have (4) or (5).
□𝑝 →□□𝑝 is S5-valid but not T-valid.

Systems of modal logic sometimes share their name with a schema. For disambigua-
tion, I always put schema names in parentheses. (T) is a schema, T is a system. (K) is
a schema, K is a system. All instances of (T) are in T, but many sentences in T – for
example, all instances of (K) – are not instances of (T).

Exercise 3.9
Show that □𝑝 →♢𝑝 is T-valid.

In chapter 7, we will study a temporal application of modal logic in which the box
is read as ‘it is always going to be the case that’. The “worlds” in a Kripke model here
represent times. □𝑝 is understood to be true at a time 𝑡 iff 𝑝 is true at all times after 𝑡.
The accessibility relation is the earlier-later relation: 𝑡1𝑅𝑡2 iff 𝑡1 is earlier than 𝑡2. In this
application, we don’t want to assume that 𝑅 is reflexive, which would mean that every
point in time is earlier than itself. But we’ll want something else. Suppose 𝑡1 is earlier
than 𝑡2, and 𝑡2 is earlier than 𝑡3. Then surely 𝑡1 is earlier than 𝑡3.

A relation 𝑅 is called transitive if whenever 𝑥𝑅𝑦 and 𝑦𝑅𝑧 then 𝑥𝑅𝑧. As before, we call
a Kripke model transitive if its accessibility relation is transitive. When we do temporal
logic, we will restrict the relevant models to transitive models.

The set of sentences that are valid in the class of transitive Kripke models is known as
system K4. The name alludes to the fact that this system can be axiomatized by adding
schema (4) to the axioms and rules of K.

Observation 3.3: All instances of (4) are valid in the class of transitive Kripke
models.

Proof: Suppose for reductio that there is some transitive Kripke model in which some
instance of □𝐴 →□□𝐴 is false at some world 𝑤. By clause (e) of definition 3.2, it
follows that (i) □𝐴 is true at 𝑤 and (ii) □□𝐴 is false at 𝑤. By clause (g) of definition
3.2, (ii) implies that there is some world 𝑣 accessible from 𝑤 where □𝐴 is false. And
that, in turn implies that there is some world 𝑢 accessible from 𝑣 at which 𝐴 is false.
Since 𝑅 is transitive, 𝑢 is accessible from 𝑤. By (i), 𝐴 is true at 𝑢. So 𝐴 is both true
and false at 𝑢. Contradiction.
We can combine the systems T and K4 by requiring both reflexivity and transitivity.
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The set of sentences valid in the class of reflexive and transitive Kripke models is C.I.
Lewis’s system S4. It is stronger than K, T, and K4, but weaker than S5.

There are many other conditions we could impose on the accessibility relation, and
many combinations of these conditions. Each of them defines a system of modal logic.
The following table lists some well-known model classes with the conventional names
for the corresponding systems, repeating (for future reference) the ones we already know.
We will have a closer look at some of these systems in later chapters, when we turn to
applications of modal logic.

System Constraint on 𝑅
K –
T 𝑅 is reflexive: every world in 𝑊 can access itself
D 𝑅 is serial: every world in 𝑊 can access some world
K4 𝑅 is transitive: whenever 𝑤𝑅𝑣 and 𝑣𝑅𝑢, then 𝑤𝑅𝑢
K5 𝑅 is euclidean: whenever 𝑤𝑅𝑣 and 𝑤𝑅𝑢, then 𝑣𝑅𝑢
KD45 𝑅 is serial, transitive, and euclidean
B 𝑅 is reflexive and symmetric: whenever 𝑤𝑅𝑣 then 𝑣𝑅𝑤
S4 𝑅 is reflexive and transitive
S4.2 𝑅 is reflexive, transitive, and convergent: whenever 𝑤𝑅𝑣 and 𝑤𝑅𝑢,

then there is some 𝑡 such that 𝑣𝑅𝑡 and 𝑢𝑅𝑡
S5 𝑅 is reflexive, transitive, and symmetric
S5 𝑅 is universal: every world has access to every world

S5 occurs twice in the list. We already know S5 as the system for universal models, in
which the box and the diamond quantify unrestrictedly over the whole space 𝑊 . But we
also get S5 if we merely require the accessibility relation to be reflexive, transitive, and
symmetric.

Relations that are reflexive, transitive, and symmetric are called equivalence relations.
An equivalence relation on a set divides the members of the set into classes within which
everything stands in the relation to everything. (These classes are called equivalence
classes.)

For example, let 𝑆 be the relation that holds between two people iff they have the
same birthday. This is an equivalence relation. It is reflexive: everyone has the same
birthday as themselves. It is transitive: if 𝑎𝑆𝑏 and 𝑏𝑆𝑐 then 𝑎𝑆𝑐. And it is symmetric: if
𝑎𝑆𝑏 then 𝑏𝑆𝑎. For any person 𝑎, consider the class [𝑎]𝑆 of everyone who has the same
birthday as 𝑎. (A “class” is essentially the same thing as a set.) Everyone in [𝑎]𝑆 has the
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same birthday as everyone else in [𝑎]𝑆. So within [𝑎]𝑆, the same-birthday relation 𝑆 is
universal.

Now let me explain why the above two characterisations of S5 are equivalent.

Observation 3.4: A sentence is valid in the class of Kripke models whose ac-
cessibility relation is universal iff it is valid in the class of Kripke models whose
accessibility relation is an equivalence relation.

Proof sketch: The right-to-left direction is easy. If 𝑅 is the universal relation on 𝑊 , then
𝑅 is reflexive, transitive, and symmetric. So the universal relation on 𝑊 is a special
kind of equivalence relation on 𝑊 . If a sentence is valid in every model in which 𝑅 is an
equivalence relation, it must therefore be valid in every model in which 𝑅 is universal.

The other direction is more interesting. We argue by contraposition, showing that if
a sentence 𝐴 is not valid in the class of models in which 𝑅 is an equivalence relation,
then 𝑅 is also not valid in the class of universal models. So assume 𝐴 is not valid in
the class of models in which 𝑅 is an equivalence relation. Then there is some world
𝑤 in some such model 𝑀 = ⟨𝑊, 𝑅, 𝑉 ⟩ such that 𝑀, 𝑤 |≠ 𝐴. Define a new model
𝑀′ = ⟨𝑊 ′, 𝑅′, 𝑉 ′ ⟩ as follows:

𝑊 ′ is the class of worlds accessible in 𝑀 from 𝑤 (i.e., the equivalence
class [𝑤]𝑅).

𝑅′ is the universal relation on 𝑊 ′.

𝑉 ′ is the restriction of 𝑉 to 𝑊 ′, so that for any sentence letter 𝐵, 𝑉 ′(𝐵) =
𝑉 ′(𝐵) ∩ 𝑊 ′.

(If 𝑋 and 𝑌 are sets, then 𝑋 ∩ 𝑌 – the intersection of 𝑋 and 𝑌 – is the set of all things
that are both in 𝑋 and in 𝑌 .)

𝑀′ has a universal accessibility relation. But from the perspective of 𝑤, 𝑀 and 𝑀′

are indistinguishable. Any sentence is true at 𝑤 in 𝑀 iff it is true at 𝑤 in 𝑀′. This could
be shown by induction, but I hope you see intuitively why it is the case.

Granting the italicized sentence, the assumption that 𝐴 is false at some world in some
model whose accessibility relation is an equivalence relation entails that 𝐴 is false at
some world in some model whose accessibility relation is universal.
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Exercise 3.10
Let 𝑅 be the relation on the set of all people such that 𝑎𝑅𝑏 iff 𝑏 is a sibling of 𝑎. Is
𝑅 reflexive? serial? transitive? euclidean? symmetric? universal?

Exercise 3.11
Explain these facts:
(a) If 𝑅 is symmetric and transitive, then 𝑅 is euclidean.
(b) If 𝑅 is symmetric and euclidean, then 𝑅 is transitive.
(c) If 𝑅 is reflexive and euclidean, then 𝑅 is symmetric.

Exercise 3.12
What is wrong with the following argument? “If 𝑅 is symmetric, then 𝑤𝑅𝑣 implies
𝑣𝑅𝑤; if 𝑅 is transitive, it follows that 𝑤𝑅𝑤. So symmetry and transitivity together
imply reflexivity.”

3.4 Frames

There is a close connection between conditions on the accessibility relation in Kripke
models and modal schemas – between reflexivity and the (T)-schema, between transitiv-
ity and the (4)-schema, and so on. What exactly is the connection?

You might think the connection between (T) and reflexivity is this:

(?) All instances of (T) are valid in a model iff the model is reflexive.

But that’s false. We know (observation 3.2) that all (T) instances are valid in the class of
reflexive models. It follows that all (T) instances are valid in every reflexive model. But
the other direction fails. There are non-reflexive models in which all (T) instances are
valid. The following model is an example.

𝑝
𝑤

𝑝
𝑣

There are two worlds, both of which can see each other; neither can see itself. 𝑝 is true at
both worlds, all other sentence letters are false at both worlds. This model is not reflexive,
but no instance of the (T)-schema □𝐴 → 𝐴 is false at any world in the model. (Try to find
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a false instance!) The fact that the (T)-schema is valid in a class of models therefore does
not entail that all models in the class are reflexive. The class might contain models like
the one just described.

To understand the connection between modal schemas and conditions on the accessi-
bility relation, we need to talk about frames. A frame is what you get if take a model and
remove the interpretation function.

Definition 3.5
A Kripke frame is a pair of a non-empty set 𝑊 and a relation 𝑅 on 𝑊 .

Roughly speaking, if we think of a model as representing a scenario and an interpre-
tation, then a frame is the part of the model that represents the scenario.

Frames can be pictured just like Kripke models, but without any sentence letters in
the nodes. The frame of the model displayed above looks like this:

𝑤 𝑣

Now remember that validity is truth in virtue of the meaning of the logical expres-
sions. Whether a sentence is valid should not depend on the meaning of the non-logical
expressions. So if we define a particular kind of validity by reference to a class of Kripke
models, the constraints we impose on the models in the class should be constraints on
the frame of the models, not on the interpretation function.

To see the point, suppose I suggested that a sentence is “𝑋-valid” iff it is true at all
worlds in all Kripke model whose interpretation function assigns the empty set to the
sentence letter 𝑝. So □¬𝑝 is 𝑋-valid, while □¬𝑞 is 𝑋-invalid. But □¬𝑝 and □¬𝑞 have
the same logical form. If □¬𝑝 is true in virtue of its logical form, then □¬𝑞 should also
be true in virtue of its logical form. 𝑋-validity is not a sensible concept of logical validity.
The systems from the previous section were all defined sensibly, by putting constraints
on the frame of a Kripke model, not on the interpretation function.

Let’s say that a sentence is valid on a frame if it is true at all worlds in all models
with that frame. A sentence is valid in a class of frames if it valid on all frames in the
class.

If a sentence is valid in the class of all models whose accessibility relation satisfies
a certain condition, then it is also valid in the class of all frames whose accessibility
relation satisfies that condition, and vice versa. We could have defined the systems from
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the previous section in terms of frame classes rather than model classes: K is the set of
sentences valid in the class of all frames, T is the set of sentences valid in the class of
reflexive frames, and so on. (A reflexive/transitive/etc. frame is a frame with a reflexive/-
transitive/etc. accessibility relation.)

Now here is the connection between (T) and reflexivity: All (T) instances are valid in
a class of frames iff every frame in the class is reflexive. More simply:

Observation 3.5: All instances of (T) are valid on a frame iff the frame is reflex-
ive.

Proof: The right-to-left direction follows from observation 3.2, according to which all
(T) instances are valid in the class of reflexive models, and therefore in the class of
reflexive frames, and therefore on any frame in that class. For the other direction, we
have to show that if all instances of (T) are valid on a frame ⟨𝑊, 𝑅⟩, then 𝑅 is reflexive.
We do this by showing that if 𝑅 is not reflexive, then we can find an interpretation
function 𝑉 that makes □𝑝 → 𝑝 false at some world 𝑤. 𝑤 will be an arbitrary world in
𝑊 that can’t see itself. (There must be some such world if 𝑅 is not reflexive.) Let 𝑉(𝑝)
comprise all worlds in 𝑊 except 𝑤. Then □𝑝 is true at 𝑤 and 𝑝 false. So □𝑝 → 𝑝 is
false at 𝑤.
If all instances of a schema are valid on all and only the frames whose accessibility

relation satisfies a certain property, the schema is said to correspond to that property
(and to define the relevant class of frames). Observation 3.5 says that the (T) schema
corresponds to reflexivity.

Instead of proving more facts about the correspondence between modal schemas and
frame conditions, I will simply give you a list of some important results.

Schema Corresponding Frame Condition

(T) □𝐴 → 𝐴 𝑅 is reflexive: every world in 𝑊 is accessible from itself
(D) □𝐴 →♢𝐴 𝑅 is serial: every world in 𝑊 can access some world in 𝑊
(B) 𝐴 →□♢𝐴 𝑅 is symmetric: whenever 𝑤𝑅𝑣 then 𝑣𝑅𝑤
(4) □𝐴 →□□𝐴 𝑅 is transitive: whenever 𝑤𝑅𝑣 and 𝑣𝑅𝑢, then 𝑤𝑅𝑢
(5) ♢𝐴 →□♢𝐴 𝑅 is euclidean: whenever 𝑤𝑅𝑣 and 𝑤𝑅𝑢, then 𝑣𝑅𝑢
(G) ♢□𝐴 →□♢𝐴 𝑅 is convergent: whenever 𝑤𝑅𝑣 and 𝑤𝑅𝑢, then there is

some 𝑡 such that 𝑣𝑅𝑡 and 𝑢𝑅𝑡

Correspondence facts are often useful when trying to figure out which schemas should
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be valid on a given interpretation of the modal operators. Return to the case of physical
possibility and necessity from the start of section 3.3. I claimed that on this interpreta-
tion of the box and the diamond, we should not regard all instances of the (4)-schema
□𝐴 →□□𝐴 as valid. My claim is not based on a direct intuition that something could be
physically necessary without it being physically necessary that it is physically necessary.
My claim is rather based on a judgement about the non-transitivity of physical accessi-
bility. My reasoning goes like this. I assume that a world 𝑣 is physically possible relative
to a world 𝑤 if nothing that happens at 𝑣 contradicts the laws of nature at 𝑤. This does
not imply that 𝑣 has the same laws as 𝑤. For example, suppose the only law at 𝑤 is that
ravens are black; at 𝑣, there is no such law but there happen to be no non-black ravens.
Then what happens at 𝑣 does not contradict the laws at 𝑤, even though 𝑣 has different
laws. Relative to the laws of 𝑣, worlds with white ravens are physically possible. So a
world accessible from a world that is accessible from 𝑤 need not itself be accessible from
𝑤. Since (4) corresponds to transitivity, I can infer that the logic of physical necessity
does not render all instances of that schema valid.

Exercise 3.13
Can you find frame conditions that correspond to these schemas?
(a) □𝐴 ↔ 𝐴
(b) □𝐴

3.5 More trees

In section 2.5, I described the tree method for checking whether a sentence is valid, and
for constructing countermodels. These were the rules for the box and the diamond:

□𝐴 (𝜔)

𝐴 (𝜈)
↑

old

♢𝐴 (𝜔) ✓

𝐴 (𝜈)
↑

new

¬□𝐴 (𝜔) ✓

¬𝐴 (𝜈)
↑

new

¬♢𝐴 (𝜔)

¬𝐴 (𝜈)
↑

old

The rule for □𝐴 allows us to infer, from the hypothesis that □𝐴 is true at some world, that
𝐴 is true at any world that occurs on a tree branch. This made sense given the semantics
of the previous chapter, where the box quantified unrestrictedly over all worlds. With the
new semantics of the present chapter, we need to change the tree rules.
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If □𝐴 is true at a world 𝑤, and there’s some other world 𝑣 on the branch, we can only
infer that 𝐴 is true at 𝑣 if 𝑣 is accessible from 𝑤. So we need to keep track of which
worlds are accessible from any world on a tree. We do this by adding meta-linguistic
statements about accessibility to the tree.

For example, suppose we want to expand the following node.

n. ♢𝑝 (𝑤)
The node represents the hypothesis that ♢𝑝 is true at 𝑤. It follows that 𝑝 is true at some
world 𝑣. Moreover, that world 𝑣 must be accessible from 𝑤. So we add two new nodes:

m. 𝑤𝑅𝑣
m+1. 𝑝 (𝑣)

Node 𝑚 + 1 is what we would have added by the old rules. Node 𝑚 is a meta-linguistic
statement reminding us that 𝑣 is accessible from 𝑤. ‘𝑤𝑅𝑣’ is not a sentence of 𝔏𝑀 ; it
isn’t true or false relative to a world, which is why node 𝑚 has no world label.

What if we want to expand a box node?

n. □𝑝 (w)
By itself, this doesn’t tell us anything about the truth-value of 𝑝 at any world. We can’t
infer that 𝑝 is true at 𝑤, because 𝑤 might not be accessible from itself. Indeed, if no
world is accessible from 𝑤, then □𝑝 can be true even if 𝑝 is false at every world. So we
can’t even infer that there is some world or other at which 𝑝 is true.

However, suppose a branch that contains node 𝑛 also contains the following node.

m. 𝑤𝑅𝑣
Now we can infer that 𝑝 is true at 𝑣. So to expand a box node on a branch, there must be
another node on the branch telling us that the world 𝑤 at which the box sentence is true
has access to some world 𝑣.

Here are diagrams of the new rules for the box and the diamond.

□𝐴 (𝜔)
𝜔𝑅𝜈

𝐴 (𝜈)

♢𝐴 (𝜔) ✓

𝜔𝑅𝜈
𝐴 (𝜈)

↑
new

¬□𝐴 (𝜔) ✓

𝜔𝑅𝜈
¬𝐴 (𝜈)

↑
new

¬♢𝐴 (𝜔)
𝜔𝑅𝜈

¬𝐴 (𝜈)
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If two nodes occur above the dotted line in a rule, as in the rule for □𝐴, this means that
the rule can only be applied if both nodes already occur on the relevant branch (in any
order, and not necessarily adjacent to each other).

As before, the checkmark next to the rules for ♢𝐴 and ¬□𝐴 indicates that these nodes
can only be expanded once on each branch.

The rules for negated boxes and diamonds are what you would expect from the duality
of the box and the diamond. Note that only nodes of type ♢𝐴 and ¬□𝐴 allow us to
introduce hypotheses about accessibility into a tree.

The rule for the classical connectives all stay the same. Together, all these rules are
known as the K-rules; the tree rules from section 2.5 are the S5-rules.

Here is a schematic tree proof to show that |=𝐾 □(𝐴 ∧ 𝐵) → (□𝐴 ∧ □𝐵).

1. ¬(□(𝐴 ∧ 𝐵) → (□𝐴 ∧ □𝐵)) (𝑤) (Ass.)
2. □(𝐴 ∧ 𝐵) (𝑤) (1)
3. ¬(□𝐴 ∧ □𝐵)

ggggg
ggggg

ggggg
gg

WWWWW
WWWWW

WWWWW
WW

(𝑤) (1)

4. ¬□𝐴 (𝑤) (3) 5. ¬□𝐵 (𝑤) (3)
6. 𝑤𝑅𝑣 (4) 11. 𝑤𝑅𝑢 (5)
7. ¬𝐴 (𝑣) (4) 12. ¬𝐵 (𝑢) (5)
8. 𝐴 ∧ 𝐵 (𝑣) (2,6) 13. 𝐴 ∧ 𝐵 (𝑢) (2,11)
9. 𝐴 (𝑣) (8) 14. 𝐴 (𝑢) (13)
10. 𝐵

x
(𝑣) (8) 15. 𝐵

x
(𝑢) (13)

The annotation ‘(2,6)’ for node 8 indicates that this node is based on two assumptions
from earlier in the branch: the assumption on node 2 that □(𝐴 ∧ 𝐵) is true at 𝑤, and the
assumption on node 6 that 𝑤𝑅𝑣. Only these two assumptions together allow us to infer
that 𝐴 ∧ 𝐵 is true at 𝑣.

What happens if we try to prove □𝑝 → 𝑝?

1. ¬(□𝑝 → 𝑝) (𝑤) (Ass.)
2. □𝑝 (𝑤) (1)
3. ¬𝑝 (𝑤) (1)

At this point, no more rules can be applied. We can read off a countermodel from the
open branch:
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𝑊 = {𝑤}
𝑅 = ∅

𝑉(𝑝) = ∅
This is the smallest possible Kripke model. It consists of a single world that can’t see
itself. ‘𝑅 = ∅’ is a way of saying that no world can see any world. If you want to say
that 𝑅 holds between 𝑤 and 𝑣 and between 𝑣 and 𝑢, you might write ‘𝑅 = {(𝑤, 𝑣), (𝑣, 𝑢)}’
or simply ‘𝑤𝑅𝑣, 𝑣𝑅𝑢’.

Exercise 3.14
Use the K-rules to check which of the following sentences are K-valid. If a sen-
tence is invalid, describe a countermodel.
(a) (□𝑝 ∧ □𝑞) →□(𝑝 ∧ 𝑞)
(b) ♢(𝑝 ∧ 𝑞) → (♢𝑝 ∧ ♢𝑞)
(c) (♢𝑝 ∧ ♢𝑞) →♢(𝑝 ∧ 𝑞)
(d) ♢(𝑝 ∨ 𝑞) ↔ (♢𝑝 ∨ ♢𝑞)
(e) □(𝑝 ∨ 𝑞) ↔ (□𝑝 ∨ □𝑞)
(f) □(𝑝 → 𝑞) → (♢𝑝 →♢𝑞).
(g) (□𝑝 ∧ ♢𝑞) →♢(𝑝 ∧ 𝑞).

For systems in between K and S5 that are characterised by certain constraints on the
accessibility relation, we add new rules for manipulating accessibility nodes. For exam-
ple, if we want to check whether a sentence is T-valid, we use a reflexivity rule in addition
to the K-rules. The reflexivity rule says that if a world variable 𝜔 occurs on a branch,
then we may always add 𝜔𝑅𝜔 to the branch.

Here is a proof of □𝑝 → 𝑝, using the reflexivity rule.

1. ¬(□𝑝 → 𝑝) (𝑤) (Ass.)
2. □𝑝 (𝑤) (1)
3. ¬𝑝 (𝑤) (1)
4. 𝑤𝑅𝑤 (Ref.)
5. 𝑝

x
(𝑤) (2,4)

To test for validity in the class of transitive frames (or models), we need a transitivity
rule, which allows us to infer 𝜔𝑅𝜐 from 𝜔𝑅𝜈 and 𝜈𝑅𝜐. Here is a proof of □𝑝 →□□𝑝
that uses this rule.
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1. ¬(□𝑝 →□□𝑝) (𝑤) (Ass.)
2. □𝑝 (𝑤) (1)
3. ¬□□𝑝 (𝑤) (1)
4. 𝑤𝑅𝑣 (3)
5. ¬□𝑝 (𝑣) (3)
6. 𝑣𝑅𝑢 (5)
7. ¬𝑝 (𝑢) (5)
8. 𝑤𝑅𝑢 (4,6,Tr.)
9. 𝑝

x
(𝑢) (2,8)

The following diagrams summarize the tree rules for the frame conditions we have so
far considered.

Reflexivity

𝜔𝑅𝜔
↑

old

Seriality

𝜔𝑅𝜈
↑ ↑

old new

Transitivity

𝜔𝑅𝜈
𝜈𝑅𝜐

𝜔𝑅𝜐

Symmetry

𝜔𝑅𝜈

𝜈𝑅𝜔

Euclidity

𝜔𝑅𝜈
𝜔𝑅𝜐

𝜈𝑅𝜐

Convergence

𝜔𝑅𝜈
𝜔𝑅𝜐

𝜈𝑅𝜏
𝜐𝑅𝜏

↑
new

By selectively adding some of these rules to the K-rules, we get tree rules for a variety
of modal logics. (Compare the table on p. 56.)
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System Tree Rules

K K-rules
T K-rules and reflexivity rule
D K-rules and seriality rule
K4 K-rules and transitivity rule
K5 K-rules and euclidity rule
KD45 K-rules, seriality rule, transitivity rule, and euclidity rule
B K-rules, reflexivity rule, and symmetry rule
S4 K-rules, reflexivity rule, and transitivity rule
S4.2 K-rules, reflexivity rule, transitivity rule, and convergence rule

Exercise 3.15
Use the tree method to check the following claims.
(a) |=𝐾4 ♢𝑝 →♢♢𝑝.
(b) |=𝐷 (□𝑝 ∧ □𝑞) →♢(𝑝 ∨ 𝑞).
(c) |=𝐵 ♢𝑝 →□♢𝑝.
(d) |=𝑇 (♢□(𝑝 → 𝑞) ∧ □𝑝) →♢𝑞.
(e) |=𝑇 ♢(𝑝 →□♢𝑝).
(f) |=𝑆4 ♢□(♢𝑝 →□♢𝑝).
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4.1 Soundness and completeness

You may find that this chapter is harder and more abstract than the previous chapters.
Feel free to skip or skim it if you’re mostly interested in philosophical applications.

We have introduced several kinds of validity: S5-validity, K-validity, T-validity, and
so on. All of these are defined in terms of models. K-validity means truth at all worlds
in all Kripke models. T-validity means truth at all worlds in all reflexive Kripke models.
S5-validity means truth at all worlds in all universal Kripke models (equivalently, at all
worlds in all “basic” models). And so on.

If you want to show that a sentence is, say, K-valid, you could directly work through the
clauses of definition 3.2, showing that there is no world in any Kripke model in which the
sentence is false. The tree method regiments and simplifies this process. If you construct
a tree for your sentence in accordance with the K-rules and all branches close, then the
sentence is K-valid. If some branch remains open, the sentence isn’t K-valid.

Or so I claimed. But these claims aren’t obvious. The tree rule for the diamond, for
example, appears to assume that if ♢𝐴 is true at a world then 𝐴 is true at some accessible
world that does not yet occur on the branch. Couldn’t ♢𝐴 be true because 𝐴 is true at an
accessible “old” world instead? Also, why do we expand ♢𝐴 nodes only once? Couldn’t
𝐴 be true at multiple accessible worlds?

In the next two sections, we are going to lay any such worries to rest. We are going
to prove that (1) if all branches on a K-tree close then the target sentence is K-valid;
conversely, (2) if some branch on a fully developed K-tree remains open, then the tar-
get sentence is not K-valid. (1) establishes the soundness of the tree rules for K, (2)
establishes their completeness.

When you use the tree method, you don’t have to think of what you are doing as
exploring Kripke models. I could have introduced the method as a purely syntactic game.
You start the game by writing down the negation of the target sentence, followed by ‘(w)’
(and possibly ‘1.’ to the left and ‘(Ass.)’ to the right, although in this chapter we will
mostly ignore these book-keeping annotations.) Then you repeatedly apply the tree rules
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until either all branches are closed or no rule can be applied any more. At no point in the
game do you need to think about what any of the symbols you are writing might mean.

Soundness and completeness link this syntactic game with the “model-theoretic” con-
cept of validity. Soundness says that if the game leads to a closed tree (a tree in which
all branches are closed) then the target sentence is true at all worlds in all models. Com-
pleteness says that if the game doesn’t lead to a closed tree then the target sentence is
not true at all worlds in all models. This is called completeness because it implies that
every valid sentence can be shown to be valid with the tree method.

In general, a proof method is called sound if everything that is provable with the
method is valid. A method is complete if everything that is valid is provable. Strictly
speaking, we should say that a method is sound or complete for a given concept of validity.
The tree rules for K are sound and complete for K-validity, but not for T-validity or S5-
validity.

The tree method is not the only method for showing that a sentence is K-valid (or T-
valid, or S5-valid). Instead of constructing a K-tree, you could construct an axiomatic
proof, trying to derive the target sentence from some instances of (Dual) and (K) by
(Nec) and (CPL). This, too, can be done as a purely syntactic exercise, without think-
ing about models and worlds. In section 4.4, we will show that the axiomatic calculus
for K is indeed sound and complete for K-validity: all and only the K-valid sentences
can be derived from (Dual) and (K) by (Nec) and (CPL). The ‘all’ part is completeness,
the ‘only’ part soundness. Having shown soundness and completeness for both the tree
method and the axiomatic method, we will have shown that the two methods are equiv-
alent. Anything that can be shown with one method can also be shown with the other.

There are other styles of proof besides the axiomatic and the tree format. Two famous
styles that we won’t cover are “natural deduction” methods and “sequence calculi”. Lo-
gicians are liberal about what qualifies as a proof method. The only non-negotiable con-
dition is that there must be a mechanical way of checking whether something (usually,
some configuration of symbols) is or is not a proof of a given target sentence.

Exercise 4.1
What do you think of the following proposals for new proof methods?
(a) In method A, every 𝔏𝑀-sentence is a proof of itself: To prove an 𝔏𝑀-sentence

with this method, you simply write down the sentence.
(b) In method B, every 𝔏𝑀-sentence that is an instance of □(𝐴 ∨ ¬𝐴) is a proof

of itself. Nothing else is a proof in method B.
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(c) In method C, a proof of a sentence 𝐴 is a list of 𝔏𝑀-sentences terminating
with 𝐴 and in which every sentence occurs in some logic textbook.

Which of these qualify as genuine proof methods by the criterion I have described?

Exercise 4.2
Which, if any, of the methods from the previous exercise are sound for K-validity?
Which, if any, are complete?

4.2 Soundness for trees

We are now going to show that the tree method for K is sound – that every sentence that
can be proved with the method is K-valid. A proof in the tree method is a tree in which
all branches are closed. So this is what we have to show:

Whenever all branches on a K-tree close then the target sentence is K-valid.

By a K-tree I mean a tree that conforms to the K-rules from the previous chapter.
I’ll first explain the proof idea, then I’ll fill in the details. We will assume that there is

a K-tree for some target sentence 𝐴 on which all branches close. We need to show that
𝐴 is K-valid. To this end, we suppose for reductio that 𝐴 is not K-valid. By definition
3.3, a sentence is K-valid iff it is true at all worlds in all Kripke models. Our supposition
that 𝐴 is not K-valid therefore means that 𝐴 is false at some world in some Kripke model.
Let’s call that world ‘𝑤’ and the model ‘𝑀’. Note that the closed tree begins with

1. ¬𝐴 (𝑤)

If we take the world variable ‘𝑤’ on the tree to pick out world 𝑤 in 𝑀, then node 1 is a
correct statement about 𝑀, insofar as ¬𝐴 is indeed true at 𝑤 in 𝑀. Now we can show the
following:

If all nodes on some branch of a tree are correct statements about 𝑀, and
the branch is extended by the K-rules, then all nodes on at least one of the
resulting branches are still correct statements about 𝑀.

Since our closed tree is constructed from node 1 by applying the K-rules, it follows that
all nodes on some branch of the tree are correct statements about 𝑀. But every branch
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of a closed tree contains a pair of contradictory statements, which can’t both be correct
statements about 𝑀. This completes the reductio.

Let’s fill in the details. We first define precisely what it means for the nodes on a tree
branch to be correct statements about a model.

Definition 4.1
A tree node is a correct statement about a Kripke model 𝑀 = ⟨𝑀, 𝑅, 𝑉 ⟩ under
a function 𝑓 that maps world variables to members of 𝑊 iff either the node has the
form 𝜔𝑅𝜐 and 𝑓 (𝜔)𝑅𝑓 (𝜐), or the node has the form 𝐴 (𝜔) and 𝐴 is true at 𝑓 (𝜔)
in 𝑀.
A tree branch correctly describes a model 𝑀 iff there is a function 𝑓 under which
all nodes on the branch are correct statements about 𝑀.

We now prove the italicised statement above:

Soundness Lemma
If some branch 𝛽 on a tree correctly describes a Kripke model 𝑀, and the branch is
extended by applying a K-rule, then at least one of the resulting branches correctly
describes 𝑀.

Proof: We have to go through all the K-rules. In each case we assume that the rule
is applied to some node(s) on a branch 𝛽 that correctly describes 𝑀, so that there is
a function 𝑓 under which all nodes on the branch are correct statements about 𝑀. We
show that once the rule has been applied, at least one of the resulting branches still
correctly describes 𝑀.

• Suppose 𝛽 contains a node of the form 𝐴 ∧ 𝐵 (𝜔) and the branch is extended by
two new nodes 𝐴 (𝜔) and 𝐵 (𝜔). Since 𝐴 ∧ 𝐵 (𝜔) is a correct statement about 𝑀
under 𝑓 , we have 𝑀, 𝑓 (𝜔) |= 𝐴 ∧ 𝐵. By clause (c) of definition 3.2, it follows that
𝑀, 𝑓 (𝜔) |= 𝐴 and 𝑀, 𝑓 (𝜔) |= 𝐵. So the extended branch still correctly describes 𝑀.

• Suppose 𝛽 contains a node of the form 𝐴 ∨ 𝐵 (𝜔) and the branch is split into two,
with 𝐴 (𝜔) appended to one end and 𝐵 (𝜔) to the other. Since the expanded node
is a correct statement about 𝑀 under 𝑓 , we have 𝑀, 𝑓 (𝜔) |= 𝐴 ∨ 𝐵. By clause (d) of
definition 3.2, it follows that either 𝑀, 𝑓 (𝜔) |= 𝐴 or 𝑀, 𝑓 (𝜔) |= 𝐵. So at least one of
the resulting branches also correctly describes 𝑀.
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The proof for the other non-modal rules is similar. Let’s look at the rules for the modal
operators.

• Suppose 𝛽 contains nodes of the form □𝐴 (𝜔) and 𝜔𝑅𝜐, and the branch is extended
by adding 𝐴 (𝜐). Since □𝐴 (𝜔) and 𝜔𝑅𝜐 are correct statement about 𝑀 under 𝑓 , we
have 𝑀, 𝑓 (𝜔) |= □𝐴 and 𝑓 (𝜔)𝑅𝑓 (𝜐). By clause (g) of definition 3.2, it follows that
𝑀, 𝑓 (𝜐) |= 𝐴. So the extended branch correctly describes 𝑀.

• Suppose 𝛽 contains a node of the form ♢𝐴 (𝜔) and the branch is extended by adding
nodes 𝜔𝑅𝜐 and 𝐴 (𝜐), where 𝜐 is new on the branch. Since ♢𝐴 (𝜔) is a correct
statement about 𝑀 under 𝑓 , we have 𝑀, 𝑓 (𝜔) |= ♢𝐴. By clause (h) of definition 3.2,
it follows that 𝑀, 𝑣 |= 𝐴 for some 𝑣 in 𝑊 such that 𝑓 (𝜔)𝑅𝑣. Let 𝑓 ′ be the same as 𝑓
except that 𝑓 ′(𝜐) = 𝑣. The newly added nodes are correct statements about 𝑀 under
𝑓 ′. Since 𝜐 is new on the branch, all earlier nodes on the branch are also correct
statements about 𝑀 under 𝑓 ′. So the expanded branch correctly describes 𝑀.

The cases for ¬□ and ¬♢ are similar to the previous two cases.

With the help of this lemma, we can prove that the method of K-trees is sound.

Theorem: Soundness of K-trees
If a K-tree for a target sentence closes, then the target sentence is K-valid.

Proof: Suppose for reductio that some K-tree for some target sentence 𝐴 closes even
though 𝐴 is not K-valid. Then ¬𝐴 is true at some world 𝑤 in some Kripke model 𝑀.
The first node on the tree, ¬𝐴 (𝑤), is a correct statement about 𝑀 under the function
that maps the world variable ‘𝑤’ to 𝑤. Since the tree is created from the first node by
applying the K-rules, the Soundness Lemma implies that some branch 𝛽 on the tree
correctly describes 𝑀: all nodes on the tree are correct statements about 𝑀 under some
function 𝑓 . But the tree is closed. This means that 𝛽 contains contradictory nodes of
the form

n. 𝐵 (𝜐)
m. ¬𝐵 (𝜐)

If both of these are correct statements about 𝑀 under 𝑓 , then 𝑀, 𝑓 (𝜐) |= 𝐵 and also
𝑀, 𝑓 (𝜐) |= ¬𝐵. This is impossible by definition 3.2.
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Exercise 4.3
Spell out the cases for 𝐴 → 𝐵 and ¬♢𝐴 in the proof of the Soundness Lemma.

Exercise 4.4
Draw the K-tree for target sentence □𝑝. The tree has a single open branch. Does
this branch correctly describe the Kripke model in which there is just one world
𝑤, 𝑤 has access to itself, and all sentence letters are false at 𝑤?

The soundness proof for K-trees is easily adapted to other types of trees. The tree
rules for system T, for example, are all the K-rules plus the Reflexivity rule, which allows
adding 𝜔𝑅𝜔 for every world 𝜔 on the branch. Suppose we want to show that everything
that is provable with the T-rules is T-valid – true at every world in every reflexive Kripke
model. All the clauses in the Soundness Lemma still hold if we assume that the model
𝑀 is reflexive. We only need to add a further clause for the Reflexivity rule, to confirm
that if a branch correctly describes a reflexive model 𝑀, and the branch is extended by
adding 𝜔𝑅𝜔, then the resulting branch also correctly describes 𝑀. This is evidently the
case.

Exercise 4.5
How would we need to adjust the soundness proof to show that the tree rules for
K4 are sound with respect to K4-validity?

4.3 Completeness for trees

Let’s now show that the tree rules for K are complete – that whenever a sentence is K-
valid then there is a closed K-tree for that sentence. In fact, we will show something
stronger:

If a sentence is K-valid, then every fully developed K-tree for the sentence
is closed.

By a fully developed tree, I mean a tree on which every node on any open branch that
can be expanded (in any way) has been expanded (in this way). A fully developed tree
may be infinite.

We will prove the displayed sentence by proving its contraposition:
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If a fully developed K-tree for a sentence does not close, then the sentence
is not K-valid.

Assume, then, that some fully developed K-tree for some target sentence has at least one
open branch. We want to show that the target sentence is false at some world in some
Kripke model.

We already know how to read off a countermodel from an open branch. All we need to
do is show that this method for generating countermodels really works. Let’s first define
the method more precisely.

Definition 4.2
The model induced by a tree branch is the Kripke model (𝑊, 𝑅, 𝑉) where

(a) 𝑊 is the set of world variables on the branch,
(b) 𝜔𝑅𝜐 holds in the model iff a node 𝜔𝑅𝜐 occurs on the branch,
(c) for any sentence letter 𝑃, 𝑉(𝑃) is the set of world variables 𝜔 for which a

node 𝑃 (𝜔) occurs on the branch.

Next we show that all nodes on any open branch on a fully developed tree are correct
statements about the Kripke model induced by the branch.

Completeness Lemma
Let 𝛽 be an open branch on a fully developed K-tree, and let 𝑀 = ⟨𝑊, 𝑅, 𝑉 ⟩ be
the model induced by 𝛽. Then 𝑀, 𝜔 |= 𝐴 for all sentences 𝐴 and world variables
𝜔 for which 𝐴 (𝜔) is on 𝛽.

We have to show that whenever 𝐴 (𝜔) occurs on 𝛽 then 𝑀, 𝜔 |= 𝐴. The proof is by
induction on the length of 𝐴. We first show that the claim holds for sentence letters and
negated sentence letters. Then we show that if the claim holds for all sentences shorter
than 𝐴 (this is our induction hypothesis), then it also holds for 𝐴 itself.

• If 𝐴 is a sentence letter then the claim is true by clause (c) of definition 4.2 and clause
(a) of definition 3.2.

• If 𝐴 is the negation of a sentence letter 𝜌, then 𝑟ℎ𝑜 (𝜔) does not occur on 𝛽, other-
wise 𝛽 would be closed. By clause (c) of definition 4.2, it follows that 𝜔 is not in
𝑉(𝜌), and so 𝑀, 𝜔 |= 𝐴 by clauses (a) and (b) of definition 3.2.

73



4 Models and Proofs

• If 𝐴 is a doubly negated sentence ¬¬𝐵, then 𝛽 contains a node 𝐵 (𝜔), because
the tree is fully developed. By induction hypothesis, 𝑀, 𝜔 |= 𝐵. By clause (b) of
definition 3.2, it follows that 𝑀, 𝜔 |= 𝐴.

• If 𝐴 is a conjunction 𝐵 ∧ 𝐶, then 𝛽 contains nodes 𝐵 (𝜔) and 𝐶 (𝜔). By induction
hypothesis, 𝑀, 𝜔 |= 𝐵 and 𝑀, 𝜔 |= 𝐶. By clause (c) of definition 3.2, it follows that
𝑀, 𝜔 |= 𝐴.

• If 𝐴 is a negated conjunction ¬(𝐵 ∧ 𝐶), then 𝛽 contains either ¬𝐵 (𝜔) or ¬𝐶 (𝜔).
By induction hypothesis, 𝑀, 𝜔 |= ¬𝐵 or 𝑀, 𝜔 |= ¬𝐶. Either way, clauses (b) and (c)
of definition 3.2 imply that 𝑀, 𝜔 |= 𝐴.

I skip the cases where 𝐴 is a disjunction, a conditional, a biconditional, or a negated
disjunction, conditional, or biconditional. The proofs are similar to one (or both) of
the previous two cases.

• If 𝐴 is a box sentence □𝐵, then 𝛽 contains a node 𝐵 (𝜐) for each world variable 𝜐 for
which 𝜔𝑅𝜐 is on 𝛽 (because the tree is fully developed). By induction hypothesis,
𝑀, 𝜐 |= 𝐵, for each such 𝜐. By definition 4.2, it follows that 𝑀, 𝜐 |= 𝐵 for all worlds
𝜐 such that 𝜔𝑅𝜐. By clause (g) of definition 3.2, it follows that 𝑀, 𝜔 |= □𝐵.

• If 𝐴 is a diamond sentence ♢𝐵, then there is a world variable 𝜐 for which 𝜔𝑅𝜐 and
𝐵 (𝜐) are on 𝛽. By induction hypothesis, 𝑀, 𝜐 |= 𝐵. And by definition 4.2, 𝜔𝑅𝜐.
By clause (h) of definition 3.2, it follows that 𝑀, 𝜔 |= ♢𝐵.

For the case where 𝐴 has the form ¬□𝐵 or ¬♢𝐵, the proof is similar to one of the
previous two cases.

To establish completeness, we need to verify one more point: that one can always
construct a fully developed tree for any invalid target sentence. Let’s call a K-tree regular
if it is constructed by (i) first applying all rules for the truth-functional connectives until
no more of them can be applied (without adding only nodes to a branch that are already
on the branch), then (ii) applying the rules for ♢ and ¬□ until no more of them can be
applied, then (iii) applying the rules for □ and ¬♢ until no more of them can be applied,
then starting over with (i), and so on.

Observation 4.1: Every regular open K-tree is fully developed.
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Proof: When constructing a regular tree, every iteration of (i), (ii), and (iii) only al-
lows expanding finitely many nodes. So every node on every open branch that can be
expanded in any way is eventually expanded in this way by some iteration of (i), (ii),
and (iii).

Now we have all the ingredients to prove completeness.

Theorem: Completeness of K-trees
If a sentence is K-valid, then there is a closed K-tree for that sentence.

Proof: Let 𝐴 be any K-valid sentence, and suppose for reductio that there is no closed
K-tree for 𝐴. In particular, then, every regular K-tree for 𝐴 remains open. Take any
such tree. By observation 4.1, the tree is fully expanded. Choose any open branch on
the tree. By the Completeness Lemma, 𝐴 is false at 𝑤 in the model induced by that
branch. So 𝐴 is not true at all worlds in all Kripke models. Contradiction.

Exercise 4.6
Fill in the cases for 𝐵 → 𝐶 and ¬♢𝐵 in the proof of the Completeness Lemma.

Like the soundness proof, the completeness proof for K is easily adapted to other
logics. To show that the T-rules are complete with respect to T-validity, for example, we
merely need check that the model induced by any open branch on a fully developed T-
tree is reflexive. It must be, because an open branch on a fully developed T-tree contains
𝜔𝑅𝜔 for each world variable 𝜔 on the branch.

Exercise 4.7
What do we need to check to show that the K4-rules are complete with respect to
K4-validity?

Exercise 4.8
A Kripke model is acyclical if you can never return to the same world by following
the accessibility relation. Show that if a sentence is true at some world in some
Kripke model, then it is also true at some world in some acyclical Kripke model.
(Hint: If 𝐴 is true at some world in some Kripke model then ¬𝐴 is K-invalid.
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By the soundness theorem, there is a fully developed K-tree for ¬𝐴 with an open
branch. Now consider the model induced by this branch.)

Exercise 4.9
The S5 tree rules from chapter 2 are sound and complete for S5-validity: all and
only the S5-valid sentences can be proven. Are the rules sound for K-validity?
Are they complete for K-validity?

4.4 Soundness and completeness for axiomatic calculi

Next, we are going to show that the axiomatic calculus for system K is sound and com-
plete for K-validity. In the axiomatic calculus, a proof is a list of sentences each of
which is either an instance of (Dual) or (K) or can be derived from earlier sentences on
the list by application of (CPL) or (Nec). Expressed as a construction rule, (Nec) says
that whenever a list contains a sentence 𝐴 then one may append □𝐴. (CPL) says that one
may append any truth-functional consequence of sentences that are already on the list.
(This is an acceptable rule because there is a simple mechanical test – the truth-table
method – for checking whether a sentence is a truth-functional consequence of finitely
many other sentences.)

Soundness is easy. We want to show that everything that is derivable from some
instances of (Dual) and (K) by applications of (CPL) and (Nec) is K-valid. We show this
by showing that (1) every instance of (Dual) and (K) is K-valid, and (2) every sentence
that is derived from K-valid sentences by (CPL) or (Nec) is itself K-valid.

Theorem: Soundness of the axiomatic calculus for K
Any sentence that is provable in the axiomatic calculus for K is K-valid.

Proof: We first show that every instance of (Dual) and (K) is K-valid.

1. (Dual) is the schema ¬♢𝐴 ↔ □¬𝐴. By clauses (b), (g), and (h) of definition 3.2,
a sentence ¬♢𝐴 is true at a world 𝑤 in a Kripke model 𝑀 iff □¬𝐴 is true at 𝑤 in 𝑀.
It follows by clauses (f) and (e) that all instances of (Dual) are true at all worlds in
all Kripke models.

2. (K) is the schema □(𝐴 → 𝐵) → (□𝐴 →□𝐵). By clause (e) of definition 3.2, a sen-
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tence □(𝐴 → 𝐵) → (□𝐴 →□𝐵) is false at a world 𝑤 in a Kripke model only if
□(𝐴 → 𝐵) and □𝐴 are both true at 𝑤 while 𝐵 is false. By clause (g) of defini-
tion 3.2, □𝐵 is false at 𝑤 only if 𝐵 is false at some world 𝑣 accessible from 𝑤. But
if □(𝐴 → 𝐵) and □𝐴 are both true at 𝑤, then 𝐴 → 𝐵 and 𝐴 are true at every world
accessible from 𝑤, again by clause (g). And there can be no world at which 𝐴 → 𝐵
and 𝐴 are true while 𝐵 is false, by clause (e) of definition 3.2.

Next we show that (CPL) and (Nec) preserve K-validity.

1. By definition 3.2, the truth-functional operators have their standard truth-table
meaning at every world in every Kripke model. It follows that all truth-functional
consequences of sentences that are true at a world are themselves true at that
world. In particular, if some sentences are true at every world in every Kripke
model, then any truth-functional consequence of these sentences is also true at
every world every Kripke model.

2. Let 𝑤 be an arbitrary world in an arbitrary Kripke model. If 𝐴 is true at every
world in every Kripke model, then 𝐴 is true at every world accessible from 𝑤, in
which case □𝐴 is true at 𝑤 by clause (g) of definition 3.2. So if 𝐴 is K-valid, then
□𝐴 is also K-valid.

The soundness proof for K is easily extended to other modal systems. Since all in-
stances of (Dual) and (K) are true at all worlds in all Kripke models, they are also true
at all worlds in any more restricted class of Kripke models. The arguments for (CPL)
and (Nec) also go through if we replace ‘every Kripke model’ by ‘every Kripke model
of such-and-such type’. So if we want to show that, say, the axiomatic calculus for T is
sound with respect to the concept of T-validity – that is, if we want to show that anything
that is derivable from (Dual), (K), and (T) by (CPL) and (Nec) is true at all worlds in
all reflexive Kripke models – all that is left to do is to show that every instance of the
(T)-schema is true at all worlds in all reflexive Kripke model. (We’ve already shown this:
see observation 3.2.)

Exercise 4.10
Outline the soundness proof for the axiomatic calculus for S4, whose axiom
schemas are (Dual), (K), (T), and (4).

Let’s turn to completeness. We are going to show that every K-valid sentence is deriv-
able from some instances of (Dual) and (K) by (CPL) and (Nec). As in section 4.3, we
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argue by contraposition. We will show that any sentence that cannot be derived from
(Dual) and (K) by (CPL) and (Nec) is not K-valid. To show that a sentence is not K-
valid, we will give a countermodel – a Kripke model in which the sentence is false at
some world. In fact, we will give the same countermodel for every sentence that isn’t
derivable in the calculus. You might think we need different countermodels for differ-
ent sentences, but it turns out that there is a particular model in which every K-invalid
sentence is false at some world. This model is called the canonical model for K.

In order to define the canonical model, let’s introduce some shorthand terminology.
We’ll say that an 𝔏𝑀-sentence is K-provable if it can be proved in the axiomatic calculus
for K. A set of 𝔏𝑀-sentences is K-inconsistent if it contains a finite number of sentences
𝐴1, … , 𝐴𝑛 such that ¬(𝐴1 ∧ … ∧ 𝐴𝑛) is K-provable. A set is K-consistent if it is not
K-inconsistent.

(For example, the set {□(𝑝 ∧ 𝑞), 𝑞 → 𝑝, ¬□𝑞} is K-inconsistent, because it contains
two sentences, □(𝑝 ∧ 𝑞) and ¬□𝑞 whose conjunction is refutable in K, in the sense that
the negation ¬(□(𝑝 ∧ 𝑞) ∧ ¬□𝑞) of their conjunction is derivable from some instances
of (Dual) and (K) by (CPL) and (Nec).)

A set of 𝔏𝑀-sentences is called maximal if it contains either 𝐴 or ¬𝐴 for every 𝔏𝑀-
sentence 𝐴. A set is maximal K-consistent if it is both maximal and K-consistent.

Exercise 4.11
Which, if any, of these sets are K-consistent? (a) {𝑝}, (b) {¬𝑝}, (c) the set of all
sentence letters, (d) the set of all 𝔏𝑀-sentences.

Now here’s the canonical model for K.

Definition 4.3
The canonical model 𝑀𝐾 for K is the Kripke model ⟨𝑊, 𝑅, 𝑉 ⟩, where

• 𝑊 is the set of all maximal K-consistent sets of 𝔏𝑀-sentences,
• 𝑤𝑅𝑣 iff 𝑣 contains every sentence 𝐴 for which 𝑤 contains □𝐴,
• for every sentence letter 𝑃, 𝑉(𝑃) is the set of all members of 𝑊 that contain

𝑃.

The “worlds” in the canonical model are sets of 𝔏𝑀-sentences. The interpretation
function makes a sentence letter true at a world iff the letter is a member of the world.
As we are going to see, this generalizes to arbitrary sentences:
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(1) A world 𝑤 in 𝑀𝐾 contains all and only the sentences that are true at 𝑤 in 𝑀𝐾 .

We will also prove the following:

(2) If some sentence cannot be proved in the axiomatic calculus for K, then its negation
is a member of some world in 𝑀𝐾 .

Together, these two lemmas will establish completeness for the axiomatic calculus.
Fact (2) tells us that if a sentence 𝐴 isn’t K-provable, then ¬𝐴 is a member of some world
𝑤 in the canonical model 𝑀𝐾 . By fact (1), we can infer that ¬𝐴 is true at 𝑤 in 𝑀𝐾 , which
means that 𝐴 is false at 𝑤 in 𝑀𝐾 . So any sentence that isn’t K-provable isn’t K-valid.

We are going to prove (2) first. We’ll need the following observation.

Observation 4.2: If a set Γ is K-consistent, then for any sentence 𝐴, either Γ∪{𝐴}
or Γ ∪ {¬𝐴} is K-consistent.

(Γ ∪ {𝐴}, called the union of Γ and {𝐴}, is the smallest set that contains all members of
Γ as well as 𝐴.)

Proof : Let Γ be any K-consistent set and 𝐴 any sentence. Suppose for reductio that
Γ ∪ {𝐴} and Γ ∪ {¬𝐴} are both K-inconsistent.

That Γ ∪ {𝐴} is K-inconsistent means there are sentences 𝐴1, … , 𝐴𝑛 in Γ ∪ {𝐴} such
that ¬(𝐴1 ∧ … ∧ 𝐴𝑛) is K-provable. Since Γ itself is K-consistent, one of the sentences
𝐴1, … , 𝐴𝑛 must be 𝐴. Let 𝐵 be the conjunction of the other sentences in 𝐴1, … , 𝐴𝑛, all
of which are in Γ. So ¬(𝐵 ∧ 𝐴) is K-provable.

That Γ∪{¬𝐴} is K-inconsistent means that there are sentences 𝐴1, … , 𝐴𝑛 in Γ∪{¬𝐴}
such that ¬(𝐴1 ∧ … ∧ 𝐴𝑛) is K-provable. As before, one of these sentences must be
¬𝐴. Let 𝐶 be the conjunction of the others, all of which are in Γ. So ¬(𝐶 ∧ ¬𝐴) is
K-provable.

If ¬(𝐵 ∧ 𝐴) and ¬(𝐶 ∧ ¬𝐴) are both K-provable, then so is ¬(𝐵 ∧ 𝐶), because it is a
truth-functional consequence of ¬(𝐵 ∧ 𝐴) and ¬(𝐶 ∧ ¬𝐴). But 𝐵 ∧ 𝐶 is a conjunction
of sentences from Γ. So Γ itself is K-inconsistent, contradicting our assumption.

Now we can prove fact (2).

Lindenbaum’s Lemma
Every K-consistent set is a subset of some maximal K-consistent set.
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Proof : Let 𝑆0 be some K-consistent set of sentences. Let 𝐴1, 𝐴2, … be a list of all
𝔏𝑀-sentences in some arbitrary order. For every number 𝑖 ≥ 0, define

𝑆𝑖+1 =
⎧{
⎨{⎩
𝑆𝑖 ∪ {𝐴𝑖} if 𝑆𝑖 ∪ {𝐴𝑖} is K-consistent
𝑆𝑖 ∪ {¬𝐴𝑖} otherwise.

This gives us an infinite list of sets 𝑆0, 𝑆1, 𝑆2, …. Each set in the list is K-consistent:
𝑆0 is K-consistent by assumption. And if some set 𝑆𝑖 in the list is K-consistent, then
either 𝑆𝑖 ∪ {𝐴𝑖} is K-consistent, in which case 𝑆𝑖+1 = 𝑆𝑖 ∪ {𝐴𝑖} is K-consistent, or
𝑆𝑖 ∪ {𝐴𝑖} is not K-consistent, in which case 𝑆𝑖+1 is 𝑆𝑖 ∪ {¬𝐴𝑖}, which is K-consistent
by observation 4.2. So if any set in the list is K-consistent, then the next set in the list
is also K-consistent. It follows that 𝑆0, 𝑆1, 𝑆2, … are all K-consistent.

Now let 𝑆 be the set of sentences that occur in at least one of the sets 𝑆0, 𝑆1, 𝑆2, 𝑆3 ….
(That is, let 𝑆 be the union of 𝑆0, 𝑆1, 𝑆2, 𝑆3, ….) Evidently, 𝑆0 a subset of 𝑆. And 𝑆 is
maximal. Moreover, 𝑆 is K-consistent. For if 𝑆 were not K-consistent, then it would
contain some sentences 𝐵1, … , 𝐵𝑛 such that ¬(𝐵1∧…∧𝐵𝑛) is K-provable. All of these
sentences would have to occur somewhere on the list 𝐴1, 𝐴2, …. Let 𝐴𝑗 be a sentence
from 𝐴1, 𝐴2, … that occurs after all the 𝐵1, … , 𝐵𝑛. If 𝐵1, … , 𝐵𝑛 are in 𝑆, they would
have to be in 𝑆𝑗 already, so 𝑆𝑗 would be K-inconsistent. But we’ve seen that all of
𝑆0, 𝑆1, 𝑆2, … are K-consistent.

Notice that the proof of Lindenbaum’s Lemma does not turn on any assumptions about
the axiomatic calculus for K except that (CPL) is one of its rules. The lemma holds for
every calculus with (CPL) as a (possibly derived) rule.

To prove fact (1), we need another observation, which relies on the presence of (K)
and (Nec), besides (CPL).

Observation 4.3: If Γ is a maximal K-consistent set of sentences that does not
contain □𝐴, and Γ− is the set of all sentences 𝐵 for which □𝐵 is in Γ, then Γ− ∪
{¬𝐴} is K-consistent.

Proof: We show that if Γ− ∪ {¬𝐴} is not K-consistent, then neither is Γ. If Γ− ∪ {¬𝐴}
is not K-consistent, then there are sentences 𝐵1, … , 𝐵𝑛 in Γ− such that ¬(𝐵1 ∧…∧𝐵𝑛 ∧
¬𝐴) is K-provable. And then (𝐵1 ∧ … ∧ 𝐵𝑛) → 𝐴 is K-provable, because it is a truth-
functional consequence of ¬(𝐵1∧…∧𝐵𝑛∧¬𝐴). By repeated application of (Nec), (K),
and (CPL), one can derive (□𝐵1 ∧ … ∧□𝐵𝑛) →□𝐴 from (𝐵1 ∧ … ∧ 𝐵𝑛) → 𝐴. Another
application of (CPL) yields ¬(□𝐵1 ∧ … ∧ □𝐵𝑛 ∧ ¬□𝐴). So {□𝐵1, … ,□𝐵𝑛, ¬□𝐴}
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is K-inconsistent. But □𝐵1, … ,□𝐵𝑛 are in Γ. And since □𝐴 is not in Γ and Γ is
maximal, ¬□𝐴 is in Γ. So {□𝐵1, … ,□𝐵𝑛, ¬□𝐴} is a subset of Γ. And so Γ is K-
inconsistent.
Here, then, is fact (1):

Canonical Model Lemma
For any world 𝑤 in 𝑀𝐾 and any sentence 𝐴, 𝐴 is in 𝑤 iff 𝑀𝐾 , 𝑤 |= 𝐴.

Proof: The proof is by induction on complexity of 𝐴. We first show that the claim (that
𝐴 is in 𝑤 iff 𝑀𝐾 , 𝑤 |= 𝐴) holds for sentence letters. Then we show that if the claim
holds for the immediate parts of a complex sentence (this is our induction hypothesis),
then the claim also holds for the sentence itself.

• Suppose 𝐴 is a sentence letter. By definition 4.3, 𝑤 ∈ 𝑉(𝐴) iff 𝐴 ∈ 𝑤. So by clause
(a) of definition 3.2, 𝑀𝐾 , 𝑤 |= 𝐴 iff 𝐴 ∈ 𝑤. (‘∈’ means ‘is a member of the set’.)

• Suppose 𝐴 is a negation ¬𝐵. By clause (b) of definition 3.2, 𝑀𝐾 , 𝑤 |= ¬𝐵 iff 𝑀𝐾 , 𝑤 |≠
𝐵. By induction hypothesis, 𝑀𝐾 , 𝑤 |≠ 𝐵 iff 𝐵 ∉ 𝑤. Since 𝑤 is maximal K-consistent,
𝐵 ∉ 𝑤 iff ¬𝐵 ∈ 𝑤. So 𝑀𝐾 , 𝑤 |= ¬𝐵 iff ¬𝐵 ∈ 𝑤.

• Suppose 𝐴 is a conjunction 𝐵 ∧ 𝐶. By clause (c) of definition 3.2, 𝑀𝐾 , 𝑤 |= 𝐵 ∧ 𝐶
iff 𝑀𝐾 , 𝑤 |= 𝐵 and 𝑀𝐾 , 𝑤 |= 𝐶. By induction hypothesis, 𝑀𝐾 , 𝑤 |= 𝐵 iff 𝐵 ∈ 𝑤, and
𝑀𝐾 , 𝑤 |= 𝐶 iff 𝐶 ∈ 𝑤. Since 𝑤 is maximal K-consistent, 𝐵 and 𝐶 are in 𝑤 iff 𝐵 ∧ 𝐶
is in 𝑤. So 𝑀𝐾 , 𝑤 |= 𝐵 ∧ 𝐶 iff 𝐵 ∧ 𝐶 ∈ 𝑤.

The cases for the other truth-functional connectives are similar.

• Suppose 𝐴 is a box sentence □𝐵, and that □𝐵 ∈ 𝑤. By definition 4.3, it follows that
𝐵 ∈ 𝑣 for all 𝑣 with 𝑤𝑅𝑣. By induction hypothesis, this means that 𝑀𝐾 , 𝑣 |= 𝐵 for all
𝑣 with 𝑤𝑅𝑣. And then 𝑀𝐾 , 𝑤 |= □𝐵, by clause (g) of definition 3.2.

For the converse direction, suppose □𝐵 ∉ 𝑤. Let Γ− be the set of all sentences 𝐶
for which □𝐶 ∈ 𝑤. By observation 4.3, Γ− ∪ {¬𝐵} is K-consistent. By definition
4.3 and Lindenbaum’s Lemma, it follows that there is some 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣
and ¬𝐵 ∈ 𝑣. Since 𝑣 is K-consistent, 𝐵 ∉ 𝑣. By induction hypothesis, it follows that
𝑀𝐾 , 𝑣 |≠ 𝐵. And so 𝑀𝐾 , 𝑤 |≠ □𝐵, by clause (g) of definition 3.2.

• Suppose 𝐴 is a diamond sentence ♢𝐵, and that ♢𝐵 ∈ 𝑤. By (Dual) and (CPL), any
set that contains both ♢𝐵 and □¬𝐵 is K-inconsistent. So □¬𝐵 ∉ 𝑤. By observation
4.3 and Lindenbaum’s Lemma (as in the previous case), it follows that there is some

81



4 Models and Proofs

𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣 and 𝐵 ∈ 𝑣. By induction hypothesis, 𝑀, 𝑣 |= 𝐵. So 𝑀𝐾 , 𝑤 |=
♢𝐵, by clause (h) of definition 3.2.

For the converse direction, suppose ♢𝐵 ∉ 𝑤. Then □¬𝐵 ∈ 𝑤, by (Dual), (CPL), and
the fact that 𝑤 is maximal K-consistent. By definition 4.3, it follows that ¬𝐵 ∈ 𝑣 for
all 𝑣 with 𝑤𝑅𝑣. Since all such 𝑣 are maximal K-consistent, none of them contain 𝐵.
By induction hypothesis, 𝐵 is not true at any of them. By clause (h) of definition 3.2,
it follows that 𝑀𝐾 , 𝑤 |≠ ♢𝐵.

The completeness of the axiomatic calculus for K follows immediately from the pre-
vious two lemmas, as foreshadowed above:

Theorem: Completeness of the axiomatic calculus for K
If 𝐴 is K-valid, then 𝐴 is provable in the axiomatic calculus for K.

Proof : We show that if a sentence is not K-provable then it is not K-valid. Suppose
𝐴 is not K-provable. Then {¬𝐴} is K-consistent. It follows by Lindenbaum’s Lemma
that {¬𝐴} is included in some maximal K-consistent set 𝑆. By definition 4.3, that set
is a world in 𝑀𝐾 . Since ¬𝐴 is in 𝑆, it follows from the Canonical Model Lemma that
𝑀𝐾 , 𝑆 |= ¬𝐴. So 𝑀𝐾 , 𝑆 |≠ 𝐴. So 𝐴 is not true at all worlds in all Kripke models.

Done!
Once again, the proof is easily adjusted to many axiomatic calculi for logics stronger

than K. All we have assumed about the K-calculus is that it contains (Dual), (K), (Nec),
and (CPL). So if we’re interested in, say, whether the axiomatic calculus for T is complete,
we can simply replace ‘K-consistent’ by ‘T-consistent’ throughout the proof, and almost
everything goes through as before. We only have to add a small step at the end.

By adapting the argument for K, we can show that if a sentence 𝐴 is not T-provable
then 𝐴 is false at some world in the canonical model for T. This shows that 𝐴 is not
K-valid. But we want to show that 𝐴 is not T-valid – meaning that 𝐴 is not true at all
worlds in all reflexive Kripke models. To complete the proof, we need to show that the
canonical model 𝑀𝑇 for T is reflexive.

This isn’t hard. Given how accessibility in canonical models is defined, a world 𝑤 in
a canonical model is accessible from itself iff whenever □𝐴 ∈ 𝑤 then 𝐴 ∈ 𝑤. Since the
worlds in 𝑀𝑇 are maximal T-consistent sets of sentences, and every such set contains
every instance of the (T) schema □𝐴 → 𝐴, there is no world in 𝑀𝑇 that contains □𝐴 but
not 𝐴. So every world in 𝑀𝑇 has access to itself.

In general, to show that a calculus that extends the K-calculus by further axiom schemas
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is complete, we only need to show that the canonical model for the calculus satisfies the
frame conditions that correspond to the added axiom schemas. This is usually the case.
But not always. Sometimes, an axiomatic calculus is sound and complete with respect
to some class of Kripke models, but the canonical model of the calculus is not a member
of that class. (An example is the calculus for the system GL, which I will describe at the
very end of this chapter.) Completeness must then be established by some other means.

Exercise 4.12
Outline the completeness proof for the axiomatic calculus for S5.

Exercise 4.13
The set of all 𝔏𝑀-sentences is a system of modal logic. Let’s call this system 𝑋 (for
“explosion”). (a) Describe a sound and complete proof method for 𝑋. (b) Explain
why 𝑋 does not have a canonical model.

4.5 Loose ends

You will remember from observation 1.1 in chapter 1 that claims about entailment can
be converted into claims about validity. 𝐴 entails 𝐵 iff 𝐴 → 𝐵 is valid; 𝐴1 and 𝐴2 together
entail 𝐵 iff 𝐴1 → (𝐴2 → 𝐵) – equivalently, (𝐴1 ∧𝐴2) → 𝐵 – is valid; and so on. But what if
there are infinitely many premises 𝐴1, 𝐴2, 𝐴3, …? Sentences of 𝔏𝑀 are always finite, so
we can’t convert the claim that 𝐴1, 𝐴2, 𝐴3, … entail 𝐵 into a claim that some 𝔏𝑀-sentence
is valid.

We also can’t use the tree method or the axiomatic method to directly show that a
conclusion follows from infinitely many premises. A proof in either method is a finite
object that can only invoke finitely many sentences.

As it turns out, this is not a serious limitation. In many logics – including classical
propositional and predicate logic and all the modal logics we have so far encountered –
a sentence is entailed by infinitely many premises only if it is entailed by a finite subset
of these premises. Logics with this property are called compact.

Let’s show that K is compact. To this end, I’ll say that a sentence 𝐵 is K-derivable
from a (possibly infinite) set of sentences Γ if there are finitely many members 𝐴1, … , 𝐴𝑛
of Γ for which (𝐴1 ∧ … ∧ 𝐴𝑛) → 𝐵 is provable in the axiomatic calculus for K. Now we
first show that whenever Γ |=𝐾 𝐵 then 𝐵 is K-derivable from Γ. This is called strong
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completeness because it is stronger than the (“weak”) kind of completeness that we have
established in the previous section.

Theorem: Strong completeness of the axiomatic calculus for K
Whenever Γ |=𝐾 𝐵 then 𝐵 is K-derivable from Γ.

Proof : Suppose 𝐵 is not K-derivable from Γ. Then there are no 𝐴1, … , 𝐴𝑛 in Γ such
that (𝐴1∧…∧𝐴𝑛) → 𝐵 is K-provable. This means that Γ∪{¬𝐵} is K-consistent. By Lin-
denbaum’s Lemma, it follows that Γ∪{¬𝐵} is included in some maximal K-consistent
set and thereby in some world in the canonical model 𝑀𝐾 for K. (Lindenbaum’s lemma
says that every K-consistent set of 𝔏𝑀-sentences, even if it is infinite, is included in a
maximal K-consistent set.) By the Canonical Model Lemma, 𝑀𝐾 , 𝑤 |=𝐾 𝐴 for all 𝐴 in
Γ, and 𝑀𝐾 , 𝑤 |≠𝐾 𝐵. Thus Γ |≠𝐾 𝐵.

Theorem: Compactness of K
If a sentence 𝐵 is K-entailed by some sentences Γ, then 𝐵 is K-entailed by a finite
subset of Γ.

Proof: Suppose Γ |=𝐾 𝐵. By strong completeness, it follows that there are finitely
many sentences 𝐴1, … , 𝐴𝑛 in Γ for which (𝐴1 ∧ … ∧ 𝐴𝑛) → 𝐵 is K-provable. By the
soundness of the K-calculus, (𝐴1 ∧ … ∧ 𝐴𝑛) → 𝐵 is valid. So 𝐴1, … , 𝐴𝑛 |=𝐾 𝐵, by
observation 1.1.
Compactness is surprising. It is easy to think of cases in which a conclusion is entailed

by infinitely many premises, but not by any finite subset of these premises. For example,
suppose I like the number 0, I like the number 1, I like the number 2, and so on, for all
natural numbers 0,1,2,3,…. Together, these assumptions entail that I like every natural
number. But no finite subset of the assumptions has this consequence.

Exercise 4.14
A set of sentences Γ is called K-satisfiable if there is a world in some Kripke
model at which all members of Γ are true. Show that an infinite set of sentences
Γ is K-satisfiable iff every finite subset of Γ is K-satisfiable.

To conclude this chapter, I want to take a quick look at the logic of mathematical
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provability.
Our proofs of soundness, completeness, compactness, etc. were informal. We have not

translated the relevant claims into a formal language, nor have we used a formal method
of proof. In principle, however, this can be done. All our proofs could be formalized
in an axiomatic calculus for predicate logic with a few additional axioms about sets. A
well-known calculus of that kind is ZFC (named after Ernst Zermelo, Abraham Fraenkel,
and the Axiom of Choice). ZFC is strong enough to prove not just soundness and com-
pleteness in modal logic, but practically everything that can be proved in any branch of
maths.

An interesting feature of ZFC is that it can not only prove facts about what’s provable
in simpler axiomatic calculi; it can also prove facts about what’s provable in ZFC itself.
For example, one can prove in ZFC that one can prove in ZFC that 2+2=4.

This gives us an interesting application of modal logic. Let’s read the box as ‘it is
mathematically provable that’, which we understand as provability in ZFC. One can eas-
ily show (in ZFC) that this operator has all the properties of the box in the basic logic K.
For example, all instances of the (K)-schema are provable in ZFC. (The language of ZFC
doesn’t have a box symbol. But one can encode the (K)-schema into a schema of ZFC,
given the present reading of the box, and all instances of that schema are ZFC-provable.)

So the logic of mathematical provability is at least as strong as K. In fact, it is stronger.
One can prove in ZFC that whenever a sentence is ZFC-provable then it is ZFC-provable
that the sentence is ZFC-provable. This gives us the (4)-schema □𝐴 →□□𝐴.

You might expect that we also have the (T)-schema□𝐴 → 𝐴 or the (D)-schema□𝐴 →♢𝐴.
The latter says that if something is provable then its negation isn’t provable (since ♢𝐴
means ¬□¬𝐴). And surely ZFC can’t prove both a sentence and its negation – which
would make ZFC inconsistent. I say ‘surely’, but can we prove (in ZFC) that ZFC is
consistent? The answer is no. More precisely, one can prove that if one can prove that
ZFC is consistent then ZFC is inconsistent. This bizarre fact is a consequence of Gödel’s
second incompleteness theorem, established by Kurt Gödel in 1931. It is reflected by the
following schema (named after Gödel and Martin Löb), all whose instances are provable
in ZFC:

(GL) □(□𝐴 → 𝐴) →□𝐴

The system GL, which is axiomatized by (K), (GL), (Nec), and (CPL), completely cap-
tures what ZFC can prove about provability in ZFC. (Schema (4) isn’t needed as a sepa-
rate axiom schema because it can be derived.)
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Exercise 4.15
Suppose ZFC can prove its own consistency, so that there is a proof of ¬□(𝑝∧¬𝑝).
Explain how this proof could be extended to a proof of □(𝑝 ∧ ¬𝑝). You need each
of (GL), (Nec), and (CPL).
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5.1 Epistemic accessibility

When we say that something is possible, we often mean that it is compatible with our
information. This “epistemic” flavour of possibility – along with related concepts such
as knowledge, belief, information, and communication – is studied in epistemic logic.

Standard epistemic logic relies heavily on the possible-worlds semantics introduced
in chapters 2 and 3. The guiding idea is that information rules out possibilities. Imagine
we are investigating a crime. There are three suspects: the gardener, the butler, and the
cook. Now a credible eye-witness tells us that the gardener was out of town at the time
of the crime. This allows us to rule out the previously open possibility that the gardener
is the culprit. When we gain information, the space of open possibilities shrinks.

Let’s say that a world is epistemically accessible for an agent if it is compatible with
the agent’s knowledge. Recall that a world is a maximally specific possibility. For any
such possibility, we may ask whether it might be the actual world. If our information
allows us to give a negative answer then the world is not epistemically possible for us
– it is epistemically inaccessible. Before we learned that the gardener was out of town,
our epistemically accessible worlds included worlds at which the gardener committed
the crime. When we received the eye-witness report, these worlds became inaccessible.

Exercise 5.1
Which worlds are epistemically accessible for an agent who knows all truths?
Which worlds are epistemically accessible for an agent who knows nothing?

We will interpret the box and the diamond in terms of epistemic accessibility. In this
context, the box is usually written ‘K’. For once, this doesn’t stand for Kripke but for
knowledge. I will use ‘M’ (‘might’) for the diamond. So K 𝐴 means that 𝐴 is true at all
epistemically accessible worlds, while M 𝐴 means that 𝐴 is true at some epistemically
accessible world. If we want to clarify which agent we have in mind, we can add a
subscript: Mb 𝐴 might say that 𝐴 is epistemically possible for Bob.
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We often informally read K as ‘the agent knows’. In at least one respect, however, our
K operator does not match the knowledge operator of ordinary English.

To see why, note that if some propositions are true at a world, then anything that
logically follows from these propositions is also true at that world. For example, if 𝑝 → 𝑞
and 𝑝 are both true at 𝑤, then so is 𝑞 (by definition 3.2). As a consequence, if 𝑝 → 𝑞 and
𝑝 are true at all epistemically accessible worlds (for some agent), then 𝑞 is also true at
all these worlds. K(𝑝 → 𝑞) and K 𝑝 together entail K 𝑞. More generally, the K operator is
closed under logical consequence, meaning that if 𝐵 logically follows from 𝐴1, … , 𝐴𝑛,
and K 𝐴1, … , K 𝐴𝑛, then K 𝐵.

Our ordinary conception of knowledge does not seem to be closed under logical conse-
quence. If you know the axioms of a mathematical theory, you don’t automatically know
everything that logically follows from the axioms. Our K operator might be taken to for-
malise the concept of implicit knowledge, where an agent implicitly knows a proposition
if the proposition follows from things the agent knows. An agent’s implicit knowledge
represents the information the agent has about the world. If what you know entails 𝑝,
then the information you have settles that 𝑝, even though you may not realise that it does.

Exercise 5.2
Translate the following sentences into the language of epistemic logic, ignoring my
warnings about the mismatch between K and the ordinary concept of knowledge.
(a) Alice knows that it is either raining or snowing.
(b) Either Alice knows that it is raining or that it is snowing.
(c) Alice knows whether it is raining.
(d) You know that you’re guilty if you don’t know that you’re innocent.

5.2 The logic of knowledge

What is the logic of (implicit) knowledge? Which sentences in the language of epistemic
logic are valid? Which are logical consequences of which others?

The basic system K is arguably too weak. There are Kripke models in which □𝑝 is
true at some world while 𝑝 is false. But knowledge entails truth. If 𝑝 is genuinely known
(or entailed by what is known) then 𝑝 is true. In the logic of knowledge, all instance of
the (T)-schema are valid.

(T) K 𝐴 → 𝐴
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We know from section 3.4 that the (T)-schema corresponds to reflexivity, in the sense
that all instances of the schema are valid on a frame iff the frame is reflexive. To ensure
that all (T) instances are valid, we will therefore assume that Kripke models for epistemic
logic are always reflexive. Every world is accessible from itself.

This makes sense if you remember what accessibility means in epistemic logic. We
said that a world 𝑣 is (epistemically) accessible from a world 𝑤 if 𝑣 is compatible with
what the agent knows at 𝑤. Whatever the agent knows at 𝑤 must be true at 𝑤. So any
world in any conceivable scenario must be accessible from itself.

Let’s look at other properties of the epistemic accessibility relation. Is the relation
symmetric? If 𝑣 is compatible with what is known at 𝑤, is 𝑤 compatible with what is
known at 𝑣? I will give two arguments for a negative answer.

My first argument assumes that we have non-trivial knowledge about the external
world. Let’s say we know that we have hands. Now consider a possible world in which
we are brains in a vat, falsely believing that we have hands. In that world, we know very
little. We don’t know that we have hands, nor that we are handless brains in a vat. Per-
haps we know that we are conscious, and what kinds of experiences we have. But since
our experiences are the same in the vat world and in the actual world (let’s assume), the
actual world is compatible with what little we know in the vat world. So the actual world
is accessible from the vat world. But the vat world is not accessible from the actual world
– otherwise we wouldn’t know that we have hands. If the actual world is accessible from
the vat world and the vat world is inaccessible from the actual world then the accessibility
relation isn’t symmetric.

My second argument starts with a scenario in which someone has misleading evidence
that some proposition 𝑝 is false. This is easily conceivable. In that scenario, 𝑝 is true but
the agent believes ¬𝑝. Often, when we believe something, we also believe that we know
it. Let’s assume that our agent believes that they know ¬𝑝. Let’s also assume that their
beliefs are consistent, so they don’t believe that they don’t know ¬𝑝. Since they don’t
believe this proposition (that they don’t know ¬𝑝) they don’t know it either: they don’t
know that they don’t know ¬𝑝. So we have a scenario in which 𝑝 is true but K¬K¬𝑝
false.

Can you see what this has to do with symmetry? In section 3.4 I mentioned that
symmetry corresponds to the schema

(B) 𝐴 → K M 𝐴.

This means that all instances of (B) are valid on a frame iff the frame is symmetric. If the
epistemic accessibility relation were symmetric, then all instances of (B) would be valid.
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But I’ve just described a scenario in which an instance of (B) is false. So the epistemic
accessibility relation isn’t symmetric.

What about transitivity, which corresponds to schema (4)?

(4) K 𝐴 → K K 𝐴

In epistemic logic, (4) is known as the KK principle, or (misleadingly) as positive intro-
spection. There is an ongoing debate over whether the principle should be considered
valid. I will review one argument for either side.

A well-known argument against the KK principle draws on the idea that knowledge
requires “safety”: you know 𝑝 only if you couldn’t easily have been wrong about 𝑝. To
motivate this idea, consider a Gettier case. Suppose you are looking at the only real
barn in a valley which, unbeknownst to you, is full of fake barns. Your belief that you’re
looking at a barn is true, and it seems to be justified. But intuitively, it isn’t knowledge.
You don’t know that what you’re looking at is a real barn. Why not? Advocates of the
safety condition suggest that you don’t have knowledge because you could easily have
been wrong. You genuinely know 𝑝 only if there is no “nearby” possibility at which 𝑝 is
false, where “nearness” is a matter of similarity in certain respects.

On the safety account, you know that you know 𝑝 only if there is no nearby world at
which you don’t know 𝑝. That is, you know at world 𝑤 that you know 𝑝 only if you know
𝑝 at all worlds 𝑣 that are relevantly similar to 𝑤. And you know 𝑝 at 𝑣 only if 𝑝 is true at
all worlds 𝑢 that are relevantly similar to 𝑣. But similarity isn’t transitive: the fact that 𝑢
is similar to 𝑣 and 𝑣 is similar to 𝑤 does not entail that 𝑢 is similar to 𝑤. So it can happen
that 𝑝 holds at all nearby worlds, but not at all worlds that are nearby a nearby world. In
that case, you may know 𝑝 without knowing that you know 𝑝.

Not everyone accepts the safety condition. Other accounts of knowledge vindicate the
KK principle. For example, some have argued that an agent knows 𝑝 (roughly) iff the
agent’s belief state indicates 𝑝, in the sense that

(1) under normal conditions, being in that state implies 𝑝, and
(2) conditions are normal.

We can formalize this concept in modal logic. Let 𝑁 mean that conditions are normal
(whatever exactly this means), and let □ be a non-epistemic operator that formalizes ‘at
all worlds’. □(𝑁 → 𝐴) then means that 𝐴 is true at all world at which conditions are
normal. According to the definition I just gave, a belief state 𝑠 indicates 𝑝 iff

(*) □(𝑁 → (𝑠 → 𝑝)) ∧ 𝑁.
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The state 𝑠 indicates that 𝑠 indicates 𝑝 iff

(**) □(𝑁 → (𝑠 → (□(𝑁 → (𝑠 → 𝑝)) ∧ 𝑁))) ∧ 𝑁.

A quick tree proof reveals that (*) entails (**). That is, whenever a state indicates 𝑝 then
it also indicates that it indicates 𝑝. On the indication account of knowledge, a belief state
that constitutes knowledge therefore automatically constitutes knowledge of knowledge:
the (4) schema is valid.

Exercise 5.3
Give an S5 tree proof to show that (*) entails (**). Why can we assume S5 here?

The (4)-schema says that people have knowledge of their knowledge. The (5)-schema
says that people have knowledge of their ignorance: if you don’t know something, then
you know that you don’t know it. This hypothesis is (misleadingly) known as negative
introspection.

(5) M 𝐴 → K M 𝐴.

We know that the (5)-schema corresponds to euclidity. This gives us a quick argument
against the schema. As you showed in exercise 3.11, reflexivity and euclidity together
entail symmetry. The epistemic accessibility relation is reflexive. If it were euclidean, it
would be symmetric. But I’ve argued that it isn’t symmetric. So the logic of knowledge
doesn’t validate (5).

We can also give a more direct argument against negative introspection. Consider
again a scenario in which someone has misleading evidence that some proposition 𝑝 is
false. Since 𝑝 is actually true, the agent doesn’t know ¬𝑝. But the agent might not know
that they don’t know ¬𝑝. (On the contrary, they might believe that they do know ¬𝑝.) In
that scenario, ¬K¬𝑝 is true but K¬K¬𝑝 is false.

Here it is important to not be misled by a curiosity of ordinary language. When we
say that someone doesn’t know 𝑝, this seems to imply that 𝑝 is true. If I told you that my
neighbour doesn’t know that I have a pet aardvark, you could reasonably infer that I have
a pet aardvark. You might therefore be tempted to regard all instances of the following
schema as valid:

(NT) ¬K 𝐴 → 𝐴
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On reflection, however, (NT) is unacceptable. If ¬K 𝐴 entails 𝐴, then by contraposition
¬𝐴 entails K 𝐴: everything that is false would be known! Indeed, if I don’t have a pet
aardvark then surely my neighbour does not know that I have one. We shall therefore
not regard the inference from ¬ K 𝐴 to 𝐴 as valid.

Exercise 5.4
Can you find a Kripke frame on which (NT) is valid?

Exercise 5.5
Let’s say that an agent is ignorant of a proposition if they don’t know the propo-
sition and the proposition is true. (In English, saying that someone doesn’t know
a proposition normally conveys that they are ignorant of the proposition, in this
sense.) Show that if the logic of knowledge is at least as strong as K, then igno-
rance of 𝐴 entails ignorance of ignorance of 𝐴.

We have looked at six schemas: (T), (B), (4), (5), and (NT). Philosophers working
in epistemic logic generally reject (B), (5), and (NT), accept (T), and are divided over
(4). Theorists in other disciplines often assume that the logic of knowledge is S5, which
would render all instances of (T), (4), (B), and (5) valid. If we drop (B) and (5) but keep
(T) and (4), we get S4. If we also drop (4), we get system T.

We might look at other schemas, corresponding to further conditions on the accessi-
bility relation. For example, some have argued that we should adopt a weakened form of
negative introspection. The above counterexample to negative introspection – schema
(5) – involved an agent who doesn’t know that they don’t know a certain proposition
because they don’t know that the proposition is false. This kind of counterexample can’t
arise if the relevant proposition is true. One might therefore suggest that if an agent
doesn’t know a proposition 𝑝 and 𝑝 is true, then the agent always knows that they don’t
know 𝑝. This would give us a schema known as 0.4:

(0.4) (¬K 𝐴 ∧ 𝐴) → K¬K 𝐴

All instances of (0.4) are S5-valid, but not all of them are S4-valid. Adding the (0.4)
schema to S4 leads to a system known as S4.4.
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Exercise 5.6
Explain why Gettier cases cast doubt on (0.4).

A more modest extension of S4 adds the schema (G), which corresponds to conver-
gence of the accessibility relation:

(G) M K 𝐴 → K M 𝐴

The resulting logic is called S4.2; it is weaker than S4.4 but stronger than S4. We will
meet an argument in favour of (G) in section 5.4.

Exercise 5.7
Use the tree method to check the following claims. (See the table at the end of
chapter 3 for the tree rules that go with B, S4, and S4.2.)
(a) |=𝑇 M K 𝑝 → K M 𝑝.
(b) |=𝐵 M K 𝑝 → K M 𝑝.
(c) |=𝑆4 M K M 𝑝 → M 𝑝.
(d) |=𝑆4 M K 𝑝 ↔ K K 𝑝.
(e) |=𝑆4 M K(𝑝 → K M 𝑝).
(f) |=𝑆4.2 (M K 𝑝 ∧ M K 𝑞) → M K(𝑝 ∧ 𝑞).

5.3 Multiple Agents

A world that is epistemically accessible for one agent may not be accessible for another.
If we want to reason about the information available to different agents, we need separate
K operators and accessibility relations for each agent.

We can easily expand the language 𝔏𝑀 to a multi-modal language by introducing a
whole series of box operators K1, K2, K3, … with their duals M1, M2, M3, …. This multi-
modal language is interpreted in multi-modal Kripke models.

Definition 5.1
A multi-modal Kripke model consists of
• a non-empty set 𝑊 ,
• a set of binary relation 𝑅1, 𝑅2, 𝑅3, … on 𝑊 , and
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• a function 𝑉 that assigns to each sentence letter a subset of 𝑊 .

In our present application, every accessibility relation 𝑅𝑖 represents what information
is available to a particular agent. A world 𝑣 is 𝑅𝑖-accessible from 𝑤 iff 𝑣 is compatible
with the information agent 𝑖 has at world 𝑤.

The definition of truth at a world in a Kripke model (definition 3.2) is easily extended
to multi-modal Kripke models. Instead of clauses (g) and (h), we have the following con-
ditions, for each pair of a modal operator (K𝑖 or M𝑖) and the corresponding accessibility
relation 𝑅𝑖:

𝑀, 𝑤 |= K𝑖 𝐴 iff 𝑀, 𝑣 |= 𝐴 for all 𝑣 in 𝑊 such that 𝑤𝑅𝑖𝑣.
𝑀, 𝑤 |= M𝑖 𝐴 iff 𝑀, 𝑣 |= 𝐴 for some 𝑣 in 𝑊 such that 𝑤𝑅𝑖𝑣.

For an application of this machinery, let’s look at the Muddy Children puzzle.

Three (intelligent) children have been playing outside. They can’t see or feel
if their own face is muddy, but they can see who of the others have mud on
their face. As they come inside, mother tells them: ‘At least one of you has
mud on their face’. She then asks, ‘Do you know if you have mud on your
face?”. All three children say that they don’t know. Mother asks again, ‘Do
you know if you have mud on your face?’. This time, two children say that
they know. How many children have mud on their face? What happens if
the mother asks her question a third time?

To answer these questions, we can begin by drawing a model. I’ll call the three children
Alice, Bob, and Carol, and I’ll use 𝑎, 𝑏, 𝑐 as sentence letters expressing, respectively,
that Alice/Bob/Carol is muddy. Before the mother’s first announcement, there are eight
relevant possibilities.
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𝑏, 𝑐

𝑏

𝑐

𝐶

𝐶

𝐵

𝐵

𝑎, 𝑏, 𝑐

𝑎, 𝑏

𝑎, 𝑐

𝑎

𝐶

𝐶𝐵

𝐵
𝐴

𝐴

𝐴

𝐴

Since we have three epistemic agents, we have three accessibility relations, one for Alice
(drawn in red), one for Bob (green), and one for Carol (blue). To remove clutter, I have
left out the (3 × 8) arrows leading from each world to itself, but we should keep in mind
that every world is also accessible from itself, for each agent.

Don’t confuse an arrow in the diagram of a model with an accessibility relation. We
have three accessibility relations, but more than three arrows. All the red arrows in the
picture represent one and the same accessibility relation. The accessibility relation for
Alice holds between a world and another whenever a red arrow leads from the first world
to the second.

Notice how the fact that every child can see the others is reflected in the diagram. For
example, at the top left world, where only Bob is muddy, Alice sees that Bob is muddy
and that Carol is clean; the only epistemic possibilities for Alice at that world are the
two worlds at the top: the 𝑏 world itself and the 𝑎, 𝑏 world to the right. In general, the
only accessible worlds for a given child at a given world 𝑤 are worlds at which the other
children’s state of muddiness is the same as at 𝑤.

What changes through the mother’s first announcement, ‘At least one of you has mud
on their face’? The announcement tells us that we’re not in the world where 𝑎, 𝑏, and 𝑐
are all false. More importantly, it allows each child to rule out the this world (since they
all hear and accept the announcement).
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𝑏, 𝑐

𝑏

𝑐

𝐶

𝐵

𝑎, 𝑏, 𝑐

𝑎, 𝑏

𝑎, 𝑐

𝑎

𝐶

𝐶𝐵

𝐵
𝐴

𝐴

𝐴

Next, the mother asks if anyone knows whether they are muddy. No child says yes.
So no-one knows whether they are muddy. And everyone now knows that no-one knows
whether they are muddy. We can go through the above seven possibilities to see if at any
of them, anyone knows whether they are muddy. At the top left world Alice doesn’t know
whether she is muddy, because the 𝑎, 𝑏 world (top right) is 𝐴-accessible; nor does Carol
know whether she is muddy, because the 𝑏, 𝑐 world is 𝐶-accessible. But Bob knows
that he is muddy: no other world is 𝐵-accessible. Intuitively, at the 𝑏 world, Bob sees
two clean children (Alice and Carol), and he has just been told that not all children are
clean. So he can infer that he is muddy. But we know that Bob didn’t say that he knows
whether he is muddy. So we (and all the children) can rule out the top left world as an
open possibility.

By the same reasoning, every world connected with only two arrows to other worlds
can be eliminated at this stage.
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𝑏, 𝑐

𝑏

𝑐

𝑎, 𝑏, 𝑐

𝑎, 𝑏

𝑎, 𝑐

𝑎

𝐶

𝐵

𝐴

When the mother asks again if anyone knows whether they are muddy, two children
say ‘yes’. So everyone comes to know that two children know whether they are muddy.
In the middle world of the above model (𝑎, 𝑏, 𝑐), however, no child knows whether they
are muddy. That world is not actual, and it is no longer accessible for anyone. The
remaining open possibilities are the 𝑏, 𝑐 world, the 𝑎, 𝑐 world, and the 𝑎, 𝑏 world, each of
which is only accessible from itself.

Now we can answer the questions. In the three remaining worlds, every child knows
who is muddy and who is clean. If the mother asks her question for the third time,
everyone says yes. Also, exactly two children have mud on their face.

Exercise 5.8
Albert and Bernard just met Cheryl. ‘When is your birthday?’, Albert asks. Cheryl
answers, ‘I’ll give you some clues’. She writes down a list of 10 dates:

5 May, 6 May, 9 May
7 June, 8 June
4 July, 6 July
4 August, 5 August, 7 August

‘My birthday is one of these’, she says. Then she announces that she will whisper
the month of her birthday in Albert’s ear and the day in Bernard’s. After the
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whispering, she asks Albert if he knows her birthday. Albert says, ‘no, but I know
that Bernard doesn’t know either’. To which Bernard responds: ‘Right. I didn’t
know until now, but now I know’. Albert: ‘Now I know too!’ Draw a multi-modal
Kripke model for each stage of the conversation. When is Cheryl’s birthday?

What logic do we have for our multi-modal language? Each pair of a K𝑖 and M𝑖
operator should obey whatever conditions we want to impose on the logic of knowledge.
Are there also new principles governing the interaction between operators for different
agents?

We plausibly want all instances of the following to come out valid:

K1 K2 𝐴 → K1 𝐴.

If I know that you know that it’s raining, then I (implicitly) also know that it’s raining.
Schemas like this, with multiple modal operators that are not definable in terms of each
other, are called interaction principles.

A common assumption in epistemic logic is that there are no genuinely new interaction
principles for the knowledge of multiple agents – no principles that don’t already follow
from the logic of individual knowledge. The above principle, for example, is entailed by
the assumption that the (T)-schema holds for K2. Think of the relevant Kripke models.
Suppose, as K1 K2 𝐴 asserts, that 𝐴 holds at each world that is 𝑅2-accessible from any
𝑅1-accessible world. If the (T)-schema holds for K2, then every world is 𝑅2-accessible
from itself. In particular, then, any 𝑅1-accessible world is 𝑅2-accessible from itself. It
follows that 𝐴 holds at every 𝑅1-accessible world. So K1 𝐴 is true.

We can use the tree rules to streamline arguments like this. When multiple agents
are in play, we need to keep track of which world is accessible for which agent. When
expanding a node of type M𝑖 𝐴 (𝑤), for example, we add a node 𝑤𝑅𝑖𝑣, with subscript 𝑖,
and another node 𝐴 (𝑣).

Here is a tree proof of the schema K1 K2 𝐴 → K1 𝐴, assuming that 𝑅2 is reflexive.

98



5 Epistemic Logic

1. ¬(K1 K2 𝐴 → K1 𝐴) (𝑤) (Ass.)
2. K1 K2 𝐴 (𝑤) (1)
3. ¬ K1 𝐴 (𝑤) (1)
4. 𝑤𝑅1𝑣 (3)
5. ¬𝐴 (𝑣) (3)
6. K2 𝐴 (𝑣) (2,4)
7. 𝑣𝑅2𝑣 (Refl.)
8. 𝐴

x
(𝑣) (6,7)

Exercise 5.9
Use the tree method to check which of the following interaction principles are
valid if the logic of individual knowledge is S4. If a principle is invalid, give a
counterexample.
(a) M1 K2 𝑝 → M1 𝑝
(b) M1 K2 𝑝 → M2 M1 𝑝
(c) M1 K2 𝑝 → M2 K1 𝑝
(d) K1 K2 𝑝 → K2 K1 𝑝

We can also define new modal operators for groups of agents. A proposition is said to
be mutually known in a group 𝐺 if it is known by every member of the group. Let E𝐺 be
an operator for mutual knowledge. Clearly, E𝐺 𝐴 can be defined as K1 𝐴∧K2 𝐴∧…∧K𝑛 𝐴,
where K1, K2, … , K𝑛 are the knowledge operators for the members of the group. So
we can’t say anything new with the help of E𝐺 (at least for finite groups). But it can
be instructive to see how E𝐺 behaves depending on the behaviour of the underlying
operators K1, K2, etc. For example, if each individual knowledge operator validates the
(T)-schema, then so does E𝐺; but if each K𝑖 validates (4), it does not follow that E𝐺
validates (4). For a counterexample, consider a group of two agents; both know 𝑝, and
both know of themselves that they know 𝑝, but agent 1 does not know that agent 2 knows
𝑝. Then E𝐺 𝑝 but ¬ E𝐺 E𝐺 𝑝.

Exercise 5.10
Give an example to show that if each K𝑖 validates (5), it does not follow that E𝐺
validates (5).
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A more interesting concept that has proved useful in many areas is that of common
knowledge. A proposition is commonly known in a group if everyone knows it, everyone
knows that everyone knows it, everyone knows that everyone knows that everyone knows
it, and so on forever. Let’s use C𝐺 as an operator for common knowledge. C𝐺 is not
definable in terms of K1, … , K𝑛. Still, we can define it semantically in terms of the
accessibility relations for the individual agents: C𝐺 𝐴 is true at a world 𝑤 iff 𝐴 is true
at all worlds that are reachable from 𝑤 by some finite sequence of steps following the
agents’ accessibility relations.

It is easy to see that common knowledge validates (all instances of) (4). It validates
(T) whenever individual knowledge validates (T). So the logic of common knowledge
is at least S4. The complete logic of common knowledge also contain some non-trivial
interaction principles, which are easiest to state in terms of E𝐺:

C𝐺 𝐴 ↔ (𝐴 ∧ E𝐺 C𝐺 𝐴)(CK1)
(𝐴 ∧ C𝐺(𝐴 → E𝐺 𝐴)) → C𝐺 𝐴(CK2)

You may want to confirm that these are valid. (They also provide a complete axiom-
atization of common knowledge when added to an axiomatic calculus for individual
knowledge, but that is much harder to see.)

5.4 Knowledge, belief, and other modalities

Issues in the logic of knowledge can sometimes be clarified by looking at the connections
between knowledge and belief. To formalise these connections, let’s introduce a new
operator B for belief – or rather, for implicit belief, since B, like K, will be closed under
logical consequence.

An agent’s belief state represents the world as being a certain way. For every possible
world, we can ask whether it matches what the agent believes. If, for example, your only
non-trivial belief is that there are seventeen types of parrot, then every world in which
there are seventeen types of parrot matches your beliefs. Every such world is doxastically
accessible for you. As you acquire further beliefs, the space of doxastically accessible
worlds becomes smaller and smaller.

We interpret B 𝑝 as saying that 𝑝 is true at all doxastically accessible worlds (for the
agent we have in mind). Since we won’t spend a lot of time with this operator, we will
simply write its dual as ¬ B ¬.

The logic of B is different from the logic of K, if only because beliefs can be false. So
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we will not regard all instances of

(T) B 𝐴 → 𝐴

as valid. We may, however, accept the weaker schema

(D) B 𝐴 → ¬ B ¬𝐴.

This reflects the assumption that a belief state that represents the world as being a certain
way 𝐴 can’t also represent the world as being the opposite way ¬𝐴.

In the previous section, I argued that (implicit) knowledge does not validate the neg-
ative introspection principle (5), and I reviewed an argument against the positive intro-
spection principle (4). Neither argument carries over to belief. Many epistemic logicians
accept positive and negative introspection for (implicit) belief:

B 𝐴 → B B 𝐴(4)
¬ B 𝐴 → B ¬ B 𝐴(5)

The logic that results by adding the schemas (D), (4), and (5) to the axiomatic basis
for K is known as KD45.

Exercise 5.11
Is a transitive, serial, and euclidean relation always symmetric? If yes, explain
why. If no, give a counterexample. What does your result mean for schema (B) in
KD45?

Exercise 5.12
Show (in any way you like) that B(B 𝐴 → 𝐴) is valid if the logic of belief is KD45.

If we want to model the connection between knowledge and belief, we need a multi-
modal language with both the K operator and the B operator. Models for this language
will have two accessibility relations 𝑅𝑒 and 𝑅𝑑 . The first represents epistemic accessi-
bility and is used for the interpretation of K, the second represents doxastic accessibility
and is used to interpret B.

The power of combined logics for (implicit) knowledge and belief lies in the interac-
tion principles that might link the two concepts. Here is a list of popular principles that
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don’t follow from the individual logics of knowledge and belief.

K 𝐴 → B 𝐴(KB)
B 𝐴 → K B 𝐴(PI)
¬ B 𝐴 → K ¬ B 𝐴(NI)
B 𝐴 → B K 𝐴(SB)

(KB) assumes that knowledge implies belief. (PI) and (NI) strengthen the introspec-
tion principles for belief. They assume that a state of belief or disbelief is always known
to the agent. (SB) assumes that if an agent believes something then they also believe that
they know it. This is sometimes said to reflect a conception of “strong belief”, on which
belief is incompatible with doubt. If you believe 𝑝 in the sense that you have no doubt
that 𝑝, then you plausibly believe that you know 𝑝.

These interaction principles, together with the (D)-schema for belief, imply that an
agent believes a proposition just in case they don’t know that they don’t know it:

(BMK) B 𝐴 ↔ M K 𝐴

Somewhat surprisingly, then, we could define belief in terms of knowledge.
Here is how we can get from B 𝐴 to M K 𝐴.

1. Suppose B 𝐴.
2. By (SB), it follows that B K 𝐴.
3. By (D), it follows that ¬B¬K 𝐴.
4. By (KB), it follows that ¬K¬K 𝐴, and so that M K 𝐴.

To show that M K 𝐴 entails B 𝐴, I’ll show that ¬B 𝐴 entails ¬M K 𝐴.

1. By (KB), ¬B 𝐴 → ¬K 𝐴 is a logical truth.
2. Since logical truths are true at every world, we have K(¬B 𝐴 → ¬K 𝐴).
3. By the (K)-schema, it follows that K¬B 𝐴 → K¬K 𝐴.
4. Now suppose ¬B 𝐴.
5. By (NI), it follows that K¬B 𝐴.
6. By 3 above, it follows that K¬K 𝐴, which is equivalent to ¬M K 𝐴.

Given the equivalence between B 𝐴 and M K 𝐴, the (D)-schema for belief

B 𝐴 → ¬B¬𝐴
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is equivalent to

M K 𝐴 → ¬M K¬𝐴

which in turn is equivalent to

M K 𝐴 → K M 𝐴.

This is the (G)-schema for knowledge. So if we accept the above interaction principles,
and principle (D) for belief, then the logic of knowledge must validate (G).

(In fact, we don’t need to assume that the interaction principles and (D) hold for our or-
dinary concept of belief. As long as one can coherently define a concept B that validates
these principles we can derive the (G)-schema for K.)

Exercise 5.13
Show that the interaction principles entail principles (4) and (5) for belief:
B 𝐴 → B B 𝐴 and ¬B¬𝐴 → B¬B¬𝐴.

Exercise 5.14
Suppose the logic of knowledge validates (5), the logic of belief validates (D),
and we have the interaction principles (KB) and (SB). Show that knowledge is
then equivalent to belief: 𝐾𝐴 ↔ 𝐵𝐴 comes out as valid. (Another reason to think
that (5) is not valid in the logic of knowledge.)

Exercise 5.15
There seems to be no natural expression in English for the dual of belief. A com-
mon way to express that someone does not believe not 𝑝 is to say that they believe
that it might be that 𝑝, which has the surface form □♢𝑝. Can you explain why this
might be an adequate way of expressing ♢𝑝?

It can also be instructive to combine epistemic with non-epistemic operators. Phi-
losophers have often been interested not just in what we do know, but also in what we
can know. Various skeptical arguments, for example, suggest that we cannot know that
we have hands. For another example, the “verificationist” movement in the early 20th
century assumed that a sentence is meaningful only if its truth-value can in principle
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be settled by mathematical proof or empirical investigation. This would imply that a
sentence is meaningful only if it is possible to know that it is true.

We can formalize claims like these in a multi-modal language with a knowledge op-
erator K and a diamond ♢ for the relevant kind of circumstantial possibility. The veri-
ficationist hypothesis that every truth is in principle knowable is then expressed by the
following interaction principle:

(Knowability) 𝐴 →♢K 𝐴

The principle is refuted by the following argument, due to Alonzo Church.

1. Let 𝑝 be any unknown truth. (Nobody thinks all truths are actually known.)
2. So we have 𝑝 ∧ ¬K 𝑝.
3. In any logic that extends the minimal system K, K(𝑝 ∧ ¬K 𝑝) entails K 𝑝 ∧ K¬K 𝑝.
4. By the (T)-schema for knowledge, K¬K 𝑝 entails ¬K 𝑝.
5. So K(𝑝 ∧ ¬K 𝑝) entails both K 𝑝 and ¬K 𝑝.
6. So the hypothesis K(𝑝 ∧ ¬K 𝑝) is inconsistent.
7. So ¬♢K(𝑝 ∧ ¬K 𝑝).
8. Lines 2 and 7 together provide a counterexample to the Knowability principle.

Exercise 5.16
Show that if the logic of belief is at least KD4, then there are unbelievable truths:
truths of which it is impossible that anyone believes them. (You can assume that
there are truths which no-one in fact believes.)
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6.1 Permission and obligation

Deontic logic studies formal properties of obligation, permission, prohibition, and re-
lated normative concepts. The box in deontic logic is usually written ‘O’ (for ‘obliga-
tion’ or ‘ought’), the diamond ‘P’ (for ‘permission’). If we read 𝑞 as stating that you
cook dinner, we might use O 𝑞 to express that you are obligated to cook dinner.

We assume that obligation and permission are duals. You are not obligated to cook
dinner iff you are permitted to not cook dinner; you are not permitted to cook dinner iff
you are obligated to not cook dinner.

There are many kinds of norms: legal norms, moral norms, prudential norms, social
norms, and so on. There may also be overarching norms that combine some or all of the
others. Deontic logic is applicable to norms of all kinds. We do not have to settle whether
O expresses legal obligation or moral obligation or some other kind of obligation. It is
important, however, that we don’t equivocate. If the law requires 𝑞 and morality ¬𝑞, we
should not formalize this as O 𝑞∧O¬𝑞. It would be better to use a multi-modal language
with different operators for legal and moral obligation.

Obligations and permissions often vary from agent to agent. If it is your turn to cook
dinner then you are obligated to cook dinner, but I am not. To capture this agent-relativity,
we could add agent subscripts to the operators, as we did in epistemic logic. We could
then express our different obligations as O1𝑞 ∧ ¬O2𝑞. But what does the sentence letter
𝑞 stand for? When I say that you are obligated to cook dinner, the object of the obligation
appears to be a type of act: cooking dinner. In the language of modal propositional logic,
O and P are sentence operators. Unless we want to say that verb phrases in English (like
‘cook dinner’) should be translated into sentences of 𝔏𝑀 – which is possible, but non-
standard – we have to transform the acts that appear to be the objects of obligation and
permission into propositions.

Consider sentence (1), which is arguably equivalent to (2).

(1) You ought to cook dinner.
(2) You ought to see to it that you cook dinner.
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In (2), the operator ‘you ought to see to it that’ attaches to a sentence, ‘you cook dinner’.
So we can translate (1) via (2) as O1𝑞, where 𝑞 translates ‘you cook dinner’, and O1
corresponds to ‘you ought to see to it that’.

The subject (you) is mentioned twice in (2). A common assumption in deontic logic
is that we can drop the agent subscripts from deontic operators, since the embedded
proposition will tell us upon whom the obligation or permission falls. Informally, the
idea is that (2) is equivalent to (3), with an impersonal ‘ought’.

(3) It ought to be the case that you cook dinner.
The impersonal ‘ought’ also figures in statements like (4).

(4) Nobody ought to die of hunger.
When I say (4), I don’t mean that nobody is obligated to die of hunger. Nor do I mean
that everybody is obligated to not die of hunger. Rather, I mean that a certain state of
affairs – that nobody dies of hunger – ought to be the case. Without further assumptions,
this does not impose any obligations on anyone.

There are reasons to question the equivalence between agent-relative ‘ought’ state-
ments like (2) and impersonal ‘ought’ statements like (3). Suppose Amy has promised
to play with Betty. Then Amy is obligated to play with Betty. But Betty is not thereby
obligated to play with Amy. Betty may even have promised not to play with Amy. It is
hard to express these facts in terms of impersonal oughts. If we say that it ought to be the
case that Amy plays with Betty, we’re missing the fact that the obligation falls on Amy,
not on Betty (who might be under a contrary obligation). So perhaps it would be better
to keep the agent subscripts after all.

It can also be useful to make the ‘see to it that’ component in statements like (2)
explicit. That Amy ought to play with Betty could then be translated as O𝑎 STIT 𝑝, where
STIT formalizes ‘sees to it that’. This allows us to distinguish between the following three
possibilities.

O𝑎 STIT ¬𝑝 Amy ought to see to it that she doesn’t play with Betty.
O𝑎 ¬ STIT 𝑝 Amy ought to not see to it that she plays with Betty.
¬ O𝑎 STIT 𝑝 It is not the case that Amy ought to see to it that she plays with

Betty.

The STIT operator has proved useful to represent different concepts of rights and du-
ties. In what follows, we will nonetheless stick to the simplest (and oldest) approach,
without a STIT operator and without agent subscripts. This approach is sufficient for
many applications, but its limitations should be kept in mind.
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Exercise 6.1
Translate the following sentences into the standard language of deontic logic (with-
out STIT or agent subscripts).
(a) You must not go into the garden.
(b) You may not go into the garden.
(c) Jones ought to help his neighbours.
(d) If Jones is going to help his neighbours, then he ought to tell them he’s com-

ing.
(e) If Jones isn’t going to help his neighbours, then he ought to not tell them he’s

coming.

6.2 Standard deontic logic

Think of a possible world as a history of events. For any such history, and any system of
norms, we can ask whether the history conforms to the norms. Let’s call a world ideal
(relative to some norms) if everything that happens at the world conforms to the norms.
In an ideal world, everyone does what they ought to do.

How do the ideal worlds relate to permission and obligation? For a start, everything
that happens at an ideal world is plausibly permitted, for we know that it conforms to
the norms. The converse is plausible as well: whenever something is permitted then it
happens at some ideal world. For suppose something doesn’t happen at any ideal world.
Then the event entails the violation of some norm: it is incompatible with the satisfaction
of all norms. And then it can’t be permitted.

We have a simple possible-worlds analysis of permission:

𝐴 is permitted (relative to some norms) iff 𝐴 is the case at some world that
is ideal (relative to these norms).

Given the duality of permission and obligation, we also have a possible-worlds analysis
of obligation:

𝐴 is obligatory (relative to some norms) iff 𝐴 is the case at all worlds that
are ideal (relative to these norms).

These analyses resemble the simple possible-worlds analysis from chapter 2, where
we assumed that 𝐴 is possible iff it is the case at some world, and necessary iff it is the
case at all worlds. The difference is that we now quantify only over ideal worlds.
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We can capture this restriction with the help of Kripke models. In Kripke semantics,
♢𝐴 is true at a world 𝑤 iff 𝐴 is true at some world that is accessible from 𝑤. Let’s assume
that a world is accessible, from any world, iff it is ideal. Then Kripke semantics implies
that ♢𝐴 is true at 𝑤 iff 𝐴 is true at some ideal world. That’s what we want.

The accessibility relation I’ve just defined is a little unusual: whether it holds between
𝑤 and 𝑣 does not at all depend on 𝑤. We have

𝑤𝑅𝑣 iff 𝑣 is ideal.

But that’s OK. The definition of a Kripke model allows for such degenerate relations.
Let’s investigate the formal properties of our degenerate accessibility relation. Is it,

say, reflexive? Transitive? Symmetric? Euclidean?
Transitivity says that if 𝑤𝑅𝑣 and 𝑣𝑅𝑢 then 𝑤𝑅𝑢. Now 𝑤𝑅𝑣 means that 𝑣 is ideal. And

𝑣𝑅𝑢 means that 𝑢 is ideal. 𝑤𝑅𝑢 also means that 𝑢 is ideal. So transitivity requires that if 𝑣
is ideal and 𝑢 is ideal then 𝑢 is ideal. That’s obviously true. So our accessibility relation
is transitive. The same reasoning shows that it is euclidean. Our possible-worlds analysis
therefore validates the (intuitively somewhat elusive) schemas (4) and (5).

O 𝐴 → O O 𝐴(4)
P 𝐴 → O P 𝐴(5)

What about reflexivity? The hypothesis that every world has access to itself would
mean that every world is ideal. When we reason about permission and obligation, we
normally don’t take for granted that everyone does what they ought to do. We allow for
the logical possibility that norms can be violated. So we don’t assume that every world
is ideal. Equivalently, we don’t regard the (T)-schema

(T) O 𝐴 → 𝐴

as valid.

Exercise 6.2
Is the accessibility relation (as defined above) symmetric?

We might, however, impose the weaker condition of seriality. This would validate the
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(D)-schema

(D) O 𝐴 → P 𝐴

. Intuitively, (D) says that the norms are consistent: if you’re obligated to do 𝐴, then you
are not obligated to do not-𝐴. (Remember that P 𝐴 is equivalent to ¬O¬𝐴.) Semantically,
(D) corresponds to the assumption that there is at least one world at which all the norms
are satisfied. If there were no such world, all sentences of the form O 𝐴 would come
out true, and all sentences of the form P 𝐴 false. Everything would be obligatory, but
nothing allowed. It is hard to make sense of such a scenario. If we use Kripke semantics
for deontic logic, we should therefore rule out inconsistent norms and accept (D) as valid.

Here it may be important to distinguish prima facie obligations from actual, or all-
things-considered obligations. If you’ve promised to cook dinner, you are under a prima
facie obligation to cook dinner. But the obligation can be overridden by intervening
circumstances or contrary obligations. If your child has an accident and needs urgent
medical care, the right thing to do may well be to not cook dinner and instead bring your
child to the hospital. In a sense, you are under conflicting obligations: you ought to cook
dinner, and you ought to look after your child (and not cook dinner). There is no world
at which you meet both of these obligations. This is not a counterexample to (D), if we
understand O as all-things-considered obligation. You are prima facie obligated to cook
dinner, but all things considered, you should not cook dinner.

Another weakening of reflexivity is “shift reflexivity”. 𝑅 is shift reflexive if 𝑤𝑅𝑣 im-
plies 𝑣𝑅𝑣: every world that can be seen can see itself. Shift reflexivity corresponds to
the following schema (U) (for “utopia”)

(U) O(O 𝐴 → 𝐴)

In words: it ought to be the case that whatever ought to be the case is the case. Shift
reflexivity is entailed by euclidity, so our logic validates (U).

Exercise 6.3
Explain why euclidity entails shift reflexivity.

We could look at further properties of the accessibility relation, but we wouldn’t find
any plausible candidates that are not entailed by seriality, transitivity, and euclidity. The
complete logic of obligation and permission, assuming the above possible-worlds analy-
sis, is plausibly KD45.
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We might, however, reconsider our analysis. We’ve assumed that there is a fixed set
of norms that divides the worlds into “ideal” ones, where all the norms are respected,
and “non-ideal” ones, where some norms are violated. We might call this an absolutist
conception of norms. A relativist conception, by contrast, would allow that the norms
may vary from world to world.

Suppose, for example, that we want to reason about what is required by the traffic laws.
The traffic laws evidently vary from world to world. Consider a world at which cyclists
are required to wear top hats. Norman is cycling in this world, without a top hat. Is he
violating the traffic laws? He is violating the laws of his world, but not the laws of our
world. On an absolutist approach, we interpret O and P as always referring to the laws of
our world, no matter what world is under consideration: O 𝑝 is true at 𝑤 iff 𝑝 is required
by the laws of our world. On a relativist approach, we instead assume that O 𝑝 is true at
𝑤 iff 𝑝 is required by the laws at 𝑤.

On the relativist approach, a world 𝑣 is accessible from a world 𝑣 iff everything that
happens at 𝑣 conforms to the (relevant) norms at 𝑤.

Transitivity and euclidity now become implausible. Let 𝑤 be a world in which the only
relevant norm is that one must drive on the left. Let 𝑣 be a world in which everyone drives
on the left, but the law allows driving on either side. Let 𝑢 be a world in which some
people drive on the right. 𝑣 is accessible from 𝑤 and 𝑢 from 𝑣, but 𝑢 is not accessible
from 𝑤. We don’t have transitivity.

Exercise 6.4
Show that the deontic accessibility relation is neither euclidean nor shift-reflexive,
on the relativist approach.

As before, we probably don’t want to assume reflexivity, but we might want to assume
seriality, which now means that there is no world at which the norms make inconsistent
demands.

The relativist conception seems to be more common in deontic logic. So-called stan-
dard deontic logic assumes only that the accessibility relation is serial, making the sys-
tem D the complete logic of obligation and permission.

The absolutist logic KD45 and the relativist logic D can be shown to disagree only
about sentences in which a deontic operator occurs in the scope of another deontic oper-
ator. Any sentence that does not contain an O or P operator embedded under another O
or P operator is D-valid iff it is KD45-valid.
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Exercise 6.5
Use the tree method to check which of the following sentences are D-valid and
which are KD45-valid.
(a) P(𝑝 ∨ 𝑞) → (P 𝑝 ∧ P 𝑞)
(b) O P 𝑝 → P 𝑝
(c) ¬ P(𝑝 ∨ 𝑞) → (P ¬𝑝 ∨ P ¬𝑞)
(d) O P 𝑝 ∨ P O 𝑝

Exercise 6.6
Consider a world in which there are no sentient beings, and nothing else that could
introduce norms or laws. Since there are no norms at this world, one might hold
that nothing is obligatory relative to the world’s norms, and nothing is permitted.
Explain why this casts doubt on the validity of (Dual1) and (Dual2) in the logic of
relativist obligation and permission.

Exercise 6.7
A system of norms is intolerant if it requires of itself that it is in force and does not
allow any other norms. That is, if the norms at 𝑤 are intolerant, then only worlds
with the same norms conform to these norms. Show that the relativist logic of
intolerant norms validates (4) and (5).

6.3 Norms and circumstances

We have assumed that something ought to be the case iff it is the case at all worlds where
no (relevant) norms are violated. On closer inspection, many ordinary statements about
oughts and obligations do not fit this analysis.

Suppose you are walking past a drowning baby. You ought to rescue the baby. But
are you rescuing the baby at every world at which no norms are violated? Clearly not.
There are worlds at which the baby never fell into the pond, and others at which you
are overseas and have no means to rescue the baby. These worlds need not involve any
violations of norms.

The example shows that even on an absolutist approach, obligations and permissions
can vary from world to world. In worlds where you are passing by a drowning baby, you
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are obliged to save it. In other worlds, you are not. The relevant (moral) norms may well
be the same in either case. What varies are your circumstances.

In general, what is required or permitted usually depends not just on the norms, but
also on the circumstances – for example, on what you are able to do, and on what conse-
quences the available options would have.

We can account for this dependence on the circumstances by changing our interpre-
tation of the accessibility relation. Previously, we assumed that a world 𝑣 is accessible
from 𝑤 iff all the norms (or all the norms at 𝑤) are respected at 𝑣. Let’s add another con-
dition: relevant circumstances at 𝑤 must also obtain at 𝑣. For example, if 𝑤 is a world at
which you come across a drowning baby then any accessible world must also be a world
at which you come across a drowning baby. In all ideal worlds among these, you rescue
the baby.

Here is the redefined accessibility relation, in terms of which we might try to analyse
O and P:

A world 𝑣 is deontically accessible from a world 𝑤 iff (a) 𝑣 is circumstantially
accessible from 𝑤, and (b) no norms (at 𝑤) are violated at 𝑣.

The parenthetical ’(at 𝑤)’ must be included on a relativist approach, but not on an abso-
lutist approach.

We might want to say more about the circumstantial accessibility relation in clause
(a). Recall that a world 𝑣 is circumstantially accessible from 𝑤 if relevant circumstances
that obtain in 𝑤 also obtain in 𝑣. Often, the “relevant circumstances” that we seem to
hold fixed when we reason about norms comprise everything that is settled, in the sense
of section 1.5 – everything that can no longer be changed. If the baby has fallen into
the pond at 𝑤, then there is nothing anyone can do to undo the falling; the falling is
a “relevant circumstance” that takes place at every world accessible from 𝑤. Arguably,
however, there are cases in which we treat worlds as accessible that aren’t open. ‘Jones
ought to be here’, for example, can be true even if it’s settled that Jones is somewhere
else. Perhaps the circumstantial accessibility relation that figures in clause (a) varies
with conversational context.

With the new definition of deontic accessibility, O 𝐴 says that among the circumstan-
tially accessible worlds, all ideal worlds are 𝐴-worlds. We could make this more explicit.
Let ‘N’ be a propositional constant whose intended meaning is that all norms are satis-
fied. We can then use □(N → 𝐴) to express that 𝐴 is required, where the box expresses
the relevant kind of circumstantial necessity. This approach to formalizing obligation
statements goes back to Leibniz.
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Exercise 6.8
How could we define P in terms of □ and N, so that P is the dual of O?

Exercise 6.9
Show that the Leibnizian approach renders the (U)-schema valid, assuming that
the circumstantial accessibility is reflexive. You have to first translate the schema
into the Leibnizian language.

Whichever language we use to express it, our revised concept of obligation has a seri-
ous problem. It assumes that the circumstantially accessible worlds include ideal worlds,
at which no norms are violated. For suppose there are no such worlds. Then no world
is deontically accessible! We would have to say that everything is required and nothing
permitted (because all instances of O 𝐴 are true and all instances of P 𝐴 false at worlds
that can’t access anything).

Now remember that we don’t assume that all worlds are ideal. If a world is not ideal,
then it is hard to see why the worlds that are circumstantially accessible from it should
always include ideal worlds. Couldn’t the “relevant circumstances” that are held fixed
include some norm violations?

The problem is brought ought by Arthur Prior’s Samaritan Paradox. Suppose some-
one (Smith) has been injured in a robbery, and Jones has the opportunity to help. We
want to say that Jones ought to help the victim: he helps the victim at all deontically
accessible worlds. But then the robbery must have taken place at all these worlds. (In a
world without a robbery, there is no victim to help.) Here, the circumstantially accessi-
ble worlds all contain a violation of norms. In a truly ideal world, nobody would have
been robbed and nobody would be in need of help.

We need to adjust our revised definition of deontic accessibility. How could we do
that?

In the Samaritan Paradox, the robbery is settled; it has happened at all worlds that are
compatible with the “relevant circumstances”. None of these worlds are ideal. Crucially,
however, worlds at which Jones doesn’t help the victim are even worse, in terms of norm
violations, than worlds at which he helps the victim. Both kinds of worlds are non-ideal,
because the victim got robbed. But our norms don’t just divide the possible worlds into
ideal and non-ideal; they allow for finer distinctions among non-ideal worlds. Jones
ought to help the victim because that’s what he does in the best worlds among those he
can bring about.
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These considerations suggest that we should redefine deontic accessibility as follows,
to properly account for the dependence of obligations and permissions on circumstances.

A world 𝑣 is deontically accessible from a world 𝑤 iff 𝑣 is among the best
worlds (by the norms at 𝑤) among those that are circumstantially accessible
from 𝑤.

As before, the parenthetical ‘(by the norms at 𝑤)’ would be needed in a relativist account
and not in an absolutist account.

It can be useful to factor out the circumstantial and deontic components that enter into
the new definition. I don’t mean to separate them in the formal language, as in Leibniz’s
proposal. Rather, I mean to separate them in the definition of a model.

Let’s define a new type of model. Instead of a deontic accessibility relation, we have
two ingredients besides the worlds 𝑊 and the interpretation function 𝑉 . One is a circum-
stantial accessibility relation. The other is a world-relative “order” that tells us which
worlds are better than others, relative to the norms at any given world (which may be the
norms at every world, on an absolutist approach).

Let ‘𝑢 ≺𝑤 𝑣’ mean that world 𝑢 is better than world 𝑣 relative to the norms at 𝑤. The
symbol ‘≺’ hints at the idea that 𝑢 contains fewer violations of norms than 𝑣. We assume
that for any world 𝑤, the relation ≺𝑤 is transitive. We also assume that it is asymmetric,
meaning that if 𝑢 ≺𝑤 𝑣 then it is not the case that 𝑣 ≺𝑤 𝑢. Asymmetric and transitive
relations are known as strict partial orders.

Definition 6.1
A deontic ordering model consists of
• a non-empty set 𝑊 (the worlds),
• a binary relation 𝑅 on 𝑊 (the circumstantial accessibility relation),
• for each world 𝑤 ∈ 𝑊 , a strict partial order ≺𝑤 on 𝑊 (the world-relative ranking

of worlds as better or worse), and
• a function 𝑉 that assigns to each sentence letter of 𝔏𝑀 a subset of 𝑊 .

Now we need to say under what conditions a sentence of the form O 𝐴 is true at a
world in an ordering model. Informally, O 𝐴 will be true at 𝑤 iff 𝐴 is true at the best
worlds among those that are circumstantially accessible. Let’s introduce one more piece
of notation. For any set 𝑆 and any partial order ≺, let Min≺(𝑆) be the set of ≺-minimal

114



6 Deontic Logic

members of 𝑆:

Min≺(𝑆) =def {𝑣 ∶ 𝑣 ∈ 𝑆 ∧ ¬∃𝑢(𝑢 ∈ 𝑆 ∧ 𝑢 ≺ 𝑣)}.

An expression of the form ‘{𝑥 ∶ … 𝑥 …}’ denotes the set of all things 𝑥 that satisfy the
condition … 𝑥 …. So 𝑀𝑖𝑛<(𝑆) is the set of all things 𝑣 that are members of 𝑆 and for
which there are no members 𝑢 of 𝑆 for which 𝑢 ≺ 𝑣.

Here, then, are the truth-conditions for O 𝐴 and P 𝐴 in deontic ordering models:

Definition 6.2: Ordering semantics
If 𝑀 is a deontic ordering model and 𝑤 a world in 𝑀, then
𝑀, 𝑤 |= O 𝐴 iff 𝑀, 𝑣 |= 𝐴 for all 𝑣 ∈ Min≺𝑤({𝑢 ∶ 𝑤𝑅𝑢})
𝑀, 𝑤 |= P 𝐴 iff 𝑀, 𝑣 |= 𝐴 for some 𝑣 ∈ Min≺𝑤({𝑢 ∶ 𝑤𝑅𝑢})

This is just a formal way of saying that O 𝐴 is true at 𝑤 iff 𝐴 is true at the best worlds (by
the norms at 𝑤) among the worlds that are circumstantially accessible at 𝑤.

If we want the (D)-schema to be valid, we have to assume that there is always at least
one best world among the circumstantially accessible worlds, so that Min≺𝑤({𝑢 ∶ 𝑤𝑅𝑢})
is never empty. Let’s make this assumption.

The logic of obligation and permission now depends on formal properties of the cir-
cumstantial accessibility relation 𝑅 and the deontic orderings ≺𝑤. In section 1.5, I argued
that the logic of historical necessity (of what is settled and open) is S5. This suggests
that in normal contexts, 𝑅 is an equivalence relation. If we adopt an absolutist approach,
on which the orderings ≺𝑤 are the same for every world 𝑤, we then still get KD45. If we
allow the orderings to vary from world to world, we still get D, unless we impose further
restrictions on the orderings.

Exercise 6.10
Amy ought to promise to help Betty or to help Carla. She doesn’t make either
promise. If she had promised to help Betty, she would be obligated to help Betty.
If she had promised to help Carla, she would be obligated to help Carla. So it ought
to be the case that Amy is either obligated to help Betty or obligated to help Carla.
In fact, since Amy makes neither promise, she is neither obligated to help Betty
nor to help Carla. Explain why this casts doubt on the assumption that deontic
accessibility is euclidean.
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Exercise 6.11
Suppose fatalism is true and the only world that is open (circumstantially acces-
sible) relative to any world 𝑤 is 𝑤 itself. Can you describe the resulting deontic
logic (on either an absolutist or a relativist approach)?

Ordering models prove useful when we want to formalize statements with modal op-
erators and if-clauses, like (1)–(3).

(1) If you smoke then you must smoke outside.
(2) If you miss the deadline for tax returns then you must pay a fine.
(3) If you have promised to call your parents then you must call them.

How would you translate these into our language 𝔏𝑀? You seem to face a choice between
(W) and (N).

(W) O(𝑝 → 𝑞)
(N) 𝑝 → O 𝑞

In (W), the operator O is said to have wide scope because it applies to the entire con-
ditional 𝑝 → 𝑞. In (N), the operator has narrow scope because it only applies to the
consequent 𝑞.

On reflection, neither translation is satisfactory. Starting with (N), note that 𝑝 → O 𝑞
and ¬ O 𝑞 together entail ¬𝑝. But from (1), together with the assumption that you are
not required to smoke (¬ O 𝑞), we surely can’t infer that you do not in fact smoke.

(W) is not much better. For one, in our Kripke-style semantics, O(𝑝 → 𝑞) is entailed
by O(¬𝑝). But it is easy to imagine a scenario in which you must not smoke, or you
must submit your tax return before the deadline, but in which (1) and (2) are false.

Both (N) and (W) would also license a problematic form of “strengthening the an-
tecedent”. For example, they both suggest that (3) entails (4).

(4) If you have promised to call your parents and you know that someone has attached
a bomb to your parents’ phone that will go off if you call, then you must call them.

Exercise 6.12
Give tree proofs with the K-rules to show that 𝑝 → O 𝑟 entails (𝑝 ∧ 𝑞) → O 𝑟, and
that O(𝑝 → 𝑟) entails O((𝑝 ∧ 𝑞) → 𝑟).
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Let’s think about what is expressed by statements like (1)–(4). Intuitively, when we
ask what must be done if 𝑝 is the case, we are limiting our attention to situations in which
𝑝 is the case, and consider which of these situations best conform to the relevant norms.
It is irrelevant whether 𝑝 is in fact the case or whether it ought to be the case. (1) says
– roughly – that among worlds where you smoke, the best worlds are worlds where you
smoke outside. Worlds where you smoke inside are worse than worlds where you smoke
outside. Similarly for (2). A world at which you miss the deadline for tax returns and
pay the fine contains only one violation of the tax rules. Worlds at which you miss the
deadline and don’t pay the fine contain two. The best worlds among those at which you
miss the deadline are worlds at which you pay the fine. Likewise for (3). Among worlds
at which you have promised to call your parents, the best are worlds at which you keep
the promise and call them.

The if-clause in sentences like (1)–(3) therefore seems to restrict the worlds over which
the modal operator quantifies. Whereas ‘ought 𝑞’ alone says that 𝑞 is true at the best of
the open worlds, ‘if 𝑝 then ought 𝑞’ says that 𝑞 is true at the best of the open worlds at
which 𝑝 is true.

There is no way to express these truth-conditions with the resources of 𝔏𝑀 . But we
can introduce a new, binary operator for conditional obligation. The operator is often
written ‘O(⋅/⋅)’, with a slash separating the two argument places. Intuitively, O(𝐵/𝐴)
means that 𝐵 ought to be the case if 𝐴 is the case.

The formal truth-conditions for O(𝐵/𝐴) are much like those for O 𝐵, except that we
add the assumption 𝐴 to the circumstances that are held fixed:

Definition 6.3: Ordering semantics for conditional obligation
If 𝑀 is a deontic ordering model and 𝑤 a world in 𝑀, then
𝑀, 𝑤 |= O(𝐵/𝐴) iff 𝑀, 𝑣 |= 𝐵 for all 𝑣 ∈ Min≺𝑤({𝑢 ∶ 𝑤𝑅𝑢 and 𝑀, 𝑢 |= 𝐴}).

Here, {𝑢 ∶ 𝑤𝑅𝑢 and 𝑀, 𝑢 |= 𝐴} is the set of worlds 𝑢 that are circumstantially accessible
from 𝑤 and at which 𝐴 is true. Min≺𝑤({𝑢 ∶ 𝑤𝑅𝑢 and 𝑀, 𝑢 |= 𝐴}) is the set that comprises
the best of these worlds. So O(𝐵/𝐴) is true at 𝑤 iff 𝐵 is true at all of the best 𝐴-worlds
that are accessible at 𝑤.
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Exercise 6.13
“Deontic detachment” is the inference from O 𝐴 and O(𝐵/𝐴) to O 𝐵. “Factual
detachment” is the inference from 𝐴 and O(𝐵/𝐴) to O 𝐵. Which of these are valid
on the present semantics?

Exercise 6.14
In exercise 6.1, you were asked to translate the following statements.
(c) Jones ought to help his neighbours.
(d) If Jones is going to help his neighbours, then he ought to tell them he’s com-

ing.
(e) If Jones isn’t going to help his neighbours, then he ought to not tell them he’s

coming.
Let’s add a fourth statement:
(f) Jones is not going to help his neighbours.

Intuitively, none of these four statements is entailed by one of the others. More-
over, they don’t impose contradictory requirements on Jones. This shows that
your translations in exercise 6.1 were incorrect. Explain. (This puzzle is due to
Roderick Chisholm.)

Exercise 6.15
The dual of conditional obligation is conditional permission. Spell out truth-
conditions for P(𝐵/𝐴) that parallel the truth-conditions I have given for O(𝐵/𝐴),
so that P(𝐵/𝐴) is equivalent to ¬ O(¬𝐵/𝐴).

6.4 Further challenges

Many apparent problems for standard deontic logic arise from the dependence of obliga-
tions on circumstances. We can avoid these problems by using deontic ordering models
and formalizing conditional obligation statements with the binary O(⋅/⋅) operator. There
are, however, other problems and “paradoxes” for which this move doesn’t help. I will
mention three.

First, we already saw that standard deontic logic does not allow for conflicting obliga-
tions. Suppose you have promised your family to be home for dinner and your friends
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to join them at the pub. You are under conflicting prima facie obligations. It is not clear
that one of them overrides the other. Legal systems can also contain contradictory rules,
without any higher-level rules for how to resolve such contradictions.

We can, of course, drop principle (D). But even in the minimal logic K, O 𝑝 and O ¬𝑝
entail O 𝐴, for any sentence 𝐴. Intuitively, however, the fact that you have given incom-
patible promises does not entail that you are obligated to, say, kill the Prime Minister.

Another family of problems arises from the fact that in any logic defined in terms of
Kripke models, O is closed under logical consequence, meaning that if O 𝐴 is true and
𝐴 entails 𝐵, then O 𝐵 is true. Since logical truths are logically entailed by everything, it
follows that all logical truths come out as obligatory. (This is easy to see semantically.
A logical truth is true at all worlds; so it is true at all deontically accessible worlds.) But
ought it to be the case that it either rains or doesn’t rain?

In response, one might argue that the relevant statements sound wrong not because
they are false, but because their utterance would violate a pragmatic norm of cooperative
communication. A basic norm of pragmatics is that utterances should make a helpful
contribution to the relevant conversation. In a normal conversational context, it would
be pointless to say that something ought (or ought not) to be the case if it is logically
guaranteed to be the case anyway. An utterance of ‘it ought to be that 𝑝’ is pragmatically
appropriate only if 𝑝 could be false. This might explain why it sounds wrong to say that
it ought to either rain or not rain.

Note also that by duality, ¬O(𝑝 ∨ ¬𝑝) entails P¬(𝑝 ∨ ¬𝑝). If we deny that it ought to
either rain or not rain, and we accept the duality of obligation and permission, we have
to say that it is permissible that it neither rains nor doesn’t rain. That sounds even worse.

The problem of closure under entailment has special bite when obligation statements
are restricted by circumstances. Return to the Samaritan puzzle. Suppose the victim
is bleeding, and Jones ought to stop the blood flow. It is logically impossible to stop a
blood flow if no blood is flowing. In all the deontic logics we have so far considered, the
claim that Jones ought to stop the victim’s blood flow therefore entails that the victim
ought to be bleeding. But wouldn’t it be better if the victim weren’t bleeding?

Here, too, one might appeal to a pragmatic explanation. When we say that Jones ought
to stop the blood flow, we take for granted that the victim is bleeding. We are interested
in what should be done given the state in which Jones found the victim. Worlds where
the victim isn’t injured are set aside; they are not circumstantially accessible. But cir-
cumstantial accessibility can shift with conversational context. The claim that the victim
ought to be bleeding is pointless if we hold fixed the victim’s state of injury. So when
we evaluate this claim, we naturally assume that the relevant circumstantial accessibility
relation does not hold fixed the injuries. Intuitively, we are no longer considering what
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should be done given the state in which Jones found the victim, but whether that state
itself should have obtained. Worlds in which the state doesn’t obtain become circumstan-
tially accessible.

A third family of problems arises from disjunctive statements of permission and obli-
gation. Consider (1).

(1) You ought to either mail the letter or burn it.

Intuitively, (1) suggests that both mailing the letter and burning it are permitted. In
standard deontic logic, however, O(𝐴 ∨ 𝐵) does not entail P 𝐴 ∧ P 𝐵. (This puzzle was
first noticed by Alf Ross and is known as “Ross’s Paradox”.)

A similar puzzle arises for permissions. (This one is known as the “Paradox of Free
Choice”.)

(2) You may have beer or wine.

Intuitively, (2) implies that beer and wine are both permitted. But in standard deontic
logic, P(𝐴 ∨ 𝐵) does not entail P 𝐴 ∧ P 𝐵.

We could add the missing principles.

O(𝐴 ∨ 𝐵) → (P 𝐴 ∧ P 𝐵)(R)
P(𝐴 ∨ 𝐵) → (P 𝐴 ∧ P 𝐵)(FC)

But both of these have unacceptable consequences when added to the minimal modal
logic K. With the help of (R), we could show that O 𝐴 entails P 𝐵: O 𝐴 entails O(𝐴 ∨ 𝐵),
which by (R) entails P 𝐵. But clearly ‘you ought to mail the letter’ does not entail ‘you
may burn the letter’. Similarly for (FC). In K, P 𝐴 entails P(𝐴 ∨ 𝐵); by (FC), P(𝐴 ∨ 𝐵)
entails P 𝐵. But ‘you may have beer’ does not entail ‘you may have wine’.

Exercise 6.16
Analogous puzzles to those raised by Ross’s Paradox and the Paradox of Free
Choice arise for epistemic ‘must’ and ‘might’. Can you give examples?

6.5 Neighbourhood semantics

In reaction to apparent problems for standard deontic logic, some have argued that we
should not interpret obligation and permission in terms of quantification over possible
worlds. If we give up this core tenet of Kripke semantics, we can define “non-normal”
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logics weaker than K. (A normal modal logic is a modal logic that can be defined in
terms of classes of Kripke frames.)

A popular alternative to Kripke semantic is neighbourhood semantics, also known
as Scott-Montague semantics, after its inventors Dana Scott and Richard Montague.

Models in neighbourhood semantics still involve possible worlds. Validity is still de-
fined as truth at all worlds in all (suitable) models. But the box and the diamond are no
longer interpreted as quantifiers over accessible worlds. Instead, we simply assume that
at every world, some propositions are “necessary” and others are not. □𝐴 is true at a
world if 𝐴 expresses one of the necessary propositions at that world.

Formally, the accessibility relation in Kripke models is replaced by a neighbourhood
function 𝑁 that associates each world in a model with the propositions that are necessary
relative to 𝑤. Propositions are identified with sets of possible worlds. Thus 𝑁(𝑤) is a
set of sets of worlds. Each set of world in 𝑁(𝑤) is necessary at 𝑤.

Definition 6.4
A neighbourhood model consists of
• a non-empty set 𝑊 ,
• a function 𝑁 that assigns to each member of 𝑊 a set of subsets of 𝑊 , and
• a function 𝑉 that assigns to each sentence letter of 𝔏𝑀 a subset of 𝑊 .

The interpretation of non-modal sentences at neighbourhood models works just as in
Kripke semantics (definition 3.2). To state the semantics for modal sentences, let [𝐴]𝑀

be the set of worlds in model 𝑀 at which 𝐴 is true. This is our proxy for the proposition
expressed by 𝐴. Then:

𝑀, 𝑤 |= □𝐴 iff [𝐴]𝑀 is in 𝑁(𝑤).
𝑀, 𝑤 |= ♢𝐴 iff [¬𝐴]𝑀 is not in 𝑁(𝑤).

Intuitively, the clause for the box says that □𝐴 is true at 𝑤 iff the proposition expressed
by 𝐴 is one of those that are necessary at 𝑤. The clause for the diamond ensures that the
box and the diamond are duals.

In neighbourhood semantics, the modal operators are not closed under logical conse-
quence. The neighbourhood function 𝑁 can easily make 𝑝 necessary at a world without
making 𝑝 ∨ 𝑞 necessary, even thought 𝑝 entails 𝑝 ∨ 𝑞. If we interpret O and P as the
box and the diamond in neighbourhood semantics, we can therefore say that Jones ought
to tend to the victim’s injuries even thought it is not the case that someone ought to be
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injured.
We can also allow for conflicting obligations. If the laws at 𝑤 require both 𝑝 and

¬𝑝, we simply have [𝑝]𝑀 ∈ 𝑁(𝑤) and [¬𝑝]𝑀 ∈ 𝑁(𝑤). It no longer follows that any
proposition whatsoever is obligatory.

We may further hope to escape the problems from section 6.3 that led us to intro-
duce a primitive conditional obligation operator. I argued that the wide-scope transla-
tion O(𝐴 → 𝐵) of conditional obligation sentences is problematic because O(𝐴 → 𝐵) is
entailed by O(¬𝐴). In neighbourhood semantics, this entailment fails.

Bare neighbourhood semantics determines a very weak logic called E. It is axioma-
tized by (Dual), (CPL), and a rule (called “RN”) that allows inferring □𝐴 ↔ □𝐵 from
𝐴 ↔ 𝐵. We can get stronger logics, with more validities, by imposing conditions on the
neighbourhood function 𝑁 .

For example, suppose we want to maintain that if something is logically guaranteed
to be true then it can’t be forbidden. Equivalently, any logically necessary truth should
be permitted. By the neighbourhood semantics for P, 𝐴 is permitted at a world 𝑤 in a
model 𝑀 iff [¬𝐴]𝑀 is not in 𝑁(𝑤). If 𝐴 is a logical truth, then 𝐴 is true at all worlds; in
that case, ¬𝐴 is true at no worlds, and [¬𝐴]𝑀 is the empty set. If we want logical truths
to be permitted, we therefore have to stipulate that 𝑁(𝑤) never contains the empty set.

In Kripke semantics, the assumption that logically necessary truths are permitted is
equivalent to the assumption that (every instance of) the (D)-schema O 𝐴 → P 𝐴 is valid.
Both assumptions correspond to seriality of the accessibility relation. In neighbourhood
semantics, we can distinguish between the two assumptions. While the permissibility of
logical truths requires that 𝑁(𝑤) doesn’t contain the empty set, the validity of O 𝐴 → P 𝐴
requires that 𝑁(𝑤) doesn’t contains contradictory propositions [𝐴]𝑀 and [¬𝐴]𝑀 .

If we assume that the neighbourhood function is closed under intersection, in the sense
that whenever two sets 𝑋 and 𝑌 are in 𝑁(𝑤) then so is their intersection 𝑋 ∩ 𝑌 , then
(□𝐴 ∧ □𝐵) →□(𝐴 ∧ 𝐵) becomes valid. If we also require the converse, that whenever
𝑋 ∩ 𝑌 ∈ 𝑁(𝑤) then 𝑋 ∈ 𝑁(𝑤) and 𝑌 ∈ 𝑁(𝑤), and in addition that 𝑊 ∈ 𝑁(𝑤), we get
back the minimal normal logic K.

Exercise 6.17
Can you find a condition on the neighbourhood function that renders the (T)-
schema valid?

For some purposes, even the minimal logic of neighbourhood semantics is too strong.
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Return to the intuitive “Free Choice” principle from the previous section:

(FC) P(𝐴 ∨ 𝐵) → (P 𝐴 ∧ P 𝐵)

We have seen that this principle is untenable in Kripke semantics. It is still untenable in
neighbourhood semantics.

To see why, note first that whenever two sentences 𝐴 and 𝐵 are logically equivalent,
then in neighbourhood semantics P 𝐴 and P 𝐵 are also equivalent. The reason is that the
modal operators in neighbourhood semantics operate on the set of worlds at which the
embedded sentence is true. If 𝐴 and 𝐵 are logically equivalent, then in any model 𝑀, the
set [𝐴]𝑀 is the same set as [𝐵]𝑀 , and so [𝐴]𝑀 is in 𝑁(𝑤) iff [𝐵]𝑀 is in 𝑁(𝑤). Likewise,
[¬𝐴]𝑀 is in 𝑁(𝑤) iff [¬𝐵]𝑀 is in 𝑁(𝑤).

Now any sentence 𝐴 is logically equivalent to (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ ¬𝐵), for any 𝐵. In the
logic E, P 𝐴 therefore entails P((𝐴 ∧ 𝐵) ∨ (𝐴 ∧ ¬𝐵)). By (FC), P((𝐴 ∧ 𝐵) ∨ (𝐴 ∧ ¬𝐵))
entails P(𝐴 ∧ 𝐵). We could still reason from ‘you may have a cookie’ to ‘you may have
a cookie and burn down the house’.

Exercise 6.18
Rational beliefs come in degrees, which are often assumed to satisfy the formal
rules of probability. Suppose we say that someone believes 𝐴 iff their degree of
belief in 𝐴 is above a certain threshold – say, 0.9. Explain why one can’t give a
Kripke semantics for this concept of belief. (Although one can give a neighbour-
hood semantics.) Hint: One rule of probability says that if 𝑝 and 𝑞 are independent
propositions, then the probability of their conjunction 𝑝 ∧ 𝑞 is the product of their
individual probabilities.
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7.1 Reasoning about time

It is currently raining in Edinburgh. But it wasn’t raining yesterday, and perhaps it won’t
rain tomorrow. Let’s introduce some operators to formalize reasoning about the unfold-
ing of events through time.

If we read 𝑟 as ‘it is raining’, we will use F𝑟 to express that is will be raining at some
point in the future. We use P𝑟 to express that it has been raining at some point in the
past. In general:

F 𝐴 is true at a time 𝑡 iff 𝐴 is true at some time after 𝑡.
P 𝐴 is true at a time 𝑡 iff 𝐴 is true at some time before 𝑡.

The operators F and P can be nested. We can use F P 𝑟 to express that at some point
it will have rained, P F 𝑟 to say that it was once going to rain, P P 𝑟 to say that there was
a time before which it rained, and F F 𝑟 to say that there will come a time after which it
will rain.

Unlike □ and ♢, F and P are not duals of each other: ¬P𝐴 is not equivalent to F¬𝐴,
and ¬F𝐴 is not equivalent to P¬𝐴. But it is useful to have duals of F and P. We therefore
introduce two more operators. G will be the dual of F, and H the dual of P.

Intuitively, G 𝐴 means that 𝐴 is always going to be the case. (Hence the symbol ‘G’.) If
it is not the case that at some point in the future it will not rain (¬F¬𝑟), then it is always
going to be the case that it will rain (G 𝑟). Similarly, H 𝐴 means that 𝐴 has always been
the case. If it is not the case that at some point in the past it was not raining (¬P¬𝑟), then
it has always been raining (H 𝑟).

We can state the truth-conditions of G 𝐴 and H 𝐴 in parallel to the above truth-conditions
for F 𝐴 and P 𝐴:

G 𝐴 is true at a time 𝑡 iff 𝐴 is true at all times after 𝑡.
H 𝐴 is true at a time 𝑡 iff 𝐴 is true at all times before 𝑡.

The language of standard propositional logic, extended by the four operators F, P, G, H
is known as the language of basic temporal logic. We will sometimes call it 𝔏𝑡.
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Exercise 7.1
Translate the following sentences into the language of basic temporal logic.
(a) It has never been warm.
(b) There will be a sea battle.
(c) There will not have been a sea battle.
(d) At some point, it will be warm or it will have been warm.
(e) If you haven’t studied, you won’t pass the exam.
(f) I was having tea when the door bell rang.

7.2 Temporal models

A complete scenario for temporal logic needs to tell us what times there are, how they
are ordered, and what is going on at each of them. We can represent such a scenario,
together with an interpretation of 𝔏𝑡’s non-logical vocabulary, by a structure that settles
(a) what times there are, (b) which times come before or after which others, and (c)
which sentence letters are true at which times. This is enough to determine, for every
𝔏𝑡-sentence and every time, whether the sentence is true at that time.

Definition 7.1: Temporal Model
A temporal model consists of
• a non-empty set 𝑇 (of “times”),
• a binary relation < on 𝑇 (the precedence relation),
• a function 𝑉 that assigns to each sentence letter of 𝔏𝑇 a subset of 𝑇 .

We use ‘𝑀, 𝑡 |= 𝐴’ as a short-hand notation to express that sentence 𝐴 is true at time
𝑡 in model 𝑀. The following definition formally specifies the truth-value of every 𝔏𝑇 -
sentence at every time in every model.

Definition 7.2: Standard Temporal Semantics
If 𝑀 = ⟨𝑇, <, 𝑉 ⟩ is a temporal model, 𝑡 is a member of 𝑇 , 𝑃 is any sentence letter,
and 𝐴, 𝐵 are any 𝔏𝑇 -sentences, then
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(a) 𝑀, 𝑡 |= 𝑃 iff 𝑡 is in 𝑉(𝑃).
(b) 𝑀, 𝑡 |= ¬𝐴 iff 𝑀, 𝑡 |≠ 𝐴.
(c) 𝑀, 𝑡 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑡 |= 𝐴 and 𝑀, 𝑡 |= 𝐵.
(d) 𝑀, 𝑡 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑡 |= 𝐴 or 𝑀, 𝑡 |= 𝐵.
(e) 𝑀, 𝑡 |= 𝐴 → 𝐵 iff 𝑀, 𝑡 |≠ 𝐴 or 𝑀, 𝑡 |= 𝐵.
(f) 𝑀, 𝑡 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑡 |= (𝐴 → 𝐵) and 𝑀, 𝑡 |= (𝐵 → 𝐴).
(g) 𝑀, 𝑡 |= F 𝐴 iff 𝑀, 𝑠 |= 𝐴 for some 𝑠 ∈ 𝑇 such that 𝑡 < 𝑠.
(h) 𝑀, 𝑡 |= G 𝐴 iff 𝑀, 𝑠 |= 𝐴 for all 𝑠 ∈ 𝑇 such that 𝑡 < 𝑠.
(i) 𝑀, 𝑡 |= P 𝐴 iff 𝑀, 𝑠 |= 𝐴 for some 𝑠 ∈ 𝑇 such that 𝑠 < 𝑡.
(j) 𝑀, 𝑡 |= H 𝐴 iff 𝑀, 𝑠 |= 𝐴 for all 𝑠 ∈ 𝑇 such that 𝑠 < 𝑡.

Clause (a) says that a sentence letter is true at a time in a model iff the model’s interpre-
tation function specifies that the sentence letter is true at that time. Clauses (b)–(f) say
that the truth-functional connectives have their normal truth-table meaning at each time.
Clauses (g)–(j) formalize the truth-conditions for temporal sentences from the previous
section.

All this should remind you of our Kripke semantics for 𝔏𝑀 in chapter 3. In fact,
temporal models are Kripke models, as defined on page 49. I have merely relabelled the
set ‘𝑊 ’ as ‘𝑇 ’, and the relation ‘𝑅’ as ‘<’. Definition 7.2 resembles definition 3.2 from
page 49, except that we have two box-like operators G and H, and two diamond-like
operators F and P. The language of basic temporal logic is bi-modal, with forward-
looking operators (F and G) and backward-looking operators (P and H). Unlike ordinary
models for multi-modal languages (definition 5.1), temporal models have only a single
accessibility relation. That’s because the accessibility relation for P and H is definable
from the accessibility relation for F and G: a time 𝑠 is earlier than a time 𝑡 iff 𝑡 is later
than 𝑠.

Let’s look at an example of a temporal model. For the set of times 𝑇 , we use the set
of natural numbers 0,1,2, etc. Let’s say that the precedence relation < holds between 𝑡
and 𝑠 iff 𝑡 is less than 𝑠. So 0 < 1 and 1 < 25. (We could just as well have stipulated
that < holds between 𝑡 and 𝑠 iff 𝑡 is greater than 𝑠; we would then have 1 < 0 and 25 < 1.
In temporal logic, the symbol ‘<’ means ‘earlier than’, not ‘less than’.) Finally, let’s say
that the interpretation function assigns to 𝑝 the set of all even numbers.

Let’s call this model 𝑀. By definition 7.2, we can figure out the following facts, among
others.

• 𝑀, 0 |= 𝑝 (because 0 is even);
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• 𝑀, 0 |= F 𝑝 (because there are even numbers greater than 0);
• 𝑀, 0 |= G F 𝑝 (because for every number there is a greater number that is even);
• 𝑀, 0 |= ¬ F G 𝑝 (because there is no number for which all greater numbers are

even).

Exercise 7.2
Now let 𝑀 be the following model. As before, 𝑇 is the set of natural numbers
{0, 1, 2, …}, and 𝑡 < 𝑠 iff 𝑡 is less than 𝑠. This time, 𝑉(𝑝) is the set of numbers less
than 10. Which of the following statements are true?
(a) 𝑀, 0 |= F 𝑝 ∧ F ¬𝑝
(b) 𝑀, 0 |= G ¬𝑝
(c) 𝑀, 0 |= F G ¬𝑝
(d) 𝑀, 0 |= G F 𝑝
(e) 𝑀, 0 |= G(F 𝑝 → F F 𝑝)
(f) 𝑀, 0 |= F H 𝑝
(g) 𝑀, 0 |= ¬ P(𝑝 ∨ ¬𝑝)
(h) 𝑀, 0 |= H 𝑝

Real times are, of course, not numbers. When I say that ‘it is raining’ is true now, I
don’t mean that the sentence is true at a number. It isn’t obvious what kinds of things
times are. Fortunately, this doesn’t matter for us, just as the nature of possible worlds
doesn’t matter for the logic of possibility and necessity. As long as the formal structure
of the times in a scenario matches the structure of the natural numbers, it does no harm
to use numbers as times in a model of the scenario.

The formal structure of time in a temporal model is captured by the relevant frame:
the pair ⟨𝑇, < ⟩ of the set of times and the precedence relation. Frames in temporal logic
are also called flows of time. Different applications of temporal logic often come with
different assumptions about the flow of time.

In computer science, for example, the “times” 𝑇 are often understood as possible states
of a computational process; the precedence relation holds between states 𝑡 and 𝑠 iff the
computation can lead from 𝑡 to 𝑠. If the computation is indeterministic, so that a given
state can have different successors, the relevant flow of time will involve forks towards
the future: we can have different “times” 𝑠 and 𝑟 such that 𝑡 < 𝑠 and 𝑡 < 𝑟 but neither
𝑠 < 𝑟 nor 𝑟 < 𝑠. Here the precedence relation cannot be modelled by the less-than
relation on the natural numbers, because the structure of the less-than relation does not
include forks.
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In other applications, we may be interested in how the weather changes from day to
day. Here we might identify the relevant times with days and the precedence relation
with the earlier-later relation between days – even though intuitively a day is not a single
time, but an interval comprising many times. For this application, the natural numbers
might have the right formal structure.

For yet other applications, we may want to assume that time is dense, meaning that
whenever 𝑡 < 𝑠 then there is another point of time lying between 𝑡 and 𝑠. This assumption
is common in physics. The natural numbers, by contrast, have a discrete structure. There
is no natural number between 2 and 3. For dense models, we could use real or rational
numbers (fractions) instead of natural numbers.

If we want to take seriously what physics tells us about time, it is not enough to assume
that time is dense. We also need to reconceptualize the set 𝑇 . According to the theory
of special relativity, whether a point in time is earlier or later than another is relative
to a spatial frame of reference. An adequate model of relativistic time must therefore
include a representation of space. In these spacetime models (or Minkowski models),
the set 𝑇 consists of spacetime points ⟨𝑥1, 𝑥2, 𝑥3, 𝑡 ⟩ with three spatial and one temporal
coordinate; (𝑥1, 𝑥2, 𝑥3, 𝑡) < (𝑦1, 𝑦2, 𝑦3, 𝑠) holds iff the second point can be reached from
the first without travelling faster than the speed of light.

7.3 Logics of time

Let’s define the minimal temporal logic K𝑡 as the set of 𝔏𝑡-sentences that are true at
all times in all temporal models. Since temporal models are just Kripke models, proof
methods for the minimal modal logic K are easily adapted to K𝑡. The main novelty is
that the rules for the box and the diamond can be used twice over, once for the forward-
looking operators F and G, and once for the backward-looking P and H.

In the tree method for K𝑡, we have all the K-rules, with G as the box and F as the
diamond. In addition, we have rules for H as the box and P as the diamond with a
reversed perspective on the accessibility (or precedence) relation:
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G 𝐴 (𝜔)
𝜔 < 𝜈

𝐴 (𝜈)

¬G 𝐴 (𝜔)

𝜔 < 𝜈
¬𝐴 (𝜈)

↑
new

F 𝐴 (𝜔)

𝜔 < 𝜈
𝐴 (𝜈)

↑
new

¬F 𝐴 (𝜔)
𝜔 < 𝜈

¬𝐴 (𝜈)

H 𝐴 (𝜔)
𝜈 < 𝜔

𝐴 (𝜈)

¬H 𝐴 (𝜔)

𝜈 < 𝜔
¬𝐴 (𝜈)

↑
new

P 𝐴 (𝜔)

𝜈 < 𝜔
𝐴 (𝜈)

↑
new

¬P 𝐴 (𝜔)
𝜈 < 𝜔

¬𝐴 (𝜈)

In the axiomatic approach, we have two versions of the (K) schema, one for the
forward-looking box G and one for the backward-looking box H:

G(𝐴 → 𝐵) → (G 𝐴 → G 𝐵)(GK)
H(𝐴 → 𝐵) → (H 𝐴 → H 𝐵)(HK)

We also have two versions of Necessitation, and two versions of (Dual):

¬ F 𝐴 ↔ G ¬𝐴(GDl)
¬ P 𝐴 ↔ H ¬𝐴(HDl)
If 𝐴 occurs in a proof, G 𝐴 may be appended.(GNec)
If 𝐴 occurs in a proof, H 𝐴 may be appended.(HNec)

In addition, we need two interaction principles, reflecting the fact that the accessibility
relation for F and G is the inverse of the accessibility relation for P and H:

𝐴 → G P 𝐴(Con1)
𝐴 → H F 𝐴(Con2)

These axioms and rules, added to those of classical propositional logic, define an
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axiomatic calculus that is sound and complete for K𝑡. (Completeness is easily proved
with the canonical model technique.)

Exercise 7.3
Show with the help of definition 7.2 that all instances of (Con1) and (Con2) are
true at all times in all temporal models.

Exercise 7.4
Give K𝑡-tree proofs for the following schemas.
(a) 𝐴 → G P 𝐴
(b) 𝐴 → H F 𝐴
(c) F 𝐴 → H F F 𝐴
(d) P G 𝐴 → P F 𝐴
(e) H 𝐴 ↔ H F H 𝐴

For most applications, K𝑡 is too weak. We will want to impose further restrictions on
the relevant temporal models. For example, definition 7.1 allows for cases in which 𝑡 < 𝑠
and 𝑠 < 𝑟 without 𝑡 < 𝑟. But if a time 𝑡 is earlier than 𝑠, and 𝑠 is earlier than 𝑟, then surely
𝑡 must be earlier than 𝑟. For almost every application of temporal logic, we assume that
the precedence relation is transitive. This corresponds to the (4)-schema for G. It also
corresponds to the (4)-schema for H.

G 𝐴 → G G 𝐴(4G)
H 𝐴 → H H 𝐴(4H)

Exercise 7.5
Explain why, if a relation < is transitive, then so is its converse. The converse >
of < is the relation that holds between 𝑥 and 𝑦 iff 𝑦 < 𝑥.

Another plausible condition is that no time is earlier than itself. Formally, < should
be irreflexive, so that no element of 𝑇 is <-related to itself. We know that reflexivity
corresponds to the (T)-schema, whose (forward-looking) temporal analogue would be
G 𝐴 → 𝐴. What corresponds to irreflexivity? The following observation reveals the an-
swer: nothing.
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Observation 7.1: A sentence is valid in the class of irreflexive frames iff it is
valid in the class of all frames.

Proof sketch: The right-to-left direction is obvious. The left-to-right direction is im-
plied by the answer to exercise 4.8. But we can give a more direct argument.

Suppose that some sentence 𝐴 is not valid in the class of all frames. We show that
𝐴 is not valid in the class of irreflexive frames. That 𝐴 is not valid in the class of all
frames means that there is some world 𝑤 in some model 𝑀 = ⟨𝑊, 𝑅, 𝑉 ⟩ at which 𝐴 is
false. We will show that there is some world in some irreflexive model at which 𝐴 is
false.

To this end, we will construct an irreflexive model 𝑀𝑖 = ⟨𝑊 ′, 𝑅′, 𝑉 ′ ⟩ from 𝑀 in
which the same sentences are true at 𝑤 as in 𝑀. Since 𝐴 is true at 𝑤 in 𝑀, it follows
that 𝐴 is true at 𝑤 in 𝑀𝑖.

Initially, 𝑀𝑖 has the same worlds, the same accessibility relation, and the same inter-
pretation function as 𝑀. Now for any world 𝑤 in 𝑀 that can see itself, we add a new
world 𝑤′ to 𝑀𝑖 so that

• 𝑤′ verifies the same sentence letters as 𝑤: if 𝑤 ∈ 𝑉(𝑃) then 𝑤′ ∈ 𝑉(𝑃);
• 𝑤′ can see the same worlds as 𝑤: whenever 𝑤𝑅′𝑣 then 𝑤′𝑅′𝑣; and
• 𝑤′ can be seen from the same worlds as 𝑤: whenever 𝑣𝑅′𝑤 then 𝑣𝑅′𝑤′.

Finally, we make 𝑤 inaccessible from itself in 𝑀𝑖. A simple proof by induction on
complexity shows that if a sentence is true at a world 𝑤 in 𝑀 then it is also true at 𝑤 in
𝑀𝑖.
Given transitivity, irreflexivity is closely related to asymmetry. Recall from the pre-

vious chapter that < is asymmetric if whenever 𝑡 < 𝑠 then not 𝑠 < 𝑡. There is no modal
schema that corresponds to asymmetry.

Exercise 7.6
Show that a transitive relation is irreflexive iff it is asymmetric.

Exercise 7.7
A popular idea in many cultures is that time is circular. Does this cast doubt on
asymmetry? What about irreflexivity?
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𝑡

𝑠

𝑟

In the previous chapter, I mentioned that transitive and irreflexive
relations are called (strict) partial orders. The name reflects the fact
that such orders need not order everything. In a model of branching
time, for example, we can have 𝑡 < 𝑠 and 𝑡 < 𝑟 but neither 𝑠 < 𝑟
nor 𝑟 < 𝑠; in that case, 𝑟 and 𝑠 are not ordered by the precedence
relation.

We can rule out such cases by imposing the requirement of con-
nectedness, also known as completeness or totality. This demands
that for any points 𝑡 and 𝑠, either 𝑡 < 𝑠 or 𝑡 = 𝑠 or 𝑠 < 𝑡. An irreflexive, transitive, and
connected relation is called a (strict) linear order (or a strict total order).

For some applications, we may want linearity in only one direction. Many philoso-
phers have been attracted to a branching-future conception of time, where a point in
time may have more than one future, but only one past. In such models, we would only
require backward-linearity: that if 𝑠 < 𝑡 and 𝑟 < 𝑡, then either 𝑠 < 𝑟 or 𝑠 = 𝑟 or 𝑟 < 𝑠.

An axiom schema corresponding to backward-linearity is (BL):

(BL) F P 𝐴 → (F 𝐴 ∨ 𝐴 ∨ P 𝐴)

Forward-linearity – the assumption that if 𝑡 < 𝑠 and 𝑡 < 𝑟, then either 𝑠 < 𝑟 or 𝑠 = 𝑟 or
𝑟 < 𝑠 – corresponds to (FL):

(FL) P F 𝐴 → (P 𝐴 ∨ 𝐴 ∨ F 𝐴)

The conjunction of (BL) and (FL) is valid on a frame iff the frame’s precedence relation
does not branch in either direction. This is not quite the same as connectedness, because
it allows for frames with parallel time lines. There is no schema that corresponds to
connectedness.

The tree rules for backward-linearity and forward-linearity directly reflect the defini-
tion of the two properties.

Backward-Linearity
𝜈 < 𝜔
𝜐 < 𝜔

ggggg
ggggg

gg
WWWWW

WWWWW
WW

𝜈 < 𝜐 𝜈 = 𝜐 𝜐 < 𝜈

Forward-Linearity
𝜔 < 𝜈
𝜔 < 𝜐

ggggg
ggggg

gg
WWWWW

WWWWW
WW

𝜈 < 𝜐 𝜈 = 𝜐 𝜐 < 𝜈
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These rules create three branches. The “identity nodes” 𝜈 = 𝜐 on the middle branch
state that two world/time labels refer to the same thing. (This must be taken into account
when reading off countermodels from open branches.) We need two further rules to deal
with identity nodes. Both of these rules are called ‘Identity’.

𝐴 (𝜔)
𝜔 = 𝜈

𝐴 (𝜈)

𝐴 (𝜔)
𝜈 = 𝜔

𝐴 (𝜈)

Exercise 7.8
Use the tree method to check which of the following sentences are valid, assuming
time is linear (i.e., using the Transitivity, Backward-Linearity, Forward-Linearity,
and Identity rules).
(a) (F 𝑝 ∧ F 𝑞) → F(𝑝 ∧ 𝑞)
(b) P G G 𝑝 → G G 𝑝
(c) P F 𝑝 → (P 𝑝 ∨ (𝑝 ∨ F 𝑝))
(d) P H 𝑝 → H 𝑝
(e) F G 𝑝 → G F 𝑝
(f) F(G 𝑞 ∧ ¬𝑝) → G(𝑝 → (G 𝑝 → 𝑞))
(g) (P(𝑞 ∧ H 𝑞) ∧ P G 𝑞) → H 𝑞

The precedence relation in relativistic spacetime is neither backward-linear nor forward-
linear. But it has a weaker property: convergence. A spacetime point 𝑝1 can precede two
points 𝑝2 and 𝑝3 neither of which precedes the other, but these two points will always pre-
cede a common later point 𝑝4. Convergence corresponds to the (G)-schema. In temporal
logic, we have one (G)-schema for future convergence and one for past convergence:

F G 𝐴 → G F 𝐴(FG)
P H 𝐴 → H P 𝐴(PG)

Exercise 7.9
Can you find schemas that correspond to the following frame properties?
(a) There is no last time. (That is, every time precedes some time.)
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(b) There is no first time.
(c) There is a last time.
(d) There is a first time.

Exercise 7.10
Show that the schema F 𝐴 → F F 𝐴 corresponds to density. (You have to show
that (a) whenever a frame is dense then F 𝐴 → F F 𝐴 is valid on the frame, and (b)
whenever F 𝐴 → F F 𝐴 is valid on a frame then the frame is dense.)

Exercise 7.11
Can you find an 𝔏𝑇 -expression stating that 𝑝 is true at all times? Can you do so if
you make assumptions about the precedence relation?

7.4 Branching time

In section 1.5 we looked at the idea that the future is “open” while the past is “settled”.
We can still influence (say) whether we will exercise tomorrow, but not whether we have
exercised yesterday. Some have argued that the openness of the future calls for a non-
linear model of time, with multiple branches into the future. On one branch, we would
exercise tomorrow, on another we would not.

This line of thought appears to conflate temporal and modal considerations. The prece-
dence relation in models of time is normally understood as a purely temporal relation –
as the earlier-later relation. The fact that we can bring about a world in which we exer-
cise tomorrow and a world in which we don’t exercise does not entail that both kinds of
tomorrow take place here in the actual world.

If we want to make explicit the connections between settledness and time, it is better to
use a multi-modal language with circumstantial operators for settledness and openness
in addition to the purely temporal operators F, G, P, H. We could then say things like
P 𝐴 →□P 𝐴 to formalize the claim that if 𝐴 has happened then it is settled that 𝐴 has
happened.

There are nonetheless good reasons to consider branching models of time. I already
mentioned that such models are widely used in computer science, where the “times” rep-
resent states of a computational process and the precedence relation has a semi-modal
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interpretation, holding between two states iff the first can lead to the second. I also
mentioned that the precedence relation in relativistic spacetime allows for branching, al-
though diverging spacetime branches ultimately reconverge. A more classical form of
branching (without reconvergence) has been argued to follow from a certain interpre-
tation of quantum physics. On this interpretation, what are normally understood to be
chance events are really branching events in which all possible outcomes actually take
place.

Another way to motivate a branching conception of time arises from a metaphysical
view called presentism. According to presentism, only the present is real; all truths that
seem to concern other times are reducible to more fundamental truths about the present.
If, for example, it is true that there was a sea battle yesterday, then according to presentism
this must ultimately be explained by what is true now; there must be facts about the
present state of the world that entail (and explain) yesterday’s sea battle. Perhaps the
relevant facts about the present specify the distribution of physical particles and fields
etc. together with the general laws of nature. If the laws are deterministic, then the
complete truth about the present distribution of particles and fields etc. together with
the laws fixes all truths about the past and about the future. But suppose the laws are
indeterministic towards the future: they merely settle that if the present physical state
of the world is so-and-so, then the future is either like this or like that. In that case, the
presentist will regard both of these futures as equally actual.

Let’s assume, then, that we want to reason about branching time. This is less straight-
forward than it might at first appear.

Two pieces of terminology will be useful. First, let’s define a history in a model
⟨𝑇, <, 𝑉 ⟩ as a maximal linearly ordered subset of 𝑇 . That is, a history is a collection of
times 𝐻 such that

(i) for all 𝑡 and 𝑠 in 𝐻, either 𝑡 < 𝑠 or 𝑡 = 𝑠 or 𝑠 < 𝑡, and

(ii) no further member of 𝑇 could be added to 𝐻 without making (i) false.

𝑡1 𝑡2

𝑡3

𝑡4

The model (or rather, frame) depicted on the right contains two
histories: {𝑡1, 𝑡2, 𝑡3} and {𝑡1, 𝑡2, 𝑡4}.

For the second piece of terminology, let 𝑡 be any time in any
model. Any maximal linearly ordered set of times later than 𝑡
will be called a future of 𝑡. In the model on the right, 𝑡1 has
two futures: {𝑡2, 𝑡3} and {𝑡2, 𝑡4}.

If you look back at definition 7.2, you can see that in the standard semantics for tem-
poral logic, G 𝑝 is true at 𝑡 iff 𝑝 is true at all times in all futures of 𝑡; F 𝑝, on the other
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hand, is true at 𝑡 iff 𝑝 is true at some time in at least one future of 𝑡. This ensures that G
and F are duals, but it is often thought to be problematic if we want F 𝑝 to translate ‘it
will be the case that 𝑝’.

To illustrate, suppose I’m about to toss a coin. In one future (let’s assume), the coin
will land heads, in another it will land tails. By definition 7.2, both F ℎ and F 𝑡 are true.
But should we say that the coin will land heads and also that it will land tails?

We could adopt an alternative semantics for F according to which F 𝑝 is true at 𝑡 iff 𝑝
is true at some time in all futures of 𝑡:

𝑀, 𝑡 |= F 𝐴 iff every future of 𝑡 contains some 𝑠 such that 𝑀, 𝑠 |= 𝐴.

This is known as the Peircean interpretation of F (after Charles S. Peirce; the name is
due to Arthur Prior).

On the Peircean account, F 𝑝 is false whenever 𝑝 only takes place in one of several
futures. If we keep the classical interpretation of G, both F 𝑝 and G ¬𝑝 can be false; the
two operators are no longer duals. The dual of F is a strange operator that applies to a
sentence 𝐴 iff there is some future in which 𝐴 is always true.

Exercise 7.12
Explain why the Peircean interpretation renders 𝑝 → H F 𝑝, an instance of (Con2),
invalid.

A different line is taken by (what Prior called) the Ockhamist approach. According
to Ockhamism, if there are several futures then it doesn’t make sense to say – without
qualification – that 𝑝 will be the case, or that 𝑝 won’t be case. To talk about what will or
won’t be the case we must specify which future we have in mind.

Formally, in Ockhamist semantics, the truth-value of every sentence is evaluated at a
pair consisting at a time and a history. Histories are linear by definition, so the problems
raised by multiple futures disappear. To say that 𝑝 is the case in some history, or in
all histories, Ockhamists add new operators ♢ and □ that quantify over histories. The
Peircean F operator is equivalent to □ F in Ockhamism. □ F 𝑝 says that every future
contains a time at which 𝑝 is true; ♢𝐹𝑝, by contrast, would say that some future contains
a time where 𝑝 is true.

Here is the full Ockhamist semantics.
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Definition 7.3: Ockhamist Semantics
If 𝑀 = ⟨𝑇, <, 𝑉 ⟩ is a temporal model, 𝐻 is a history in 𝑀, 𝑡 is a member of 𝐻, 𝑃
is any sentence letter, and 𝐴, 𝐵 are any sentences in the Ockhamist language, then

(a) 𝑀, 𝐻, 𝑡 |= 𝑃 iff 𝑡 is in 𝑉(𝑃).
(b) 𝑀, 𝐻, 𝑡 |= ¬𝐴 iff 𝑀, 𝐻, 𝑡 |≠ 𝐴.
(c) 𝑀, 𝐻, 𝑡 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝐻, 𝑡 |= 𝐴 and 𝑀, 𝐻, 𝑡 |= 𝐵.
(d) 𝑀, 𝐻, 𝑡 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝐻, 𝑡 |= 𝐴 or 𝑀, 𝐻, 𝑡 |= 𝐵.
(e) 𝑀, 𝐻, 𝑡 |= 𝐴 → 𝐵 iff 𝑀, 𝐻, 𝑡 |≠ 𝐴 or 𝑀, 𝐻, 𝑡 |= 𝐵.
(f) 𝑀, 𝐻, 𝑡 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝐻, 𝑡 |= (𝐴 → 𝐵) and 𝑀, 𝐻, 𝑡 |= (𝐵 → 𝐴).
(g) 𝑀, 𝐻, 𝑡 |= F 𝐴 iff 𝑀, 𝐻, 𝑠 |= 𝐴 for some 𝑠 in 𝐻 such that 𝑡 < 𝑠.
(h) 𝑀, 𝐻, 𝑡 |= G 𝐴 iff 𝑀, 𝐻, 𝑠 |= 𝐴 for all 𝑠 in 𝐻 such that 𝑡 < 𝑠.
(i) 𝑀, 𝐻, 𝑡 |= P 𝐴 iff 𝑀, 𝐻, 𝑠 |= 𝐴 for some 𝑠 in 𝐻 such that 𝑠 < 𝑡.
(j) 𝑀, 𝐻, 𝑡 |= H 𝐴 iff 𝑀, 𝐻, 𝑠 |= 𝐴 for all 𝑠 in 𝐻 such that 𝑠 < 𝑡.
(k) 𝑀, 𝐻, 𝑡 |= □𝐴 iff 𝑀, 𝐽, 𝑡 |= 𝐴 for all histories 𝐽 that contain 𝑡.
(l) 𝑀, 𝐻, 𝑡 |= ♢𝐴 iff 𝑀, 𝐽, 𝑡 |= 𝐴 for some history 𝐽 that contains 𝑡.

A sentence is valid in Ockhamist semantics if it is true at all times 𝑡 on all histories
𝐻 (containing 𝑡) in all models. As always, we can get stronger conceptions of validity –
stronger logics – by adding further constraints on the precedence relation.

Exercise 7.13
Which of the following schemas are valid in Ockhamist semantics?
(a) □𝐴 → 𝐴
(b) □𝐴 →□□𝐴
(c) ♢𝐴 →□♢𝐴
(d) □ F 𝐴 → F□𝐴
(e) P 𝐴 →□P♢𝐴

There is something odd about the Ockhamist approach. Consider a scenario in which
there are multiple futures; one future holds a sea battle, another holds no sea battle. Let 𝑝
translate ‘there is a sea battle’. Is F 𝑝 is true in this scenario (under the given interpretation
of 𝑝)? What about F(𝑝 ∨ ¬𝑝)? Or 𝐺𝑝 → 𝐺𝐺𝑝?

Ockhamism refuses to give an answer. In Ockhamism, sentences are only true or false
relative to a model and a time and a history. A branching-time scenario, however, does
not fix a particular history. We’d like to know which sentences are true today if there are
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multiple futures. Ockhamism only tells us which sentences are true relative to each of
the different futures. Relative to a history that contains a sea battle, F 𝑝 is true. Relative
to other histories, F 𝑝 is false.

If we insist that logical validity should formalize the idea of truth in all scenarios under
all interpretations of non-logical vocabulary then we can’t accept the official definition of
validity in Ockhamist semantics. We have to extend the Ockhamist semantics to specify
under what conditions a sentence is true in a model at a time, without fixing a history.
Then we can say that a sentence is valid iff it is true at all times in all models.

A simple way to do this is to stipulate that a sentence is true at time in an (Ockhamist)
model iff it is true relative to all histories that contain the time:

𝑀, 𝑡 |= 𝐴 iff 𝑀, 𝐻, 𝑡 |= 𝐴 for all histories 𝐻 that contain 𝑡.

This is known as a supervaluationist semantics.
Supervaluationism is often used when a formal semantics defines truth relative to an

“extra” parameter that doesn’t correspond to any feature of a conceivable scenario. In
Ockhamist semantics, that parameter is the history 𝐻. For a different application, con-
sider vagueness. If 𝑝 translates ‘it is warm’, and the temperature is borderline warm, it is
not clear what we should say about the truth-value of 𝑝, and about various complex sen-
tences containing 𝑝. One popular approach to vagueness is to first define truth relative
to a sharpening of vague expressions. Relative to a sharpening on which temperatures
above 15.0 degrees Celsius are warm, 𝑝 has a clear truth-value in any conceivable sce-
nario, as do complex sentences containing 𝑝. Since an actual scenario does not fix a
particular sharpening, this semantics contains an extra parameter. We can define a no-
tion of truth without that parameter by saying that a sentence is true in a scenario iff it is
true in that scenario relative to every eligible sharpening.

Supervaluationist accounts tend to have some non-classical features. Suppose we live
in a branching world in which one future contains a sea battle and another doesn’t. Let 𝑝
express that a sea battle takes place. According to supervaluationist Ockhamism, neither
F 𝑝 nor ¬ F 𝑝 is true in that scenario. Both are true relative to some but not relative to all
histories. So neither is simply true. Assuming that a sentence is false if its negation is
true, F 𝑝 is neither true nor false!

Logics in which a sentence can have a third status besides (mere) truth and (mere) fal-
sity are called three-valued. Three-valued approaches to branching time are sometimes
defended by the intuition that if a sea battle occurs on some but not all branches of the
future, then one can’t truly assert that a battle will occur nor that it won’t occur.

The Polish logician Jan Łukasiewicz argued that statements about the future are either
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true, false, or “indeterminate”. To accommodate this third truth-value, he proposed three-
valued truth-tables specifying how the truth-value of complex sentences are determined
by the truth-value of their parts. For example, he suggested that if two sentences 𝐴 and 𝐵
are indeterminate, then their conjunction 𝐴∧𝐵, disjunction 𝐴∨𝐵, and negations ¬𝐴, ¬𝐵
are also indeterminate.

In the sea battle scenario, Łukasiewicz’s account renders F 𝑠 ∨¬F 𝑠 indeterminate, as-
suming F 𝑠 is indeterminate. This is often regarded as problematic: even if we shouldn’t
assert that there will be a sea battle, it is argued that we are justified to assert that there
either will or there won’t be a sea battle. The supervaluationist form of Ockhamism,
while also three-valued, avoids this problem. On the supervaluationist interpretation, F 𝑠
and ¬F 𝑠 are neither true nor false in the sea battle scenario, but F 𝑠 ∨ ¬F 𝑠 is true.

Exercise 7.14
Let’s say that a sentence is super-valid if it is true at all times in all models, where
truth at a time in a model is understood in accordance with supervaluationist Ock-
hamism. Explain why the super-valid sentences are precisely the sentences that
are valid by the original Ockhamist definition of validity (just below definition
7.3).

Exercise 7.15
Things are more complicated for entailment. Let’s say that 𝐴 Ockham-entails 𝐵 iff
there is no time on any history in any temporal model at which 𝐴 is true and 𝐵 false.
Let’s say that 𝐴 super-entails 𝐵 iff there is no time in any temporal model at which
𝐴 is true and 𝐵 false, where truth at a time in a model is defined in accordance
with supervaluationism. Is Ockham-entailment equivalent to super-entailment?
Explain.

7.5 Extending the language

The expressive resources of standard modal and temporal logic are weak. There are
many things we might want to say about the unfolding of events in time that can’t be said
with F, G, P, and H. The Ockhamist history quantifiers are one way of adding expressive
power to the basic language of temporal logic. In this section, we will look at some
others.

A useful operator for logics of discrete and linear time is the “next” operator X (also
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written ‘○’). Informally, X 𝐴 means that 𝐴 is true at the next point in time. Formally:

𝑀, 𝑡 |= X 𝐴 iff 𝑀, 𝑠 |= 𝐴 for some 𝑠 such that (i) 𝑡 < 𝑠 and (ii) 𝑠 < 𝑟 for all 𝑟
such that 𝑟 ≠ 𝑠 and 𝑡 < 𝑟.

With the help of X, we can also say that 𝐴 is true in two units of time (X X 𝐴), in three
units of time (X X X 𝐴), and so on. The corresponding operator for talking about the
previous point in time is usually written Y.

A more powerful extension of 𝔏𝑇 adds binary operators for “since” and “until”, which
can be used to translate sentences like (1) and (2).

(1) Ever since we left the house it has been raining.
(2) It will be raining until we go back inside.

Informally, 𝐴 S 𝐵 is true iff 𝐵 was true at some time in the past and 𝐴 has always been true
since then; 𝐴 U 𝐵 is true iff 𝐵 will be true at some time in the future and 𝐴 will always
be true until then. Formally:

𝑀, 𝑡 |= 𝐴 S 𝐵 iff there is some 𝑠 with 𝑠 < 𝑡 for which 𝑀, 𝑠 |= 𝐵, and for all 𝑟
with 𝑠 < 𝑟 < 𝑡, we have 𝑀, 𝑟 |= 𝐴.

𝑀, 𝑡 |= 𝐴 U 𝐵 iff there is some 𝑠 with 𝑡 < 𝑠 for which 𝑀, 𝑠 |= 𝐵, and for all 𝑟
with 𝑡 < 𝑟 < 𝑠, we have 𝑀, 𝑟 |= 𝐴.

The operators F, G, P, and H can all be defined in terms of S and U. For example, P 𝐴
is equivalent to (𝑝 ∨ ¬𝑝) S 𝐴. And F 𝐴 is equivalent to (𝑝 ∨ ¬𝑝) U 𝐴.

Exercise 7.16
Define X 𝐴 in terms of U.

Another noteworthy addition to temporal logic is the “Now” operator N. To see the
point of this operator, consider the following multi-modal statement.

(3) We already knew yesterday that there would be a test today.

Using Y for ‘yesterday’, we might try to translate (3) as Y K 𝑝, where 𝑝 translates
‘there is a test’. But that’s wrong. By the semantics for Y, Y K 𝑝 is true today iff K 𝑝 is
true yesterday (using days as temporal units). Since K 𝑝 entails 𝑝, it follows that Y K 𝑝 is
true today only if 𝑝 is true yesterday. But the test takes place today, not yesterday.

141



7 Temporal Logic

Intuitively, the problem is that ‘today’ in (3) refers to the present day, even though it
occurs in the scope of the ‘yesterday’ operator. The same thing happens in the quantified
statement (4).

(4) One day everyone who is now rich will be poor.
Here, ‘now’ refers to the present time, even though it is in the scope of the F operator
‘one day’.

With the “Now” operator N, we can translate (3) as Y K N 𝑝, and (4) as F ∀𝑥(N 𝑅𝑥 → 𝑃𝑥).
(We will have a closer look at quantified modal logic in later chapters.)

Intuitively, the N operator allows us to look outside the scope of an embedding operator.
P N 𝑝, for example, is true if there is some time in the past such that 𝑝 is true not at that
time, but at the present. How does this work formally?

By the semantics of P,

𝑀, 𝑡 |= P N 𝑝 iff 𝑀, 𝑠 |= N 𝑝 for some time 𝑠 < 𝑡.

Now we want 𝑀, 𝑠 |= N 𝑝 to be true iff 𝑝 is true at the original time 𝑡. So we need to keep
track of the original time at which we evaluate a sentence, even if a temporal operator
shifts the time at which a subsentence is evaluated.

The simplest way to achieve this is to define truth relative to pairs of times. One of
the times is shifted by the temporal operators, the other is held fixed.

Definition 7.4: Two-Dimensional Temporal Semantics
If 𝑀 = ⟨𝑇, <, 𝑉 ⟩ is a temporal model, 𝑡, 𝑡0 are members of 𝑇 , 𝑃 is any sentence
letter, and 𝐴, 𝐵 are any 𝔏𝑇 -sentences, then

(a) 𝑀, 𝑡0, 𝑡 |= 𝑃 iff 𝑡 is in 𝑉(𝑃).
(b) 𝑀, 𝑡0, 𝑡 |= ¬𝐴 iff 𝑀, 𝑡0, 𝑡 |≠ 𝐴.
(c) 𝑀, 𝑡0, 𝑡 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑡0, 𝑡 |= 𝐴 and 𝑀, 𝑡0, 𝑡 |= 𝐵.
(d) 𝑀, 𝑡0, 𝑡 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑡0, 𝑡 |= 𝐴 or 𝑀, 𝑡0, 𝑡 |= 𝐵.
(e) 𝑀, 𝑡0, 𝑡 |= 𝐴 → 𝐵 iff 𝑀, 𝑡0, 𝑡 |≠ 𝐴 or 𝑀, 𝑡0, 𝑡 |= 𝐵.
(f) 𝑀, 𝑡0, 𝑡 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑡0, 𝑡 |= (𝐴 → 𝐵) and 𝑀, 𝑡0, 𝑡 |= (𝐵 → 𝐴).
(g) 𝑀, 𝑡0, 𝑡 |= F 𝐴 iff 𝑀, 𝑡0, 𝑠 |= 𝐴 for some 𝑠 in 𝑇 such that 𝑡 < 𝑠.
(h) 𝑀, 𝑡0, 𝑡 |= G 𝐴 iff 𝑀, 𝑡0, 𝑠 |= 𝐴 for all 𝑠 in 𝑇 such that 𝑡 < 𝑠.
(i) 𝑀, 𝑡0, 𝑡 |= P 𝐴 iff 𝑀, 𝑡0, 𝑠 |= 𝐴 for some 𝑠 in 𝑇 such that 𝑠 < 𝑡.
(j) 𝑀, 𝑡0, 𝑡 |= H 𝐴 iff 𝑀, 𝑡0, 𝑠 |= 𝐴 for all 𝑠 in 𝑇 such that 𝑠 < 𝑡.
(k) 𝑀, 𝑡0, 𝑡 |= N 𝐴 iff 𝑀, 𝑡0, 𝑡0 |= 𝐴.
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Like the Ockhamist semantics from the previous section, this semantics has an extra
parameter. An ordinary scenario is represented by a single time in a model, not by a pair
of times. So we need to specify under what conditions a sentence is true at a (single)
time. Here, the standard approach is not supervaluation but “diagonalization”:

𝑀, 𝑡 |= 𝐴 iff 𝑀, 𝑡, 𝑡 |= 𝐴.

This “two-dimensional” semantics correctly predicts that P N 𝑝 entails 𝑝.

1. Assume 𝑀, 𝑡 |= P N 𝑝.
2. Then 𝑀, 𝑡, 𝑡 |= P N 𝑝, by the definition of truth at a time in a model.
3. Then 𝑀, 𝑡, 𝑠 |= N 𝑝 for some 𝑠 < 𝑡, by clause (i) of definition 7.4.
4. Then 𝑀, 𝑡, 𝑡 |= 𝑝, by clause (k) of definition 7.4.
5. Then 𝑀, 𝑡 |= 𝑝, by the definition of truth at a time in a model.

The presence of a “Now” operator has far-reaching consequences for the logic of time.
For example, N 𝑝 → 𝑝 is valid, in the sense that it is true at all times in all models. But
G(N 𝑝 → 𝑝) is invalid. If 𝑝 is true at 𝑡 and false at some time after 𝑡, then G(N 𝑝 → 𝑝) is
false at 𝑡. So we must give up the forward and backward Necessitation rules. The fact
that something is logically true does not entail that it will always be true!

Exercise 7.17
‘It might have been that everyone who is actually rich is poor.’ This says that there
is a world 𝑤 such that everyone who is rich at the actual world is poor at 𝑤. To
formalize statements like these, we need a modal operator analogous to N that
takes us back to the actual world, even in the scope of other modal operators. This
operator is called the actually operator. Let’s write it as A and add it to 𝔏𝑀 . Can
you find a sentence 𝐵 in this language that is logically true but not necessarily true,
in the sense that 𝐵 is true at all worlds in all models but □𝐵 is not?
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8.1 Material conditionals

We are often interested not just in whether something is in fact the case, but also in
whether it is (or would be) the case if something else is (or would be) the case. We might,
for example, wonder in what will happen to the climate if we don’t reduce greenhouse
gases, or whether World War 2 could have been avoided if certain steps had been taken
in the 1930s.

A sentence stating that something is (or would be) the case if something else is (or
would be) the case is called a conditional. What exactly, do these statements mean?
What is their logic? Philosophers have puzzled over these questions for more than 2000
years, with no agreement in sight.

One attractively simple view is that a conditional ‘if 𝐴 then 𝐵’ is true iff the antecedent
𝐴 is false or the consequent 𝐵 is true. This would make ‘if 𝐴 then 𝐵’ equivalent to ‘not
𝐴 or 𝐵’. Conditionals with these truth-conditions are called material conditionals.

The conditionals 𝐴 → 𝐵 of classical logic are material. 𝐴 → 𝐵 is equivalent to ¬𝐴 ∨ 𝐵.
The attractively simple view that English conditionals are material conditionals would
mean that we can faithfully translate English conditionals into 𝔏𝑀-sentences of the form
𝐴 → 𝐵. Is this correct?

There are some arguments for a positive answer. Suppose I make the following promise.

(1) If I don’t have to work tomorrow then I will help you move.

I have made a false promise if the next day I don’t have to work and yet I don’t help you
move. Under all other conditions, you could not fault me for breaking my promise. So it
seems that (1) is false iff I don’t have to work and I don’t help you move. Generalizing,
this suggests that ‘if 𝐴 then 𝐵’ is true iff 𝐴 is false or 𝐵 is true.

Another argument for analysing English conditionals as material conditionals starts
with the intuitively plausible assumption that ‘𝐴 or 𝐵’ entails the corresponding condi-
tional ‘if not-𝐴 then 𝐵’. (This is sometimes called the or-to-if inference.) Suppose I tell
you that Nadia is either in Rome or in Paris. Trusting me, you can infer that if she’s not
in Rome then she’s in Paris. Now we can reason as follows.
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To begin, suppose that 𝐴 and ‘if 𝐴 then 𝐵’ are both true. Plausibly, we can infer that
𝐵 is true as well: modus ponens is valid for English conditionals. This means that if 𝐴 is
true and 𝐵 is false, then ‘if 𝐴 then 𝐵’ is false. Now suppose, alternatively, that 𝐴 is false
or 𝐵 is true. Then ‘not-𝐴 or 𝐵’ is true. By or-to-if, we can infer that ‘if 𝐴 then 𝐵’ is true
as well. Thus ‘if 𝐴 then 𝐵’ is true iff 𝐴 is false or 𝐵 is true.

Despite these arguments, most philosophers and linguists don’t think that English con-
ditionals are material conditionals. Consider these facts about logical consequence (in
classical propositional logic).

𝐵 |= 𝐴 → 𝐵(M1)
¬𝐴 |= 𝐴 → 𝐵(M2)
¬(𝐴 → 𝐵) |= 𝐴(M3)
𝐴 → 𝐵 |= ¬𝐵 → ¬𝐴(M4)
𝐴 → 𝐵 |= (𝐴 ∧ 𝐶) → 𝐵(M5)

If English conditionals were material conditionals then the following inferences, cor-
responding to (M1)–(M5), would be valid.

(E1) There won’t be a nuclear war. Therefore: If Russia attacks the US with nuclear
weapons then there won’t be a nuclear war.

(E2) There won’t be a nuclear war. Therefore: If there will be a nuclear war then
nobody will die.

(E3) It is not the case that if it will rain tomorrow then the Moon will fall onto the
Earth. Therefore: It will rain tomorrow.

(E4) If our opponents are cheating, we will never find out. Therefore: If we will find
out that our opponents are cheating, then they aren’t cheating.

(E5) If you add sugar to your coffee, it will taste good. Therefore: If you add sugar
and vinegar to your coffee, it will taste good.

These inferences do not sound good. If we wanted to defend the view that English
conditionals are material conditionals we would have to explain why they sound bad
even though they are valid. We will not explore this option any further.
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Exercise 8.1
Can you find a different analysis of English conditionals that, like the material
analysis, would make conditionals truth-functional, but that would render all of
(E1)–(E5) invalid?

Even those who defend the material analysis of English conditionals admit that it does
not work for all English conditionals. Consider (2).

(2) If water is heated to 100∘ C, it evaporates.

This shouldn’t be translated as 𝑝 → 𝑞. Intuitively, (2) states that in all (normal) cases
where water is heated to 100∘ C, it evaporates. It is a quantified, or modal claim.

Another important class of conditionals that can’t be analysed as material conditionals
are so-called subjunctive conditionals. Compare the following two statements.

(3) If Shakespeare didn’t write Hamlet, then someone else did.
(4) If Shakespeare hadn’t written Hamlet, then someone else would have.

(3) seems true. Someone has written Hamlet; if it wasn’t Shakespeare then it must have
been someone else. But (4) is almost certainly false. After all, it is very likely that
Shakespeare did write Hamlet. And it is highly unlikely that if he hadn’t written Hamlet
– if he got distracted by other projects, say – then someone else would have stepped in
to write the exact same piece.

Sentences like (3) are called indicative conditionals. Intuitively, an indicative con-
ditional states that something is in fact the case on the assumption that something else
is the case. A subjunctive conditional like (4) states that something would be the case
if something else were the case. Typically we know that the “something else” is not in
fact the case. We know, for example, that Shakespeare wrote Hamlet and therefore that
the antecedent of (4) is false. For this reason, subjunctive conditionals are also called
counterfactual conditionals or simply counterfactuals.

It should be clear that subjunctive conditionals are not material conditionals. I said
that (4) is almost certainly false. But it almost certainly has a false antecedent. So the
corresponding material conditional is almost certainly true.
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8.2 Strict conditionals

One apparent difference between material conditionals 𝐴 → 𝐵 and conditionals in nat-
ural language is that 𝐴 → 𝐵 requires no connection between the antecedent 𝐴 and the
consequent 𝐵. Consider (1).

(1) If we leave after 5, we will miss the train.

Intuitively, someone who utters (1) wants to convey that missing the train is a necessary
consequence of leaving after 5 – that it is impossible to leave after 5 and still make it
to the train, given certain facts about the distance to the station, the time it takes to get
there, etc. This suggests that (1) should be formalized not as 𝑝 → 𝑞 but as □(𝑝 → 𝑞) or,
equivalently, ¬♢(𝑝 ∧ ¬𝑞).

Sentences that are equivalent to □(𝐴 → 𝐵) are called strict conditionals. The la-
bel goes back to C.I. Lewis (1918), who also introduced the abbreviation 𝐴 J 𝐵 for
□(𝐴 → 𝐵).

Lewis was not interested in ‘if …then …’ sentences. He introduced 𝐴 J 𝐵 to formalize
‘𝐴 implies 𝐵’ or ‘𝐴 entails 𝐵’. His intended use of J roughly matches our use of the
double-barred turnstile ‘|=’. But there are important differences. The turnstile is an
operator in our meta-language; Lewis’s J is an object-language operator that, like ∧ or
→ , can be placed between any two sentences in a formal language to generate another
sentence in the language. 𝑝 J (𝑞 J 𝑝) is well-formed, whereas 𝑝 |= (𝑞 |= 𝑝) is gibberish.
Moreover, while 𝑝 |= 𝑞 is simply false – because there are models in which 𝑝 is true and
𝑞 false – Lewis’s 𝑝 J 𝑞 is true on some interpretation of the sentence letters and false
on others. If 𝑝 means that it raining heavily and 𝑞 that it is raining, then 𝑝 J 𝑞 is true
because the hypothesis that it is raining heavily implies that it is raining.

Let’s set aside Lewis’s project of formalizing the concept of implication. Our goal
is to find an object-language construction that functions like ‘if …then …’ in English.
To see whether ‘… J …’ can do the job, let’s have a closer look at the logic of strict
conditionals.

Since 𝐴 J 𝐵 is equivalent to □(𝐴 → 𝐵), standard Kripke semantics for the box also
provides a semantics for strict conditionals. In Kripke semantics, □(𝐴 → 𝐵) is true at a
world 𝑤 iff 𝐴 → 𝐵 is true at all worlds 𝑣 accessible from 𝑤. And 𝐴 → 𝐵 is true at 𝑣 iff 𝐴
is false at 𝑣 or 𝐵 is true at 𝑣. We therefore have the following truth-conditions for strict
conditionals.
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Definition 8.1: Kripke semantics for J
If 𝑀 = ⟨𝑊, 𝑅, 𝑉 ⟩ is a Kripke model, then
𝑀, 𝑤 |= 𝐴 J 𝐵 iff for all 𝑣 such that 𝑤𝑅𝑣, either 𝑀, 𝑣 |≠ 𝐴 or 𝑀, 𝑣 |= 𝐵.

Exercise 8.2
𝐴 J 𝐵 is equivalent to □(𝐴 → 𝐵). Can you fill the blank in: ‘□𝐴 is equivalent to
—’, using no modal operator other than J?

As always, the logic of strict conditionals depends on what constraints we put on the
accessibility relation. Without any constraints,J does not validate modus ponens, in the
sense that 𝐴 J 𝐵 and 𝐴 together do not entail 𝐵. We can see this by translating 𝐴 J 𝐵
back into□(𝐴 → 𝐵) and setting up a tree. Recall that to test whether some premises entail
a conclusion, we start the tree with the premises and the negated conclusion.

1. □(𝐴 → 𝐵) (𝑤) (Ass.)
2. 𝐴 (𝑤) (Ass.)
3. ¬𝐵 (𝑤) (Ass.)

With the K-rules, where we don’t make any assumptions about the accessibility relation,
node 1 can’t be expanded, so there is nothing more we can do.

Exercise 8.3
Give a countermodel in which 𝑝 J 𝑞 and 𝑝 are true at some world while 𝑞 is false.

If we assume that the accessibility relation is reflexive, the tree closes:

4. 𝑤𝑅𝑤 (Ref.)
5. 𝐴 → 𝐵

hhhh
hhhh

hhhh
hh

VVVV
VVVV

VVVV
VV

(𝑤) (1,4)

6. ¬𝐴
x

(𝑤) (5) 7. 𝐵
x

(𝑤) (5)

It is not hard to show that modus ponens for J is valid on all and only the reflexive
frames. Reflexivity is precisely what we need to render modus ponens valid. Since
modus ponens looks plausible for English conditionals (as I’ve argued on p. 146), we’ll
probably want the relevant Kripke models to be reflexive.
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Exercise 8.4
Using the tree method, and translating 𝐴 J 𝐵 into □(𝐴 → 𝐵), confirm that follow-
ing claims hold, for all 𝐴, 𝐵, 𝐶.
(a) |=𝐾 𝐴 J 𝐴
(b) 𝐴 J 𝐵 |=𝐾 ¬𝐵 J ¬𝐴
(c) 𝐴 J 𝐵 |=𝐾 (𝐴 ∧ 𝐶) J 𝐵
(d) 𝐴 J 𝐵, 𝐵 J 𝐶 |=𝐾 𝐴 J 𝐶
(e) (𝐴 ∨ 𝐵) J 𝐶 |=𝐾 (𝐴 J 𝐶) ∧ (𝐵 J 𝐶)
(f) 𝐴 J (𝐵 J 𝐶) |=𝑇 (𝐴 ∧ 𝐵) J 𝐶
(g) 𝐴 J 𝐵 |=𝑆4 𝐶 J (𝐴 J 𝐵)
(h) ((𝐴 J 𝐵) J 𝐶) J (𝐴 J 𝐵) |=𝑆5 𝐴 J 𝐵

Which of these schemas do you think should be valid if we assume that 𝐴 J 𝐵
translates indicative conditionals ‘if 𝐴 then 𝐵’?

We could now look at other conditions on the accessibility relation and decide whether
they should be imposed, based on what they would imply for the logic of conditionals.
But let’s take a shortcut.

I have suggested that sentence (1) might be understood as saying that it is impossible
to leave after 5 and still make it to the train. Impossible in what sense? There are many
possible worlds at which we leave after 5 and still make it to the train. There are, for
example, worlds at which the train departs two hours later, worlds at which we live right
next to the station, and so on. When I say that it is impossible to leave after 5 and still
make it to the train, I arguably mean that it is impossible given what we know about the
departure time, our location, etc.

Generalizing, a tempting proposal is that the accessibility relation that is relevant for
indicative conditionals like (1) is the epistemic accessibility relation that we studied in
chapter 5, where a world 𝑣 is accessible from 𝑤 iff it is compatible with what is known at
𝑤. On that hypothesis, the logic of indicative conditionals is determined by the logic of
epistemic necessity. We don’t need to figure out the relevant accessibility relation from
scratch.

Since knowledge varies from agent to agent, the present idea implies that the truth-
value of indicative conditionals should be agent-relative. This seems to be confirmed by
the following puzzle, due to Allan Gibbard.

Sly Pete and Mr. Stone are playing poker on a Mississippi riverboat. It is
now up to Pete to call or fold. My henchman Zack sees Stone’s hand, which
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is quite good, and signals its content to Pete. My henchman Jack sees both
hands, and sees that Pete’s hand is rather low, so that Stone’s is the winning
hand. At this point the room is cleared. A few minutes later, Zack slips me
a note which says ‘if Pete called, he won’, and Jack slips me a note which
says ‘if Pete called, he lost’.

The puzzle is that Zack’s note and Jack’s note are intuitively contradictory, yet they both
seem to be true.

We can resolve the puzzle if we understand the conditionals as strict conditionals with
an agent-relative epistemic accessibility relation. Take Zack. Zack knows that Pete
knows Stone’s hand. He also knows that Pete would not call unless he has the better
hand. So among the worlds compatible with Zack’s knowledge, all worlds at which Pete
calls are worlds at which Pete wins. If 𝑝 translates ‘Pete called’ and 𝑞 ‘Pete won’, then
𝑝 J 𝑞 is true relative to Zack’s information state. Relative to Jack’s information state,
however, the same sentence is false. Jack knows that Stone’s hand is better than Pete’s,
but he doesn’t know that Pete knows Stone’s hand. Among the worlds compatible with
Jack’s knowledge, all worlds at which Pete calls are therefore worlds at which Pete loses.
Relative to Jack’s information state, 𝑝 J ¬𝑞 is true.

Another advantage of the “epistemically strict” interpretation is that it might explain
why indicative conditionals with antecedents that are known to be false seem defective.
For example, imagine a scenario in which Jones has gone to work. In that scenario, is
(2) true or false?

(2) If Jones has not gone to work then he is helping his neighbours.

The question is hard to answer – and not because we lack information about the scenario.
Once we are told that Jones has gone to work, it is unclear how we are meant to assess
whether Jones is helping his neighbours if he has not gone to work. On the epistemically
strict interpretation, (2) says that Jones is helping his neighbours at all epistemically
accessible worlds at which Jones hasn’t gone to work. Since we know that Jones has
gone to work, there are no epistemically accessible worlds at which he hasn’t gone to
work. And if there are no 𝐴-worlds then we naturally balk at the question whether all
𝐴-worlds are 𝐵-worlds. (In logic, we resolve to treat ‘all 𝐴s are 𝐵’ as true if there are no
𝐴s. Accordingly, (2) comes out true on the epistemically strict analysis. But we can still
explain why it seems defective.)

We have found a promising alternative to the hypothesis that indicative conditionals
are material conditionals. According to the present alternative, they are epistemically
strict conditionals – strict conditionals with an epistemic accessibility relation.
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What about subjunctive conditionals? Return to the two Shakespeare conditionals
from the previous section. When we evaluate the indicative sentence – ‘If Shakespeare
didn’t write Hamlet, then someone else did’ – we hold fixed our knowledge that Ham-
let exists; worlds where the play was never written are inaccessible. That’s why the
conditional is true. At all accessible worlds at which Shakespeare didn’t write Hamlet,
someone else wrote the play. When we evaluate the subjunctive conditional – ‘If Shake-
speare hadn’t written Hamlet, then someone else would have’ – we do consider worlds
at which Hamlet was never written, even though we know that the actual world is not
of that kind. If subjunctive conditionals are strict conditionals, then their accessibility
relation does not track our knowledge or information. Unfortunately, as we are going to
see in the next section, it is hard to say what else it could track.

This is one problem for the strict analysis of natural-language conditionals. Another
problem lies in the logic of strict conditionals. Remember (E1)–(E5) from page 146.
If English conditionals are strict conditionals, then (E1)–(E3) are invalid. For example,
while 𝑞 entails 𝑝 → 𝑞, it does not entail 𝑝 J 𝑞. But the strict analogs of (M4) and (M5)
still hold, no matter what we say about accessibility (see exercise 8.4):

𝐴 J 𝐵 |= ¬𝐵 J ¬𝐴;
𝐴 J 𝐵 |= (𝐴 ∧ 𝐶) J 𝐵.

So we still predict that the inferences (E4) and (E5) are valid.

(E4) If our opponents are cheating, we will never find out. Therefore: If we will find
out that our opponents are cheating, then they aren’t cheating.

(E5) If you add sugar to your coffee, it will taste good. Therefore: If you add sugar
and vinegar to your coffee, it will taste good.

Exercise 8.5
The badness of (E4) and (E5) suggests that indicative conditionals can’t be anal-
ysed as strict conditionals. Can you give a similar argument suggesting that sub-
junctive conditionals can’t be analysed as strict conditionals?

Exercise 8.6
A plausible norm of pragmatics is that a sentence should only be asserted if it is
known to be true. Let’s call a sentence assertable if it is known to be true. Show
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that if the logic of knowledge is at least S4, then an epistemically strict conditional
𝐴 J 𝐵 is assertable iff the corresponding material conditional 𝐴 → 𝐵 is assertable.

Exercise 8.7
Explain why the ‘or-to-if’ inference from ‘𝑝 or 𝑞’ to ‘if not 𝑝 then 𝑞’ is invalid on
the assumption that the conditional is epistemically strict. How could a friend of
this assumption explain why the inference nonetheless looks reasonable, at least
in normal situations? (Hint: Remember the previous exercise.)

8.3 Variably strict conditionals

Let’s have a closer look at subjunctive conditionals. As I am writing these notes, I am
sitting in Coombs Building, room 2228, with my desk facing the wall to Al Hájek’s office
in room 2229. In light of these facts, (1) seems true.

(1) If I were to drill a hole through the wall behind my desk, the hole would come out
in Al’s office.

There is no logical connection between the antecedent of (1) and the consequent. There
are many possible worlds at which I drill a hole through the wall behind my desk and
don’t reach Al’s office – for example, worlds at which my desk faces the opposite wall,
worlds at which Al’s office is in a different room, and so on. If (1) is a strict conditional
then all such worlds must be inaccessible.

Now consider (2).

(2) If the office spaces had been randomly reassigned yesterday then Al’s office would
(still) be next to mine.

(2) seems false, or at least very unlikely. But if (2) is a strict conditional, and worlds at
which Al is not in room 2229 or I am not in 2228 are inaccessible – as they seem to be for
(1) – then (2) should be true. Among worlds at which I am in 2228 and Al is in 2229, all
worlds at which the office spaces have been randomly reassigned yesterday are worlds at
which Al’s office is next to mine. When we evaluate (2), it looks like we no longer hold
fixed who is in which office. Worlds that were inaccessible for (1) are accessible for (2).

So the accessibility relation, at least for subjunctive conditionals, appears to vary from
conditional to conditional. As David Lewis put it, subjunctive conditionals seem to be
not strict, but “variably strict”.
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Let’s try to get a better grip on how this might work. (What follows is a slightly
simplified version of an analysis developed by Robert Stalnaker and David Lewis in the
1960s.)

Intuitively, when we ask what would have been the case if a certain event had oc-
curred, we are looking at worlds that are much like the actual world up to the time of the
event. Then these worlds deviate in some minimal way to allow the event to take place.
Afterwards the worlds unfold in accordance with the general laws of the actual world.

For example, if we wonder what would have happened if Shakespeare hadn’t written
Hamlet, we are interested in worlds that are like the actual world until 1599, at which
point some mundane circumstances prevent Shakespeare from writing Hamlet. We are
not interested in worlds at which Shakespeare was never born, or in which the laws of
nature are radically different from the laws at our world. One might reasonably judge
that Shakespeare would have been a famous author even if he hadn’t written Hamlet,
although we would hardly be famous in worlds in which he was never born.

Likewise for (1). Here we are considering worlds that are much like the actual world
up to now, at which point I decide to drill a hole and find a suitable drill. These changes
do not require my office to be in a different room. Worlds where I’m not in room 2228
can be ignored. Figuratively speaking, such worlds are “too remote”: they differ from
the actual world in ways that are not required to make the antecedent true.

This suggests that a subjunctive conditional is true iff the consequent is true at the
“closest” worlds at which the antecedent is true – where “closeness” is a matter of simi-
larity in certain respects. The closest worlds (to the actual world) at which Shakespeare
didn’t write Hamlet are worlds that almost perfectly match the actual world until 1599,
then deviate a little so that Shakespeare didn’t write Hamlet, and afterwards still resem-
ble the actual world with respect to the general laws of nature. We will not try to spell
out in full generality what the relevant closeness measure should look like.

Let ‘𝑣 ≺𝑤 𝑢’ mean that 𝑣 is closer to 𝑤 than 𝑢, in the sense that 𝑣 differs less than 𝑢
from 𝑤 in whatever respects are relevant to the interpretation of subjunctive conditionals.

We make the following structural assumptions about the world-relative ordering ≺.

1. If 𝑣 ≺𝑤 𝑢 then 𝑢 ⊀𝑤 𝑣. (Asymmetry)
2. If 𝑣 ≺𝑤 𝑢, then for all 𝑡 either 𝑣 ≺𝑤 𝑡 or 𝑡 ≺𝑤 𝑢. (Quasi-connectedness)
3. For any non-empty set of worlds 𝑋 and world 𝑤 there is a 𝑣 in 𝑋 such that there is

no 𝑢 in 𝑋 with 𝑢 ≺𝑤 𝑣.

Asymmetric and quasi-connected relations are known as weak orders. Asymmetry is
self-explanatory. Quasi-connectedness is more often called negative transitivity, because
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it is equivalent to the assumption that if 𝑡 ≮ 𝑠 and 𝑠 ≮ 𝑟 then 𝑡 ≮ 𝑟. It ensures that
the “equidistance” relation that holds between 𝑣 and 𝑢 if neither 𝑣 ≺𝑤 𝑢 nor 𝑢 ≺𝑤 𝑣
is an equivalence relation. With these two assumptions, we can picture each world 𝑤
as associated with nested spheres of worlds; 𝑣 ≺𝑤 𝑢 means that 𝑣 is in a more narrow
𝑤-sphere than 𝑢.

Assumption 3 is known as the Limit Assumption. It ensures that for any consistent
proposition 𝐴 and world 𝑤, there is a set of closest 𝐴-worlds. Without the Limit As-
sumption, there could be an infinite chain of ever closer 𝐴-worlds, with no world being
maximally close.

Exercise 8.8
Show that asymmetry and quasi-connectedness imply transitivity.

Exercise 8.9
Define ⪯𝑤 so that 𝑣 ⪯𝑤 𝑢 iff 𝑢 ⊀𝑤 𝑣 (that is, iff it is not the case that 𝑢 ≺𝑤 𝑣).
Informally, 𝑣 ⪯𝑤 𝑢 means that 𝑣 is at least as similar to 𝑤 in the relevant respects
as 𝑢. Many authors use ⪯ rather than ≺ as their basic notion. Can you express the
above three conditions on ≺ in terms of ⪯?

We are going introduce a variably strict operator� so that 𝐴� 𝐵 is true at a world
𝑤 iff 𝐵 is true at the closest worlds to 𝑤 at which 𝐴 is true. Models for a language with
the� operator must contain closeness orderings ≺ on the set of worlds.

Definition 8.2
A similarity model consists of
• a non-empty set 𝑊 ,
• for each 𝑤 in 𝑊 a weak order ≺𝑤 that satisfies the Limit Assumption, and
• a function 𝑉 that assigns to each sentence letter a subset of 𝑊 .

To formally state the semantics of�, we can re-use a concept from section 6.3. Let
𝑆 be an arbitrary set of worlds, and let 𝑤 be some world (that may or may nor be in 𝑆). It
will be useful to have an expression that picks out the most similar worlds to 𝑤, among
all the worlds in 𝑆. This expression is Min≺𝑤(𝑆), which we have defined as follows in
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section 6.3:

Min≺𝑤(𝑆) =def {𝑣 ∶ 𝑣 ∈ 𝑆 ∧ ¬∃𝑢(𝑢 ∈ 𝑆 ∧ 𝑢 ≺𝑤 𝑣)}.

Now {𝑢 ∶ 𝑀, 𝑢 |= 𝐴} is the set of worlds (in model 𝑀) at which 𝐴 is true. So Min≺𝑤({𝑢 ∶
𝑀, 𝑢 |= 𝐴}) is the set of those 𝐴-worlds that are closest to 𝑤. We want 𝐴� 𝐵 to be true
at 𝑤 iff 𝐵 is true at the closest 𝐴-worlds to 𝑤.

Definition 8.3: Similarity semantics for �
If 𝑀 is a similarity model and 𝑤 a world in 𝑀, then
𝑀, 𝑤 |= 𝐴� 𝐵 iff 𝑀, 𝑣 |= 𝐵 for all 𝑣 in Min≺𝑤({𝑢 ∶ 𝑀, 𝑢 |= 𝐴}).

You may notice that 𝐴 � 𝐵 works almost exactly like O(𝐵/𝐴) from section 6.3.
There, I said that for any world 𝑤 in any deontic ordering model 𝑀,

𝑀, 𝑤 |= O(𝐵/𝐴) iff 𝑀, 𝑣 |= 𝐵 for all 𝑣 in Min≺𝑤({𝑢 ∶ 𝑤𝑅𝑢 and 𝑀, 𝑢 |= 𝐴}).
The main difference is that conditional obligation is sensitive to an accessibility relation.
If that relation is an equivalence relation then this makes no difference to the logic.

Of course, the order ≺ in deontic ordering models is supposed to represent degree of
conformity to norms, while the order ≺ in similarity models represents a certain simi-
larity ranking in the evaluation of subjunctive conditionals. A different type of order-
ing might be in play when we evaluate indicative conditionals, which some have argued
should also be interpreted as variably strict. But again, these differences in interpretation
don’t affect the logic.

Suppose we add the� operator to the language of standard propositional logic. The
set of sentences in this language that are true at all worlds in all similarity models is
known as system V. There are tree rules and axiomatic calculi for this system, but they
aren’t very user-friendly. We will only explore the system semantically.

To begin, we can check whether modus ponens is valid for �. That is, we check
whether the truth of 𝐴 and 𝐴� 𝐵 at a world in a similarity model entails the truth of 𝐵.

Assume that 𝐴 and 𝐴� 𝐵 are true at a world 𝑤. By definition 8.3, the latter means
that 𝐵 is true at all the closest 𝐴-worlds to 𝑤 (at all worlds in Min≺𝑤({𝑢 ∶ 𝑀, 𝑢 |= 𝐴})).
The world 𝑤 itself is an 𝐴-world. If we could show that 𝑤 is among the closest 𝐴-worlds
to itself then we could infer that 𝐴 is true at 𝑤.

Without further assumptions, however, we can’t show this. If we want to validate
modus ponens, we must add a further constraint on our models: that every world is
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among the closest worlds to itself. More precisely,

for all worlds 𝑤 and 𝑣, 𝑣 ⊀𝑤 𝑤.

This assumption is known as Weak Centring. The logic we get if we impose this con-
straint is system VC.

Exercise 8.10
Should we accept Weak Centring for deontic ordering models?

Exercise 8.11
Explain why 𝐴� 𝐵 entails 𝐴 → 𝐵, assuming Weak Centring.

Exercise 8.12
Show that if 𝐴 is true at no worlds, then 𝐴� 𝐵 is true.

None of the problematic inferences (E1)–(E5) are valid if the relevant conditionals
are interpreted as variably strict. (E5), for example, would assume that 𝑝 � 𝑟 en-
tails (𝑝 ∧ 𝑞) � 𝑟. But it does not. We can give a countermodel with two worlds

𝑝, 𝑟
𝑤

𝑝, 𝑞
𝑣

𝑤 and 𝑣; 𝑝 is true at both worlds, 𝑞 is true only at 𝑣, and
𝑟 only at 𝑤; if 𝑤 is closer to itself than 𝑣, then 𝑝 � 𝑟
is true at 𝑤 (because the closest 𝑝-worlds to 𝑤 are all
𝑟-worlds), but (𝑝 ∧ 𝑞) � 𝑟 is false at 𝑤 (because the
closest (𝑝 ∧ 𝑞)-worlds to 𝑤 aren’t all 𝑟-worlds).

The diagram on the right represents this model. The
circles around 𝑤 depict the similarity spheres. 𝑤 is closer
to 𝑤 than 𝑣 because it is in the innermost sphere around
𝑤, while 𝑣 is only in the second sphere. (If 𝑣 were also
in the innermost sphere then the two worlds would be
equally close to 𝑤. That’s allowed.) In general, we can represent the assumption that a
world 𝑣 is closer to a world 𝑤 than a world 𝑢 (𝑣 ≺𝑤 𝑢) by putting 𝑣 is in a closer sphere
around 𝑤 than 𝑢. I have not drawn any spheres around 𝑣 because it doesn’t matter what
these look like.
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Exercise 8.13
Draw countermodels showing that (E1)–(E4) are invalid if the conditionals are
translated as statements of the form 𝐴 � 𝐵. (Hint: You never need more than
two worlds.)

The logic of variably strict conditionals is weaker than the logic of strict conditionals.
Some have argued that it is too weak to explain our reasoning with conditionals. It is, for
example, not hard to see that the following statements are all false. (The corresponding
statements for J are true; see exercise 8.4.)

1. 𝑝� 𝑞, 𝑞� 𝑟 |= 𝑝� 𝑟
2. ((𝑝 ∨ 𝑞)� 𝑟) |= (𝑝� 𝑟) ∧ (𝑞� 𝑟)
3. 𝑝� (𝑞� 𝑟) |= (𝑝 ∧ 𝑞)� 𝑟

If English conditionals are variably strict, this means (for example) that we can’t infer ‘if
𝑝 then 𝑟’ from ‘if 𝑝 then 𝑞’ and ‘if 𝑞 then 𝑟’. But isn’t this a valid inference?

Well, perhaps not. Stalnaker gave the following counterexample, using cold-war era
subjunctive conditionals.

If J. Edgar Hoover had been born a Russian, he would be a communist.
If Hoover were a communist, he would be a traitor.
Therefore, if Hoover had been born a Russian, he would be a traitor.

Exercise 8.14
Can you find a case where ‘if 𝑝 or 𝑞 then 𝑟’ does not appear to entail ‘if 𝑝 then 𝑟’
and ‘if 𝑞 then 𝑟’? You can use either indicative or subjunctive conditionals. (Hint:
Try to find a case in which ‘if 𝑝 or 𝑞 then 𝑝’ sounds acceptable.)

The semantics I have presented for� is a middle ground between that of Lewis and
Stalnaker. Stalnaker assumes that ≺𝑤 is not just quasi-connected, but connected: for any
𝑤, 𝑣, 𝑢, either 𝑣 ≺𝑤 𝑢 or 𝑣 = 𝑢 or 𝑢 ≺𝑤 𝑣. (‘𝑣 = 𝑢’ means that 𝑣 and 𝑢 are the same
world.) This rules out ties in similarity: no sphere contains more than one world.

Stalnaker’s logic (called C2) is stronger than Lewis’s VC. The following principle of
“Conditional Excluded Middle” is C2-valid but not VC-valid:

(CEM) (𝐴� 𝐵) ∨ (𝐴� ¬𝐵)
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Whether conditionals in natural language satisfy Conditional Excluded Middle is a
matter of ongoing debate. On the one hand, it is natural think that ‘it is not the case that
if 𝑝 then 𝑞’ entails ‘if 𝑝 then not 𝑞’, which suggests that the principle is valid. On the
other hand, suppose I have a number of coins in my pocket, none of which I have tossed.
What would have happened if I had tossed one of the coins? Arguably, I might have
gotten heads and I might have gotten tails. Either result is possible, but neither would
have come about.

Exercise 8.15
Explain why the following statements are true, for all 𝐴, 𝐵, 𝐶:
(a) 𝐴 ∧ 𝐵 |=𝐶2 𝐴� 𝐵
(b) 𝐴� (𝐵 ∨ 𝐶) |=𝐶2 (𝐴� 𝐵) ∨ (𝐴� 𝐶)

Lewis not only rejects connectedness, but also the Limit Assumption. He argued that
there might be an infinite chain of ever closer 𝐴-worlds. Definition 8.3 implies that if
there are no closest 𝐴-worlds then any sentence of the form 𝐴 � 𝐵 is true. That does
not seem right. Lewis therefore gives a more complicated semantics:

𝑀, 𝑤 |= 𝐴� 𝐵 iff either there is no 𝑣 for which 𝑀, 𝑣 |= 𝐴 or there is some
world 𝑣 such that 𝑀, 𝑣 |= 𝐴 and for all 𝑢 ≺𝑤 𝑣, 𝑀, 𝑤 |= 𝐴 → 𝐵.

It turns out that it makes no difference to the logic whether we impose the Limit Assump-
tion and use the old definition or don’t impose the Limit Assumption and use Lewis’s
new definition. The same sentences are valid either way.

8.4 Restrictors

Consider these two statements.

(1) If it rains we always stay inside.
(2) If it rains we sometimes stay inside.

On its most natural reading, (1) says that we stay inside at all times at which it rains. We
can express this in 𝔏𝑀 , using the box as a universal quantifier over the relevant times.
(So □𝐴 now means ‘always 𝐴’.) The translation would be □(𝑟 → 𝑠).

One might expect that (2) should then be translated as ♢(𝑟 → 𝑠), where the diamond is
an existential quantifier over the relevant times (‘sometimes’). But ♢(𝑟 → 𝑠) is equivalent
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to ♢(¬𝑟 ∨ 𝑠). This is true whenever ♢¬𝑟 is true. (2), however, isn’t true simply because
it doesn’t always rain. On its most salient reading, (2) says there are times at which it
rains and we stay inside. Its correct translation is ♢(𝑟 ∧ 𝑠).

This is a little surprising, given that (2) seems to contain a conditional. Does the
conditional here express a conjunction?

Things get worse if we look at (3).

(3) If it rains we usually stay inside.

Let’s introduce an operator M for ‘usually’, so that M 𝐴 is true at a time iff 𝐴 is true at
most times. Can you translate (3) with the help of M?

You can’t. Neither M(𝑟 → 𝑠) nor M(𝑟∧𝑠) capture the intended meaning of (3). M(𝑟∧𝑠)
entails that 𝑟 is usually true. But (3) doesn’t entail that it usually rains. M(𝑟 → 𝑠) is true
as long as 𝑟 is usually false, even if we’re always outside when it is raining. You could try
to bring in some of the new kinds of conditional that we’ve encountered in the previous
sections. How about M(𝑟 � 𝑠), or M(𝑟 J 𝑠), or 𝑟 � M 𝑠, or 𝑟 J M 𝑠? None of these
are adequate.

The problem is that (3) doesn’t say, of any particular proposition, that it is true at
most times. It doesn’t say that among all times, most are such-and-such. Rather, it
says that among times at which it rains, most times are times at which we stay inside.
The function of the ‘if’-clause in (3) is to restrict the domain of times over which the
‘usually’ operator quantifies.

Now return to (1) and (2). Suppose that here, too, the ‘if’-clause serves to restrict the
domain of times, so that ‘always’ and ‘sometimes’ only quantify over times at which it
rains. On that hypothesis, (1) says that among times at which it rains, all times are times
at which we stay inside, and (2) says that among times at which it rains, some times are
times at which we stay inside. This is indeed what (1) and (2) mean, on their most salient
interpretation.

As it turns out, ‘among 𝑟-times, all times are 𝑠-times’ is equivalent to ‘all times are
not-𝑟-times or 𝑠-times’. That’s why we can formalize (1) as □(𝑟 → 𝑠). ‘Among 𝑟-times,
some times are 𝑠-times’, on the other hand, is equivalent to ‘some times are 𝑟-times and
𝑠-times’. That’s why we can formalize (2) as ♢(𝑟 ∧𝑠). It would be wrong to think that the
conditional in (1) is material, the conditional in (2) is a conjunction, and the conditional
in (3) is something else altogether. A much better explanation is that the ‘if’-clause in
(1) does the exact same thing as in (2) and (3). In each case, it restricts the domain of
times over which the relevant operators quantify.

We can arguably see the same effect in (4) and (5).

(4) If the lights are on, Ada must be in her office.
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(5) If the lights are on, Ada might be in her office.

Letting the box express epistemic necessity, we can translate (4) as □(𝑝 → 𝑞). But (5)
can’t be translated as ♢(𝑝 → 𝑞), which would be equivalent to ♢(¬𝑝 ∨ 𝑞). Nor can we
translate (5) as 𝑝 →♢𝑞, which is entailed by ♢𝑞. It is easy to think of scenarios in which
(5) is false even though ‘Ada might be in her office’ is true. The correct translation of (5)
is plausibly ♢(𝑝 ∧ 𝑞). The sentence is true iff there is an epistemically accessible world
at which the lights are on and Ada is in her office.

As before, we can understand what is going if we assume that the ‘if’-clause in (4) and
(5) functions as a restrictor. The ‘if’-clause restricts the domain of worlds over which
‘must’ and ‘might’ quantify. (4) says that among epistemically possible worlds at which
the lights are on, all worlds are worlds at which Ada is in her office. (5) says that among
epistemically possible worlds at which the lights are on, some worlds are worlds at which
Ada is in her office.

Exercise 8.16
Translate ‘all dogs are barking’ and ‘some dogs are barking’ into the language
of predicate logic. Can you translate ‘most dogs are barking’ if you add a ‘most’
quantifier M so that M 𝑥𝐹𝑥 is true iff most things satisfy 𝐹𝑥?

The hypothesis that ‘if’-clauses are restrictors also sheds light on the problem of con-
ditional obligation.

(6) Jones ought to help his neighbours.
(7) If Jones doesn’t help his neighbours, he ought to not tell them that he’s coming.

In chapter 6, we analyzed ‘ought’ as a quantifier over the best of the circumstantially
accessible worlds. On this approach, (6) says that among the accessible worlds, all the
best ones are worlds at which Jones helps his neighbours. Suppose the ‘if’-clause in
(7) serves to restrict the domain of worlds, excluding worlds at which Jones helps his
neighbours. We then predict (7) to state that among the accessible worlds at which Jones
doesn’t help his neighbours, all the best worlds are worlds at which Jones doesn’t tell
his neighbours that he’s coming. This can’t be expressed by combining the monadic
O quantifier with truth-functional connectives. Hence we had to introduce a primitive
binary operator O(⋅/⋅).

The upshot of all this is that we can make sense of a wide range of puzzling phenomena
by assuming that ‘if’-clauses are restrictors. Their function is to restrict the domain or
worlds or times over which modal operators quantify.
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8 Conditionals

What, then, is the purpose of ‘if’-clauses in “bare” conditionals like (8) and (9), where
there are no modal operators to restrict?

(8) If Shakespeare didn’t write Hamlet, then someone else did.
(9) If Shakespeare hadn’t written Hamlet, then someone else would have.

Here opinions vary. One possibility, prominently defended by the linguist Angelika
Kratzer, is that even bare conditionals contain modal operators. Arguably, ‘would’ in
(9) functions as a kind of box. If this box is a simple quantifier over circumstantially ac-
cessible worlds, and the ‘if’-clause in (9) restricts its domain, then (9) can be formalized
as □(𝑝 → 𝑞). If, on the other hand, ‘would’ in (9) works more light ‘ought’ – if it quanti-
fyies over the closest of the accessible worlds –, and the ‘if’-clause restricts the domain
of accessible worlds, then the resulting truth-conditions are those of 𝑝 � 𝑞. Both the
strict and the variably strict analysis of (9) are therefore compatible with the hypothesis
that ‘if’-clauses are restrictors.

What about (8)? This sentence really doesn’t appear to contain a relevant modal.
Kratzer suggests that it contains an unpronounced epistemic ‘must’: (8) says that if
Shakespeare didn’t write Hamlet then someone else must have written Hamlet. Assum-
ing that the ‘if’-clause restricts the domain of this operator, bare indicative conditionals
would be equivalent to strict epistemic conditionals.

Exercise 8.17
Suppose bare indicative conditionals like (8) contain a box operator □ whose ac-
cessibility relation relates each world to itself and to no other world. (This is a
redundant operator insofar as □𝐴 is equivalent to 𝐴.) Assume the ‘if’-clause re-
stricts the domain of that operator. What are the resulting truth-conditions of (8)?

Exercise 8.18
Besides “would counterfactuals” there are also “might counterfactuals” like

(10) If I had played the lottery, I might have won.

Suppose ‘might’ is the dual of ‘would’, and suppose the ‘if’-clause in (10) restricts
the domain of worlds over which ‘might’ quantifies. It follows that ‘if 𝐴 then
might 𝐵’ is true iff 𝐵 holds at some of the closest/accessible 𝐴-worlds. (‘Closest’
or ‘accessible’ depending on how we understand the ‘would’/‘might’ operators.)
Can you see why this casts doubt on the validity of Conditional Excluded Middle?
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9.1 Predicate logic recap

In these last two chapters, we are going to add the resources of first-order predicate logic
to those of propositional modal logic. Let’s begin by reviewing the syntax and semantics
of classical, non-modal predicate logic.

The language 𝔏𝑃 of first-order predicate logic consists of predicates 𝐹0, 𝐹1, 𝐹2, … ,
𝐺0, 𝐺1, 𝐺2, …, individual constants (or names) 𝑎, 𝑏, 𝑐, …, individual variables 𝑥, 𝑦, 𝑧, …,
the logical symbols ¬, ∧, ∨, → , ↔, ∀, ∃, and the parentheses ( and ). Individual vari-
ables and constants are also called (singular) terms.

Atomic sentences of 𝔏𝑃 are formed by conjoining a predicate with zero or more terms.
Each predicate takes a fixed number of terms, as indicated by its numerical superscript:
𝐹1 is a one-place predicate that combines with one term to form a sentence, 𝐹2 is two-
place, and so on. In practice, we usually omit the superscripts, because context makes
clear what kind of predicate is in play. 𝐹𝑎 ∨ 𝐺𝑎𝑏, for example, is well-formed only if 𝐹
is one-place and 𝐺 two-place.

In English, a predicate is what is what you get when you remove all names from a sen-
tence. Removing ‘Bob’ from ‘Bob is hungry’ yields the predicate ‘– is hungry’. From
‘Bob is in Rome’, we get the two-place predicate ‘– is in –’. From ‘Bob saw Carol’s fa-
ther in Jerusalem’, we could get the three-place-predicate ‘– saw –’s father in –’. When
we translate from English, we normally translate English names into 𝔏𝑃-names and (log-
ically simple) English predicates into 𝔏𝑃-predicates. ‘Bob is in Rome’ might become
𝐹𝑎𝑏, where 𝑎 translates ‘Bob’, 𝑏 ‘Rome’, and 𝐹 ‘– is in –’.

From atomic sentences, complex sentences are formed in the usual way by means of
the truth-functional operators ¬, ∧, ∨, → , ↔.

Another way to construct a complex sentence from a simpler sentence is to add a
quantifier in front of the simpler sentence. A quantifier is an expression of the form ∀𝜒
or ∃𝜒, where 𝜒 is some variable. A quantifier is said to bind the variable it contains: ∀𝑥
binds 𝑥, ∃𝑦 binds 𝑦, and so on.

In English, quantifier expressions are usually restricted to a particular subclass of the
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things under discussion: ‘all whales are mammals’, ‘some students went home’. The
𝔏𝑃-quantifiers ∀𝑥 and ∃𝑥 are unrestricted. They roughly correspond to ‘everything is
such that …’ and ‘something is such that …’. We can translate restricted quantifiers
by combining unrestricted quantifiers with truth-functional connectives. ‘All whales are
mammals’ is equivalent to ‘Everything is either not a whale or a mammal’; so it can be
translated as ∀𝑥(𝑊𝑥 → 𝑀𝑥). ‘Some students went home’ could be translated as ∃𝑥(𝑆𝑥 ∧
𝐻𝑥).

Variables are book-keeping devices. They function somewhat like pronouns in En-
glish. ∃𝑥(𝑆𝑥 ∧ 𝐻𝑥) might be read as ‘something is such that it is a student and it went
home’. By using different variables (𝑥, 𝑦, 𝑧, …), we can disambiguate statements with
nested quantifiers. Consider

Every dog barked at a tree.
This can mean that there is a particular tree at which all the dogs barked, but it can also
mean that each dog found some tree to bark at – possibly different trees for different dogs.
The first reading could be translated as

∃𝑦(𝑇𝑦 ∧ ∀𝑥(𝐷𝑥 → 𝐵𝑥𝑦)),

the second as

∀𝑥(𝐷𝑥 → ∃𝑦(𝑇𝑦 ∧ 𝐵𝑥𝑦)).

Some more terminology. Recall that the scope of an operator (token) in a sentence
is the shortest well-formed subsentence in which it occurs. In ∃𝑦(𝑇𝑦 ∧ ∀𝑥(𝐹𝑥 → 𝐵𝑥𝑦)),
the scope of the quantifier ∀𝑥 is the subsentence ∀𝑥(𝐹𝑥 → 𝐵𝑥𝑦). If an occurrence of a
variable lies in the scope of a quantifier that binds the variable, then the occurrence is
called bound, otherwise it is free. In ∀𝑥(𝐹𝑥 → 𝐵𝑥𝑦), all occurrences of 𝑥 are bound, but
𝑦 is free.

A sentence containing free variables is called open. Sentences that aren’t open are
closed. Intuitively, only closed sentences make complete statements. For this reason,
some authors reserve the word ‘sentence’ for closed sentences, referring to open sen-
tences as ‘formulas’. (Others call every 𝔏𝑃-sentence a ‘formula’.)

Exercise 9.1
Translate the following sentences into 𝔏𝑃.
(a) Keren and Keziah are sisters of Jemima.
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(b) All myriapods are oviparous.
(c) Fred has a new car.
(d) Not every student loves logic.
(e) Every student who loves logic loves something.

Like sentences of modal propositional logic, sentences of predicate logic are inter-
preted relative to a model. A model of predicate logic first of all specifies an individual
domain 𝐷 over which the quantifiers are said to range. If we read ∀𝑥 as ‘everything
is such that’ and ∃𝑥 as ‘something is such that’ then the relevant “somethings” are the
members of the domain 𝐷.

The remainder of a model is an interpretation function 𝑉 that assigns

(a) to each name a member of 𝐷,
(b) to each zero-place predicate a truth-value,
(c) to each one-place predicate a subset of 𝐷, and
(d) to each 𝑛-place predicate with 𝑛 > 1 a set of 𝑛-tuples from 𝐷.

An “𝑛-tuple from 𝐷” is simply a list of length 𝑛, all elements of which are in 𝐷. Repeti-
tions are allowed, so if Bob is a member of 𝐷, then ⟨Bob, Bob⟩ counts as a 2-tuple from
𝐷. (2-tuples are more commonly called pairs.) We can subsume condition (c) under
condition (d) by assuming that a 1-tuple from 𝐷 is a member of 𝐷. We can subsume (b)
under (d) by identifying the truth-value False with the empty tuple ∅ and the truth-value
True with {∅}. (Don’t worry if you find this confusing or objectionable. We won’t be
using zero-ary predicates.)

Definition 9.1
A (classical) first-order model is a pair ⟨𝐷, 𝑉 ⟩ consisting of
• a non-empty set 𝐷, and
• a function 𝑉 that assigns to each name a member of 𝐷 and to each 𝑛-place

predicate a set of 𝑛-tuples from 𝐷.

As always, the purpose of a model is to represent a conceivable scenario together with
an interpretation of the non-logical vocabulary. The non-logical vocabulary of 𝔏𝑃 are
the names and predicates, which is why these are interpreted by 𝑉 .

We assume that in any relevant scenario there are some things we want to talk about;
these things are represented by the domain. The members of 𝐷 are often called individ-
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uals, but this should not be taken to imply anything about their nature. An individual
might be a rock, a person, a symphony, a sentence, a number, or a possible world. Every
𝔏𝑃-name is assumed to pick out one of these individuals. (Different names can pick out
the same individual, and there can be individuals that aren’t picked out by any name.)

Intuitively, a predicate expresses a property or relation that may be instantiated by the
individuals in the domain. In order to determine the truth-value of a sentence like 𝐹𝑎
or ∃𝑥𝐹𝑥 in a given scenario, however, we only need to know which individuals in the
domain have the property expressed by 𝐹. Similarly, to determine the truth-value of
sentences like 𝑅𝑎𝑏 or ∀𝑥∃𝑦𝑅𝑥𝑦, we only need to know which pairs of individuals stand
in the relation expressed by 𝑅. That’s why the interpretation function in a first-order
model simply assigns sets of individuals or 𝑛-tuples of individuals to predicates. 𝐹𝑎 is
true in a given model iff the individual assigned to 𝑎 (in the model) is a member of the
set assigned to 𝐹; that is, iff 𝑉(𝑎) ∈ 𝑉(𝐹). Likewise, 𝑅𝑎𝑏 is true in a model iff the pair
of individuals assigned to 𝑎 and 𝑏 – the pair ⟨𝑉(𝑎), 𝑉(𝑏)⟩ – is in the set assigned to 𝑅.

In this way, the truth-value of every closed atomic sentences is determined. For truth-
functionally complex sentences, the standard rules apply: a negated sentence ¬𝐴 is true
iff the corresponding sentence 𝐴 is not true; 𝐴 ∧ 𝐵 is true iff 𝐴 and 𝐵 are both true; and
so on.

When we turn to quantified sentences, we face a problem. We can’t define the truth-
value of ∀𝑥𝐹𝑥 in terms of the truth-value of 𝐹𝑥, because an open sentence like 𝐹𝑥 doesn’t
have a truth-value. Interpretation functions interpret names and predicates; they say noth-
ing about variables. Even if we changed this and said that 𝑥 should also be interpreted
as picking out a member of the domain, we would have to ignore this interpretation if
we evaluate ∀𝑥𝐹𝑥. We want ∀𝑥𝐹𝑥 to be true iff 𝐹𝑥 is true no matter which individual
is assigned to 𝑥. We therefore define truth not just relative to a model, but relative to a
model and an assignment of individuals to variables.

To illustrate, consider a model with just two individuals, Alice and Bob, which are
picked out by the names 𝑎 and 𝑏 respectively. Let 𝑉(𝐹) be the set { Alice }, a set that
only contains Alice. So 𝐹𝑎 is true and 𝐹𝑏 false. The sentence 𝐹𝑥 is neither true nor false,
for the variable 𝑥 does not refer to any particular individual. All we can say is that 𝐹𝑥 is
“true of” Alice and “false of” Bob. That is, 𝐹𝑥 is true if we assign Alice to 𝑥 and false
if we assign Bob to 𝑥. ∃𝑥𝐹𝑥 is true because there is an individual (Alice) of which 𝐹𝑥
is true. Equivalently, ∃𝑥𝐹𝑥 is true because there is some assignment of individuals to
variables relative to which 𝐹𝑥 is true. ∀𝑥𝐹𝑥 is false because it is not the case that every
assignment of individuals to variables renders 𝐹𝑥 true.

So we’ll define truth relative to a model 𝑀 = ⟨𝐷, 𝑉 ⟩ and a variable assignment 𝑔.
A variable assignment is a function that maps variables to members of 𝐷. If we have
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nested quantifiers, as in ∀𝑥∃𝑦𝐺𝑥𝑦, we need to consider variable assignments that differ
from other assignments with respect to a particular variable. ∀𝑥∃𝑦𝐺𝑥𝑦 is true iff, no
matter what individual is assigned to 𝑥, there is some assignment of an individual to 𝑦
(but holding fixed the assignment to 𝑥) that makes 𝐺𝑥𝑦 true. Equivalently: ∀𝑥∃𝑦𝐺𝑥𝑦 is
true iff for every variable assignment 𝑔, there is some variable assignment 𝑔′ that differs
from 𝑔 at most in what it assigns to 𝑦 such that 𝐺𝑥𝑦 is true relative to 𝑔′.

Let’s say that (for any variable 𝜒) a variable assignment 𝑔′ is an 𝜒-variant of a variable
assignment 𝑔 iff 𝑔′ differs from 𝑔 at most in the value it assigns to 𝜒. Let’s also introduce
[𝜏]𝑀,𝑔 as shorthand for the individual picked out by a term 𝜏 in a model 𝑀 = ⟨𝐷, 𝑉 ⟩
relative to assignment 𝑔:

[𝜏]𝑀,𝑔 =def

⎧{
⎨{⎩

𝑉(𝜏) if 𝜏 is a name
𝑔(𝜏) if 𝜏 is a variable.

This is a compact way of saying that (1) for any variable 𝜒, [𝜒]𝑀,𝑔 is the individual
assigned to 𝜒 by 𝑔, and (2) for any name 𝜂, [𝜂]𝑀,𝑔 is the individual assigned to 𝜂 by the
interpretation function of 𝑀.

Now we can state the standard semantics of first-order predicate logic. (‘𝑀, 𝑔 |= 𝐴’ is
pronounced ‘𝐴 is true in 𝑀 relative to 𝑔’).

Definition 9.2: Semantics of first-order predicate logic
If 𝑀 = ⟨𝐷, 𝑉 ⟩ is a first-order model, 𝜙𝑛 is an 𝑛-place predicate (for 𝑛 ≥ 0),
𝜏1, … , 𝜏𝑛 are terms, 𝜒 is a variable, and 𝑔 is a variable assignment, then

(a) 𝑀, 𝑔 |= 𝜙𝑛𝜏1 … 𝜏𝑛 iff ⟨[𝜏1]𝑀,𝑔, … , [𝜏𝑛]𝑀,𝑔 ⟩ ∈ 𝑉(𝜙).
(b) 𝑀, 𝑔 |= ¬𝐴 iff 𝑀, 𝑔 |≠ 𝐴.
(c) 𝑀, 𝑔 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑔 |= 𝐴 and 𝑀, 𝑔 |= 𝐵.
(d) 𝑀, 𝑔 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑔 |= 𝐴 or 𝑀, 𝑔 |= 𝐵.
(e) 𝑀, 𝑔 |= 𝐴 → 𝐵 iff 𝑀, 𝑔 |≠ 𝐴 or 𝑀, 𝑔 |= 𝐵.
(f) 𝑀, 𝑔 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑔 |= 𝐴 → 𝐵 and 𝑀, 𝑔 |= 𝐵 → 𝐴.
(g) 𝑀, 𝑔 |= ∀𝜒𝐴 iff 𝑀, 𝑔′ |= 𝐴 for all 𝜒-variants 𝑔′ of 𝑔.
(h) 𝑀, 𝑔 |= ∃𝜒𝐴 iff 𝑀, 𝑔′ |= 𝐴 for some 𝜒-variant 𝑔′ of 𝑔.

Clause (a) says that, for example, 𝐹𝑎 is true in a model 𝑀 relative to an assignment 𝑔
iff in that model, the predicate 𝐹 applies to the individual picked out by 𝑎. Clauses (b)-(f)
say that the truth-functional operators are interpreted in the standard fashion. Clauses
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(g) and (h) tell us how quantified sentences are interpreted. ∃𝑥𝐹𝑥, for example, is true
relative to 𝑀 and 𝑔 iff 𝐹𝑥 is true relative to some assignment function 𝑔′ that differs from
𝑔 at most in what it assigns to 𝑥.

Definition 9.2 settles the truth-value of every 𝔏𝑃-sentence in every (first-order) model,
relative to any assignment function.

We can also define a concept of truth relative to a model, without reference to an
assignment function. Let’s say that an 𝔏𝑃-sentence is true in a model 𝑀 iff it is true in
𝑀 relative to every assignment function 𝑔 for 𝑀.

Finally, we say that an 𝔏𝑃-sentence is valid (in classical first-order logic) iff it is true
in all (classical, first-order) models. Equivalently: An 𝔏𝑃-sentence is valid iff it is true
in all models relative to all assignment functions.

On the present definition, 𝐹𝑥 → 𝐹𝑥 is valid, even though it does not make a complete
statement, due to the free variable 𝑥. To avoid this, some authors restrict the concept of
validity to closed sentences.

Exercise 9.2
Define a first-order model in which ∃𝑥𝐹𝑥 → ∀𝑥𝐹𝑥 is false. Demonstrate that the
sentence is false in your model by applying all relevant clauses from definition 9.2.

Exercise 9.3
The definition of truth in a model uses the method of supervaluation that we met
in section 7.4. Give examples to illustrate the following claims.

(a) If a sentence 𝐴 is not true in a model, it does not follow that ¬𝐴 is true in the
model.

(b) A disjunction 𝐴 ∨ 𝐵 can be true in a model even though neither 𝐴 nor 𝐵 is
true in the model.

9.2 Modal fragments of predicate logic

Much of the power and complexity of predicate logic comes from its ability to handle
nested quantifiers with different variables. For some applications, these complexities
aren’t needed, and we can simplify the semantics.

Consider a fragment 𝔏1
𝑃 of 𝔏𝑃 with only one variable 𝑥, no names, and only one-place

predicates. In 𝔏1
𝑃, we have sentences like 𝐹𝑥, ∀𝑥𝐺𝑥, ∀𝑥∃𝑥(𝐹𝑥 → 𝐺𝑥), but not 𝐹𝑎 or

∀𝑥∃𝑦(𝐹𝑥 → 𝐺𝑦).
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Following definition 9.1, a model for 𝔏1
𝑃 consists of a non-empty set 𝐷 and an interpre-

tation function 𝑉 that assigns to each predicate a subset of 𝐷. That is, for 𝔏1
𝑃 definition

9.1 can be simplified as follows:

A model of 𝔏1
𝑃 is a pair ⟨𝐷, 𝑉 ⟩ consisting of

• a non-empty set 𝐷, and
• a function 𝑉 that assigns to every 𝔏1

𝑃-predicate a subset of 𝐷.

We can also simplify definition 9.2. Since 𝔏1
𝑃 has only one variable 𝑥, an assignment

function for 𝔏1
𝑃 only needs to tell us which individual in 𝐷 is picked out by 𝑥. So we can

represent an entire assignment function for 𝔏1
𝑃 by a member of 𝐷. This leaves us with

the following semantics.

If 𝑀 = ⟨𝐷, 𝑉 ⟩ is a model for 𝔏1
𝑃, 𝑑 is a member of 𝐷, and 𝜙 is an 𝔏1

𝑃-predicate,
then
(a) 𝑀, 𝑑 |= 𝜙𝑥 iff 𝑑 ∈ 𝑉(𝜙).
(b) 𝑀, 𝑑 |= ¬𝐴 iff 𝑀, 𝑑 |≠ 𝐴.
(c) 𝑀, 𝑑 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑑 |= 𝐴 and 𝑀, 𝑑 |= 𝐵.
(d) 𝑀, 𝑑 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑑 |= 𝐴 or 𝑀, 𝑑 |= 𝐵.
(e) 𝑀, 𝑑 |= 𝐴 → 𝐵 iff 𝑀, 𝑑 |≠ 𝐴 or 𝑀, 𝑑 |= 𝐵.
(f) 𝑀, 𝑑 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑑 |= 𝐴 → 𝐵 and 𝑀, 𝑑 |= 𝐵 → 𝐴.
(g) 𝑀, 𝑑 |= ∀𝑥𝐴 iff 𝑀, 𝑑′ |= 𝐴 for all 𝑑′ ∈ 𝐷.
(h) 𝑀, 𝑑 |= ∃𝑥𝐴 iff 𝑀, 𝑑′ |= 𝐴 for some 𝑑′ ∈ 𝐷.

These definitions look a lot like definitions 2.1 and 2.2 from chapter 2. The only
difference is that the sentence letters from chapter 2 are now called predicates and written
in uppercase, the box is written ∀𝑥, the diamond ∃𝑥, and we always append the letter 𝑥
to sentence letters: we write ∀𝑥𝐹𝑥, not ∀𝑥𝐹. But it doesn’t really matter how a symbol
is called or how it is written.

The upshot is that propositional modal logic, interpreted as in chapter 2, can be re-
garded as a disguised fragment of first-order predicate logic. The sentence letters of 𝔏𝑀
are disguised (one-place) predicates, the box and the diamond are disguised quantifiers.
If we adopted the orthographic convention to write the box as ∀𝑥, the diamond as ∃𝑥,
and to always append the letter 𝑥 to (capitalised) sentence letters, 𝔏𝑀 would look just
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like 𝔏1
𝑃, and it would have the same semantics.

If we use chapter 3’s Kripke semantics rather than the simple semantics from chapter
2 to interpret 𝔏𝑀 , we get a different fragment of first-order predicate logic. The box
and the diamond are still disguised quantifiers, but this time they are restricted by the
accessibility relation. We could drop the disguise by writing □𝑝 as ∀𝑦(𝑅𝑥𝑦 → 𝑃𝑦) and
♢𝑝 as ∃𝑦(𝑅𝑥𝑦 ∧𝑃𝑦). The fragment of 𝔏𝑃 that now corresponds to 𝔏𝑀-sentences has two
variables 𝑥 and 𝑦 and one two-place predicate ‘𝑅’ in addition to the one-place predicates;
it no longer has unrestricted quantifiers.

What’s the point of the disguise? Why didn’t we write boxes and diamonds as 𝔏𝑃-
quantifiers all along? There are several reasons.

One is that we often use the box and the diamond to formalize pre-theoretic concepts
of which it is not obvious that they can be understood as a quantifiers over worlds. Some
hold that the correct semantics for obligation and permission, for example, is not Kripke
semantics, but neighbourhood semantics. The language of modal propositional logic
is neutral on this disagreement. Or think of provability logic, where the box formalizes
mathematical provability. As it turns out, one can give a Kripke semantics for provability,
but nobody thinks that this somehow reveals what provability really means. In provability
logic, □𝐴 means that 𝐴 is derivable from the axioms and rules of (say) ZFC; it would
not be illuminating to write this as ∀𝑦(𝑅𝑥𝑦 → 𝐴𝑦).

One might also argue that the syntax of modal logic conveniently resembles the surface
form of English statements that we may want to formalize. In ‘Bob knows that it is
raining’, for example, the object of Bob’s knowledge is specified by ‘it is raining’. It
seems appropriate to formalize the sentence in terms of an operator K that applies to
a sentence, 𝑝. If we “dropped the disguise”, the formalization would be ∀𝑦(𝑅𝑥𝑦 → 𝑃𝑦).
The sentence ‘it is raining’ would have to be translated by a predicate 𝑃 – a predicate
that applies to all and only the worlds at which it is raining.

There is a deeper point here. Sentences of modal logic are interpreted at a world
in a model. Modal logic looks at models “from the inside”, from the perspective of a
particular world. Predicate logic, by contrast, describes models “from the outside”, from
a God’s eye perspective. If we want to say that a particular individual has a property 𝑃 in
predicate logic, we need to pick out that individual among all the elements of the domain,
perhaps by a name. We can then say 𝑃𝑎. In modal logic, we can simply say 𝑝 to express
that the internal point from which we’re looking at the model has the relevant property.

For many applications, this internal perspective is natural. If we think about what is
possible or what the future will bring, our thinking takes place at a particular time, in
a particular world. We are looking at the structure of times and worlds from the inside.
When I say that it is raining, I mean that it is raining here and now, in this world. I don’t
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need to pick out the relevant time and place and world from a God’s eye perspective.
I can pick them out simply as the time and place and world at which I currently find
myself.

There are other, more pragmatic reasons to use the modal language 𝔏𝑀 rather than 𝔏𝑃.
The language of boxes and diamonds is simpler than the language of first-order predicate
logic. It has a simpler syntax, a simpler semantics, and allows for simpler proofs. For
almost all the conceptions of validity we have studied (K-validity, S4-validity, etc.), there
are efficient mechanical procedures to determine whether an arbitrary 𝔏𝑀-sentence is
valid or invalid, By contrast, there is no mechanical procedure at all to determine, for an
arbitrary 𝔏𝑃-sentence, whether it is valid or invalid.

You may wonder how this is possible given that 𝔏𝑀-sentence are just 𝔏𝑃-sentences
in disguise. The reason is that while every 𝔏𝑀-sentence is a disguised 𝔏𝑃-sentence, not
every 𝔏𝑃-sentence can be disguised as an 𝔏𝑀-sentence. There are many things one can
say in 𝔏𝑃 that can’t be said in 𝔏𝑀 . The 𝔏𝑃-sentence ∀𝑥𝑅𝑥𝑥, for example, states that 𝑅 is
reflexive. No sentence of 𝔏𝑀 has this meaning: there is no 𝔏𝑀-sentence that is true at a
world in a model iff the model’s accessibility relation is reflexive.

That’s why modal propositional logic, interpreted as in chapter 2 or 3, is a disguised
fragment of predicate logic. It is a simple and computationally attractive fragment that
takes an “internal” perspective on models.

Exercise 9.4
Since □𝐴 → 𝐴 corresponds to reflexivity, one might think that □𝑝 → 𝑝 is true at a
world in a model iff the model’s accessibility relation is reflexive. (a) Explain why
this is not correct. (b) Can you show that there is no 𝔏𝑀-sentence that is true at a
world in a model iff the model’s accessibility is reflexive?

9.3 Predicate logic proofs

If we want to know whether an 𝔏𝑃-sentence is valid or invalid, we could in principle
work through definition 9.2. Various proof systems for classical predicate logic offer a
more streamlined approach.

Let’s look at the tree method for classical predicate logic. Suppose we want to test
whether ∃𝑥(𝐹𝑥 ∧ 𝐺𝑥) → ∃𝑥𝐹𝑥 is valid. As always, we start the tree with the negation of
the target sentence:

1. ¬(∃𝑥(𝐹𝑥 ∧ 𝐺𝑥) → ∃𝑥𝐹𝑥) (Ass.)
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There is no world label because we’re not doing modal logic. Next, we apply the standard
rule for negated conditionals:

2. ∃𝑥(𝐹𝑥 ∧ 𝐺𝑥) (1)
3. ¬∃𝑥𝐹𝑥 (1)

Node 2 says that 𝐹𝑥 ∧ 𝐺𝑥 is true of some individual. To expand this node, we introduce
a new name 𝑎 for that individual, and infer 𝐹𝑎 ∧ 𝐺𝑎.

4. 𝐹𝑎 ∧ 𝐺𝑎 (2)

We expand the conjunction on node 4.

5. 𝐹𝑎 (4)
6. 𝐺𝑎 (4)

Next, we expand node 3, which says that 𝐹𝑥 is true of nothing. In particular then, 𝐹𝑥
can’t be true of 𝑎. So we add ¬𝐹𝑎:

7. ¬𝐹𝑎
x

(3)

The tree is closed because the sentence on node 7 is the negation of the sentence on node
5. The target sentence is valid.

To state the general rules, we need some more notation. If 𝐴 is a sentence and 𝜏1, 𝜏2
terms, let 𝐴[𝜏2/𝜏1] be the sentence obtained from 𝐴 by replacing all free occurrences
of 𝜏1 with 𝜏2. So 𝐹𝑥[𝑎/𝑥] is 𝐹𝑎, but ∀𝑥𝐹𝑥[𝑎/𝑥] is ∀𝑥𝐹𝑥 because this sentence contains
no free occurrences of 𝑥.

The general rule for expanding nodes of type ∃𝜒𝐴 is that you add a node 𝐴[𝜂/𝜒],
where 𝜂 is a “new” name that does not already occur on the relevant branch. If such a
node has been added to every open branch below ∃𝜒𝐴 then the ∃𝜒𝐴 node can be ticked
off. ∀𝜒𝐴 nodes can be expanded multiple times, once for each “old” name. So if ∀𝑥𝐴
occurs on a branch, and the branch contains the names 𝑎 and 𝑏 then we can add both
𝐴[𝑎/𝑥] and 𝐴[𝑏/𝑥]. If there is no old name on a branch, we are allowed to expand ∀𝜒𝐴
with a new name. ∀𝜒𝐴 nodes are never ticked off.

Here is a summary of the quantifier rules; ‘old or first’ means that the relevant name
either already occurs on the branch or it is introduced as the first name on the branch.
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∀𝜒𝐴

𝐴[𝜂/𝜒]
↑

old or first

∃𝜒𝐴

𝐴[𝜂/𝜒]
↑
new

¬∀𝜒𝐴

¬𝐴[𝜂/𝜒]
↑
new

¬∃𝜒𝐴

¬𝐴[𝜂/𝜒]
↑

old or first

If you want to read off a countermodel from an open branch, you can simply take the
domain 𝐷 to consist of all names that occur on the branch. For the interpretation function
𝑉 , you then stipulate that each name picks out itself – so that, for example, 𝑉(𝑎) = 𝑎
– and that a predicates 𝑃 applies to a tuple of names ⟨𝑎, 𝑏, … ⟩ iff 𝑃𝑎𝑏 … occurs on the
branch.

Exercise 9.5
Give tree proofs for the following sentences.
(a) ∀𝑥𝐹𝑥 → 𝐹𝑎
(b) ∀𝑥(𝐹𝑥 → 𝐺𝑥) → (∀𝑥𝐹𝑥 → ∀𝑥𝐺𝑥)
(c) ∀𝑥(𝐹𝑥 ∧ 𝐺𝑥) ↔ (∀𝑥𝐹𝑥 ∧ ∀𝑥𝐺𝑥)
(d) ∃𝑥∀𝑦𝐺𝑥𝑦 → ∀𝑦∃𝑥𝐺𝑥𝑦
(e) ∃𝑦∀𝑥(𝐹𝑦 → 𝐹𝑥)

There are also axiomatic calculi for predicate logic. We can, for example, use the
following axiom schemas:

¬∃𝜒𝐴 ↔ ∀𝜒¬𝐴(∀∃)
∀𝜒𝐴 → 𝐴[𝜂/𝜒](UI)
∀𝜒(𝐴 → 𝐵) → (𝐴 → ∀𝜒𝐵), if 𝜒 is not free in 𝐴(DI)

To these we would add the following rules. As in earlier chapters, Γ |=0 𝐴 means that 𝐴
is a truth-functional consequence of (the sentences in) Γ.

If Γ |=0 𝐴 and all members of Γ are on a proof, then one may add 𝐴.(CPL)
If 𝐴 occurs on a proof, then one may add ∀𝜒𝐴[𝜒/𝜂].(Gen)

These axioms and rules are sound and complete: everything that can be proved is
valid, and every valid (closed) sentence can be proved. The above tree rules are also
sound and complete.
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Exercise 9.6
The completeness proof for first-order trees (like the proof in chapter 4) shows
that if a sentence is valid then any fully expanded tree for that sentence will close,
provided the tree rules are applied in a sensible order. Why doesn’t this contradict
the claim I made in the previous section. that there is no mechanical procedure
to determine, for an arbitrary 𝔏𝑃-sentence, whether the sentence is valid? (Tree
proofs count as “mechanical”, so that’s not the problem.)

9.4 Modality de dicto and de re

We are now ready to add boxes and diamonds to the language of first-order predicate
logic. This gives us the standard language of first-order modal logic, or 𝔏𝑀𝑃. The
sentences of 𝔏𝑀𝑃 are defined as follows.

1. An 𝑛-place predicate followed by 𝑛 terms is an 𝔏𝑀𝑃-sentence.
2. If 𝐴 is an 𝔏𝑀𝑃-sentence, then so are ¬𝐴, ♢𝐴, and □𝐴.
3. If 𝐴 and 𝐵 are 𝔏𝑀𝑃-sentences, then so are (𝐴 ∧ 𝐵), (𝐴 ∨ 𝐵), (𝐴 → 𝐵) and (𝐴 ↔ 𝐵).
4. If 𝐴 is an 𝔏𝑀𝑃-sentence and 𝜒 is a variable, then ∀𝜒𝐴 and ∃𝜒𝐴 are 𝔏𝑀𝑃-sentence.
5. Nothing else is an 𝔏𝑀𝑃-sentence.

We continue to interpret the box and the diamond as (disguised) quantifiers. So 𝔏𝑀𝑃
effectively has two kinds of quantifiers: overt quantifiers of the form ∀𝜒 and ∃𝜒, and the
disguised quantifiers □ and ♢. This is only useful if the two kinds of quantifiers range
over different things. In applications of modal predicate logic, the box and the diamond
usually range over possible worlds or times, while the overt quantifiers range over things
like people, rocks, ghosts, etc., which are assumed to inhabit the worlds or times.

For example, consider the following inference, in which I’ve written the box as ‘K’.

Bob knows that all humans are mortal. K ∀𝑥(𝐻𝑥 → 𝑀𝑥)
Socrates is human. 𝐻𝑠
Therefore: Socrates is mortal. 𝑀𝑠

The knowledge operator K is a quantifier over the worlds compatible with Bob’s (implicit)
knowledge. K ∀𝑥(𝐻𝑥 → 𝑀𝑥) says that ∀𝑥(𝐻𝑥 → 𝑀𝑥) is true at every world compatible
with Bob’s knowledge. ∀𝑥(𝐻𝑥 → 𝑀𝑥) is assumed to quantify not over worlds, but over
things that exist relative to a world. ∀𝑥(𝐻𝑥 → 𝑀𝑥) is true at a world 𝑤 iff 𝐻𝑥 → 𝑀𝑥 is true
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of every inhabitant of 𝑤, meaning that every inhabitant of 𝑤 is either not human or mortal.
The inference is valid because the accessibility relation for knowledge is reflexive.

Imagine a lottery. Let’s read the box as ‘it is certain that’ and 𝑊 as ‘– is a winning
ticket’. Can you see what is expressed by the following two statements?

(1) □∃𝑥𝑊𝑥
(2) ∃𝑥□𝑊𝑥

(1) says that it is certain that some ticket wins: at every epistemically accessible world
there is a winning ticket. (2) says that there is a particular ticket of which we are sure that
it will win: there is an individual such that at every epistemically accessible world, it is
the winning ticket. (2) is only true if we know which ticket is the (or a) winning ticket.

Sentences like ∃𝑥□𝑊𝑥 are called de re, Latin for ‘of a thing’. Intuitively, ∃𝑥□𝑊𝑥
assert of a particular ticket that it has a modal property, namely the property of being the
certain winner. By contrast, □∃𝑥𝐹𝑥, merely states that the proposition (Latin, dictum)
∃𝑥𝐹𝑥 is certain. Sentences like this are called de dicto.

In general, an 𝔏𝑀𝑃-sentence is de re whenever it contains a variable that is free in the
scope of some modal operator. To determine whether a sentence 𝐴 is de re, first identify
all subsentences of 𝐴 that constitute the scope of a modal operator. (In ∃𝑥□𝑊𝑥, there is
one such subsentence: □𝑊𝑥.) Next, check if at least one of these subsentences contains
a free variable. (□𝑊𝑥 contains the free variable 𝑥.) If yes, the sentence 𝐴 is de re.

If a sentence contains a modal operator and is not de re, then it is de dicto. So
∀𝑥(𝐹𝑥 →□𝐺𝑥) and ∃𝑦□(∀𝑥𝐹𝑥 → 𝐹𝑦) are de re, but□∀𝑥𝐹𝑥 → 𝐹𝑎 is de dicto. ∀𝑥𝐹𝑥 → 𝐹𝑎
is neither de dicto nor de re, because it isn’t modal.

There is no consensus on how to classify sentences like □𝐹𝑎 that contain a name,
but no free variable, in the scope of a modal operator. One might argue that □𝐹𝑎 is de
dicto because it attributes a modal status – say, necessity – to the proposition 𝐹𝑎. But
one might also interpret the sentence as attributing a modal property to the individual
𝑎: the property of being necessarily 𝐹. The sentence should then be classified as de re.
Which of these two perspectives is more adequate depends on the precise semantics of
𝔏𝑀𝑃. We therefore have to postpone the question until the next chapter, where we will
consider some options for developing a semantics of 𝔏𝑀𝑃.

Many natural-language sentences are ambiguous between a de re reading and a de
dicto reading. Consider ‘something necessarily exists’. This can mean either that there
is an object which could not have failed to exist (∃𝑥□𝐸𝑥); but it can also mean that it is
necessary that something or other exists (□∃𝑥𝐸𝑥). The first reading is de re, the second
de dicto.
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Exercise 9.7
Translate the following sentences into modal predicate logic. (Some of them are
ambiguous.)
(a) John must be hungry.
(b) Anyone who is a cyclist must have legs.
(c) Every day might be our last.
(d) If anyone wants to leave early, they should do so quietly.
(e) Everyone who bought a ticket is allowed to enter.

Exercise 9.8
Which of your translations from the previous exercise are de re and which are de
dicto?

On some interpretations of the modal operators, one may question whether de re sen-
tences are intelligible. Suppose we interpret the box as ‘it is analytic that’ or ‘it is prov-
able that’. The things that are analytic or provable are sentences or propositions. 2+2=4,
for example, is provable in ZFC, and ‘all vixens are female foxes’ is analytic in English.
(Remember that a sentence is analytic if it is true in virtue of its meaning.) It is not clear
what it could mean to say that something is provable or analytic of a particular thing.

To illustrate the problem, let’s introduce the name ‘Julius’ for whoever invented the
zip. The sentence ‘Julius invented the zip’ is analytic. (In fact, ‘Julius invented the zip’
entails that someone invented the zip, which is not analytic. We should really use ‘If
anyone invented the zip, then Julius invented the zip’. Let’s ignore this complication.)
But is it analytic of the person who invented the zip that they invented the zip? The
problem is that this person has multiple names, and depending on which name we plug
into the schema ‘— invented the zip’, we sometimes get an analytic truth and sometimes
not. For ‘Julius’, the sentence is analytic; for whatever name the inventor of the zip was
given by his or her parents, the sentence is not analytic.

This kind of worry was prominently raised by W.V.O. Quine in the 1940s. It has since
faded, mostly because philosophers have turned their attention away from analyticity to
other interpretations of the box for which the problem is thought not to arise. But we
will return to the matter in section 10.4.
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9.5 Identity and descriptions

In applications of modal and non-modal predicate logic, it is often useful to have a special
predicate for identity. Let’s assume that 𝔏𝑃 and 𝔏𝑀𝑃 have the two-place predicate ‘=’.
The identity predicate is conventionally placed between its two arguments: we write
‘𝑎 = 𝑏’, not ‘=𝑎𝑏’. We also sometimes abbreviate ‘¬𝑎=𝑏’ as ‘𝑎 ≠ 𝑏’.

Unlike the other predicates of 𝔏𝑃 and 𝔏𝑀𝑃, the identity predicate counts as a logical
symbol. Its meaning is held fixed. In any model, 𝑎 = 𝑏 means that the individual picked
out by 𝑎 is the very same thing as the individual picked out by 𝑏. This is reflected by the
following clause, which we add to the semantics of predicate logic:

𝑀, 𝑔 |= 𝜏1 =𝜏2 iff [𝜏1]𝑀,𝑔 = [𝜏2]𝑀,𝑔.

It is easy to see that the sentence 𝑎 = 𝑎 is now valid, because 𝑎 and 𝑎 are guaranteed to
pick out the same individual. More interestingly, since the function of a name in classical
predicate logic is just to pick out an individual, it never matters which of two names we
use if they pick out the same individual. That is, if 𝑎 = 𝑏 is true, then replacing some or
all occurrences of 𝑎 in a sentence with 𝑏 never affects whether the sentence is true. This
principle is known as Leibniz’ Law.

To reflect these facts, the tree method for (non-modal) predicate logic must be extended
by two new rules. First, if 𝜂 is an “old” name (that already occurs on a branch) then we
can always add a node 𝜂 = 𝜂 to the branch. Second, if an identity statement 𝜂1 = 𝜂2
occurs on a branch, and some sentence 𝐴 on the branch contains 𝜂1, then we may add a
new node with the same sentence 𝐴 except that one or more occurrences of 𝜂1 in 𝐴 are
replaced by 𝜂2, or one or more occurrences of 𝜂2 by 𝜂1. Let 𝐴[𝜂2//𝜂1] stand for any
sentence that results from 𝐴 by replacing one or more occurrences of 𝜂1 by 𝜂2. The new
rules can then be summarized as follows.

Self-Identity

𝜂 = 𝜂
↑

old

Leibniz’ Law

𝜂1 = 𝜂2
𝐴

𝐴[𝜂2//𝜂1]

Leibniz’ Law

𝜂1 = 𝜂2
𝐴

𝐴[𝜂1//𝜂2]

Here is a tree for (𝑅𝑎𝑎 ∧ 𝑎=𝑏) → 𝑅𝑎𝑏, using Leibniz’s Law.
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1. ¬((𝑅𝑎𝑎 ∧ 𝑎=𝑏) → 𝑅𝑎𝑏) (Ass.)
2. 𝑅𝑎𝑎 ∧ 𝑎=𝑏 (1)
3. ¬𝑅𝑎𝑏 (1)
4. 𝑅𝑎𝑎 (2)
5. 𝑎=𝑏 (2)
6. 𝑅𝑎𝑏

x
(4, 5, LL)

Exercise 9.9
Use the tree method to check which of the following sentences are valid.
(a) ∀𝑥(𝑥 =𝑥)
(b) ∀𝑥∀𝑦(𝑥 =𝑦 → 𝑦=𝑥)
(c) (𝑎 = 𝑏 ∧ 𝑏 = 𝑐) → 𝑎 = 𝑐
(d) 𝑅𝑎𝑏 → ∀𝑥(𝑥 = 𝑎 ↔ 𝑅𝑥𝑏)
(e) ∀𝑥∀𝑦∀𝑧((𝑥 ≠ 𝑦 ∧ 𝑦 ≠ 𝑧) → 𝑥 ≠ 𝑧)

Exercise 9.10
Show that the second version of the Leibniz’ Law rule is redundant: we could
reach 𝐴[𝜂1//𝜂2] from 𝜂1 = 𝜂2 and 𝐴 with the other rules.

In the axiomatic approach, the two facts about identity are often represented by the
following axiom schemas:

𝜂 = 𝜂(SI)
𝜂1 = 𝜂2 → (𝐴 → 𝐴[𝜂2//𝜂1])(LL)

Once we add boxes and diamonds to the language of predicate logic, the seemingly
harmless axioms and rules for identity become problematic. Consider the following
inference:

It is analytic that Julius invented the zip.
Julius = Whitcomb L. Judson.
Therefore: It is analytic that Whitcomb L. Judson invented the zip.

The conclusion clearly doesn’t follow from the premises, but the inference seems to be
licensed by Leibniz’s law. Another well-known example:
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Lois Lane believes that Superman can fly.
Superman = Clark Kent.
Therefore: Lois Lane believes that Clark Kent can fly.

Exercise 9.11
(a) Give an axiomatic proof of □∃𝑥 𝑥 = 𝑎, using (SI), (UI), (CPL), (∀∃), (CPL),
and (Nec), in this order. (b) Can you see why we might not want to count□∃𝑥 𝑥 = 𝑎
as a logical truth in some applications of modal logic? At which point do you think
the proof goes wrong?

We will return to these issues in section 10.4. In the remainder of the present section,
I want to highlight some other things we can do with the identity predicate, apart from
making claims about identity.

You have already encountered one other use in earlier chapters. Suppose we want to
express that some relation 𝑅 is connected, meaning that for any two things, either the first
is 𝑅-related to the second or the second is 𝑅-related to the first. This can’t be expressed
without an identity predicate. With an identity predicate, it is easy:

∀𝑥∀𝑦(𝑅𝑥𝑦 ∨ 𝑥 =𝑦 ∨ 𝑅𝑦𝑥).

We can also use identity to express numerical quantifiers. For example, we can express
‘there are at least two 𝐹s’ as

∃𝑥(𝐹𝑥 ∧ ∃𝑦(𝐹𝑦 ∧ 𝑥 ≠ 𝑦)).

‘There is exactly one 𝐹’ can be expressed as

∃𝑥(𝐹𝑥 ∧ ∀𝑦(𝐹𝑦 → 𝑥 =𝑦)).

Exercise 9.12
Can you express the following in 𝔏𝑃 with identity?
(a) There are exactly two 𝐹s.
(b) There are no more than three 𝐹s.

Another important use of the identity predicate is to formalise statements involving
definite descriptions. A definite description is a complex noun phrase, typically of the
form ‘the 𝐹’, that purports to pick out a particular object. ‘The current Prime Minister’,
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‘the highest mountain in Scotland’, and ‘Carol’s father’ are definite descriptions.
The standard language of predicate logic does not have a definite article (‘the’). The

only way to pick out an individual in 𝔏𝑃 is by a name. But there are good reasons not to
translate descriptions as names.

One reason is that we would thereby miss logical connections between descriptions
and predicates. ‘The current Prime Minister is not Prime Minister’ is a logical contradic-
tion, but this can’t be brought out if we translate ‘the current Prime Minister’ as a simple
name.

Another reason not to translate descriptions as names is that descriptions often give
rise to a de re/de dicto ambiguity. Consider the following sentence:

The Pope might have been Italian.

This has two readings. It can mean either that the actual Pope, Jorge Mario Bergoglio,
might have been Italian (de re). Alternatively, it can mean that the following might have
been the case: some Italian person is Pope (de dicto). There is no way to account for
these two readings in 𝔏𝑀𝑃 if we translate ‘the Pope’ as a name.

A better translation for statements involving definite descriptions was proposed by
Bertrand Russell in 1905. Russell argued that a statement of the form ‘the 𝐹 is 𝐺’ is
true iff there is exactly one (relevant) 𝐹, and this one 𝐹 is also 𝐺. If we have an identity
predicate, we can easily express this in the language of predicate logic:

∃𝑥(𝐹𝑥 ∧ ∀𝑦(𝐹𝑦 → 𝑥 =𝑦) ∧ 𝐺𝑥).

Following Russell, we might translate ‘The current Prime Minister is not Prime Min-
ister’ as

∃𝑥(𝑃𝑥 ∧ ∀𝑦(𝑃𝑦 → 𝑥 =𝑦) ∧ ¬𝑃𝑥).

This is indeed a contradiction: it is true in no model.
We can also account for the two readings of ‘the Pope might have been Italian’. The

de re reading is

∃𝑥(𝑃𝑥 ∧ ∀𝑦(𝑃𝑦 → 𝑥 =𝑦) ∧ ♢𝐼𝑥).

The de dicto reading is

♢∃𝑥(𝑃𝑥 ∧ ∀𝑦(𝑃𝑦 → 𝑥 =𝑦) ∧ 𝐼𝑥).
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9 Towards Modal Predicate Logic

Exercise 9.13
Give two translations for each of the following sentences, one de re and one de
dicto.
(a) Hillary Clinton might have been the 45th US President.
(b) Smith’s murderer could have been a woman.
(c) Alice believes that the student representative is rude.
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10.1 Constant domain semantics

We have met the language 𝔏𝑀𝑃 of (first-order) modal predicate logic. It is time to think
about how this language should be interpreted. This will tell us which sentences and
inferences in the language are valid.

As in modal propositional logic, we will assume that the box and the diamond are
quantifiers over accessible worlds, where “accessibility” is a placeholder whose meaning
depends on the application. If we want to reason about knowledge, a world 𝑣 would
be accessible from a world 𝑤 iff 𝑣 is compatible with what is known at 𝑤. If we’re
interested in metaphysical modality, a world 𝑣 would be accessible from a world 𝑤 iff it
is compatible with the nature of things at 𝑤. And so on.

In a typical application, we use the names of 𝔏𝑀𝑃 to pick out people or rocks or other
things that might exist at a world. We use the predicates to express properties or relations.
We might, for example, interpret ♢𝐹𝑎 as saying that Aristotle could have been a sailor,
assuming that 𝑎 picks out Aristotle and 𝐹 the property of being a sailor.

Our concern in logic is not whether a particular claim about Aristotle is true. We
want to know which statements are logically true or valid, meaning that they are true in
any conceivable scenario, under any interpretation of the non-logical expressions (but
holding fixed the meaning of the modal operators).

We use models to represent a scenario together with an interpretation of the non-
logical vocabulary. A model for 𝔏𝑀𝑃 contains just enough information about a scenario
and an interpretation to determine, for every 𝔏𝑀𝑃-sentence and every world, whether the
sentence is true at that world.

The non-logical vocabulary of 𝔏𝑀𝑃 are the names and the predicates (with the excep-
tion of the identity predicate ‘=’). Let’s assume, for now, that the purpose of a name is
simply to pick out an individual. Intuitively, a predicate picks out a property or relation.
In non-modal predicate logic, we could represent these properties or relations by their
extension – by the sets of individuals (or tuples of individuals) to which they apply. In
modal predicate logic, we typically want to allow for scenarios in which an individual

183



10 Semantics for Modal Predicate Logic

has different properties at different worlds. In one world, Aristotle might be a sailor, in
another he might be a shoemaker. If 𝐹 expresses the property of being a sailor, then
the set of individuals to whom 𝐹 applies will differ from world to world. To determine
the truth-value of 𝐹𝑎 at a world, we need to know to which individuals 𝐹 applies at
that world. A model’s interpretation function will therefore assign a set of (tuples of)
individuals to each predicate relative to each world.

Consider a model with two worlds 𝑤 and 𝑣. Both worlds, let’s assume, are accessible
from 𝑤 and neither is accessible from 𝑣. The model’s interpretation function tells us that
the name 𝑎 picks out Aristotle. It also tells us that the predicate 𝐹 applies to Aristotle
and Boethius at 𝑤 and only to Boethius at 𝑣. We can write this as follows:

𝑉(𝑎) = Aristotle
𝑉(𝐹, 𝑤) = {Aristotle, Boethius}
𝑉(𝐹, 𝑣) = {Boethius}

We don’t know what property is expressed by 𝐹, nor which properties Aristotle and
Boethius have at 𝑤 and 𝑣. Nonetheless, we can figure out that 𝐹𝑎 is true at 𝑤, because
the predicate 𝐹 applies to Aristotle at 𝑤. We can also figure out that 𝐹𝑎 is false at 𝑣, and
that □𝐹𝑎 is false at 𝑤.

To determine the truth-value of arbitrary 𝔏𝑀𝑃-sentences, we need some more informa-
tion. As it stands, we can’t tell whether (say) ∀𝑥𝐹𝑥 is true at 𝑤. Informally, ∀𝑥𝐹𝑥 says
that every individual is 𝐹. We know that Aristotle and Boethius are 𝐹 at 𝑤. But we don’t
know if there are other individuals besides Aristotle and Boethius. If yes, then ∀𝑥𝐹𝑥 is
false at 𝑤. If no, the sentence is true. We therefore assume that a model for 𝔏𝑀𝑃 also
specifies a domain of individuals.

Definition 10.1
A constant-domain Kripke model for 𝔏𝑀𝑃 is a structure 𝑀 consisting of

1. a non-empty set 𝑊 (the “worlds”),
2. a binary (“accessibility”) relation 𝑅 on 𝑊 ,
3. a non-empty set 𝐷 (of “individuals”), and
4. an interpretation function 𝑉 that assigns

• to each 𝔏𝑀𝑃-name a member of 𝐷, and
• to each 𝑛-place predicate of 𝔏𝑀𝑃 and world 𝑤 ∈ 𝑊 a set of 𝑛-tuples from

𝐷.
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Models of this type are called “constant-domain models” because the domain of indi-
viduals is the same for each world. This may seem questionable – and we are soon going
to question it – but it simplifies the semantics. Let’s stick with it for the moment.

Having defined a concept of a model, we can lay down the rules that determine whether
any given 𝔏𝑀𝑃-sentence is true at a world in a model.

In fact, truth will be defined relative to three parameters: a model, a world, and an
assignment function. The assignment function plays the same role as in non-modal
predicate logic. ∀𝑥♢𝐹𝑥, for example, is true at a world 𝑤 in a model iff there is some
assignment of an individual to 𝑥 that renders ♢𝐹𝑥 true at 𝑤. We continue to use [𝜏]𝑀,𝑔

for the individual picked out by a term (name or variable) 𝜏 relative to a model 𝑀 =
⟨𝐷, 𝑊, 𝑅, 𝑉 ⟩ and an assignment function 𝑔:

[𝜏]𝑀,𝑔 =def

⎧{
⎨{⎩

𝑉(𝜏) if 𝜏 is a name
𝑔(𝜏) if 𝜏 is a variable.

Definition 10.2: Constant-domain Kripke semantics
If 𝑀 = ⟨𝑊, 𝑅, 𝐷, 𝑉 ⟩ is a constant-domain Kripke model, 𝑤 is a member of 𝑊 , 𝜙
is an 𝑛-place predicate (for 𝑛 ≥ 0), 𝜏1, 𝜏2, … , 𝜏𝑛 are terms, 𝜒 is a variable, and
𝑔 is a variable assignment, then

(a) 𝑀, 𝑤, 𝑔 |= 𝜙𝜏1 … 𝜏𝑛 iff ⟨[𝜏1]𝑀,𝑔, … , [𝜏𝑛]𝑀,𝑔 ⟩ ∈ 𝑉(𝜙, 𝑤).
(b) 𝑀, 𝑤, 𝑔 |= 𝜏1 = 𝜏2 iff [𝜏1]𝑀,𝑔 = [𝜏2]𝑀,𝑔.
(c) 𝑀, 𝑤, 𝑔 |= ¬𝐴 iff 𝑀, 𝑤, 𝑔 |≠ 𝐴.
(d) 𝑀, 𝑤, 𝑔 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑤, 𝑔 |= 𝐴 and 𝑀, 𝑤, 𝑔 |= 𝐵.
(e) 𝑀, 𝑤, 𝑔 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑤, 𝑔 |= 𝐴 or 𝑀, 𝑤, 𝑔 |= 𝐵.
(f) 𝑀, 𝑤, 𝑔 |= 𝐴 → 𝐵 iff 𝑀, 𝑤, 𝑔 |≠ 𝐴 or 𝑀, 𝑤, 𝑔 |= 𝐵.
(g) 𝑀, 𝑤, 𝑔 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑤, 𝑔 |= (𝐴 → 𝐵) and 𝑀, 𝑤, 𝑔 |= (𝐵 → 𝐴).
(h) 𝑀, 𝑤, 𝑔 |= ∀𝜒𝐴 iff 𝑀, 𝑤, 𝑔′ |= 𝐴 for all 𝜒-variants 𝑔′ of 𝑔.
(i) 𝑀, 𝑤, 𝑔 |= ∃𝜒𝐴 iff 𝑀, 𝑤, 𝑔′ |= 𝐴 for some 𝜒-variant 𝑔′ of 𝑔.
(j) 𝑀, 𝑤, 𝑔 |= □𝐴 iff 𝑀, 𝑣, 𝑔 |= 𝐴 for all 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣.
(k) 𝑀, 𝑤, 𝑔 |= ♢𝐴 iff 𝑀, 𝑣, 𝑔 |= 𝐴 for some 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣.
𝐴 is true at 𝑤 in 𝑀 iff 𝑀, 𝑤, 𝑔 |= 𝐴 for every assignment function 𝑔 for 𝑀.

Let’s return to the model from above, and let’s add the information that the domain
of individuals consists of just Aristotle and Boethius. That is, let 𝑀 be the following
model:
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𝑊 = {𝑤, 𝑣}
𝑅 = {⟨𝑤, 𝑤⟩, ⟨𝑤, 𝑣⟩}
𝐷 = {Aristotle, Boethius}
𝑉(𝑎) = Aristotle
𝑉(𝐹, 𝑤) = {Aristotle, Boethius}
𝑉(𝐹, 𝑣) = {Boethius}

This isn’t a complete specification of a model because I haven’t assigned a meaning to
names and predicates other than 𝑎 and 𝐹, but we have enough information to determine
the truth-value of any 𝔏𝑀𝑃-sentence whose only non-logical vocabulary are 𝑎 and 𝐹.

We can, for example, verify that 𝐹𝑎 is true at 𝑤 in 𝑀. A sentence is true at 𝑤 in 𝑀 iff it
is true at 𝑤 in 𝑀 relative to every assignment function 𝑔. By clause (a) of definition 10.2,
𝐹𝑎 is true at 𝑤 in 𝑀 relative to 𝑔 iff [𝑎]𝑀,𝑔 is a member of 𝑉(𝐹, 𝑤). Since 𝑎 is a name,
[𝑎]𝑀,𝑔 is 𝑉(𝑎). And 𝑉(𝑎) is Aristotle. So 𝐹𝑎 is true at 𝑤 relative to 𝑔 iff Aristotle is a
member of 𝑉(𝐹, 𝑤). We know that 𝑉(𝐹, 𝑤) is {Aristotle, Boethius}. Aristotle evidently
is a member of {Aristotle, Boethius}. So 𝐹𝑎 is true at 𝑤 in 𝑀, relative to any assignment
𝑔.

We can also verify that □𝐹𝑎 is false at 𝑤. By clause (j) of definition 10.2, □𝐹𝑎 is true
at 𝑤 (in 𝑀 relative to 𝑔) iff 𝐹𝑎 is true (in 𝑀 relative to 𝑔) at all worlds accessible from 𝑤.
And 𝐹𝑎 is false at 𝑣 because Aristotle is not a member of {Boethius}.

Exercise 10.1
Which of the following sentences are true at 𝑤 in 𝑀?
(a) ¬𝐹𝑎 → 𝐹𝑎
(b) □∃𝑥𝐹𝑥
(c) □∀𝑥𝐹𝑥
(d) ∃𝑥□𝐹𝑥
(e) ∀𝑥□𝐹𝑥
(f) ∀𝑥(□𝐹𝑥 →□□𝐹𝑥)

Validity is truth at all worlds in all models of a certain kind. A sentence is CK-valid iff
it is true at all worlds in all constant-domain Kripke models. ‘C’ comes from ‘constant
domains’; ‘K’ indicates that we have put no constraints on the accessibility relation. We
get stronger concepts of validity – stronger logics – if we require the accessibility relation
to be reflexive, or transitive, or euclidean, etc.

It is not hard to see that every sentence that is valid in classical predicate logic is CK-
valid. Similarly, every K-valid sentence is CK-valid. We also get some new interaction
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principles between modal operators and quantifiers. For example, consider the following
schema, known as the Barcan Formula, after Ruth Barcan Marcus.

(BF) ∀𝑥□𝐴 →□∀𝑥𝐴

Observation 10.1: All instances of (BF) are CK-valid.

Proof. Suppose a sentence ∀𝑥□𝐴 is true at some world 𝑤 in some constant-domain
model 𝑀 relative to some assignment 𝑔. By clause (h) of definition 10.2, it follows
that □𝐴 is true at 𝑤 relative to every 𝑥-variant 𝑔′ of 𝑔. By clause (j) of definition
10.2, it follows that 𝐴 is true at every world 𝑣 accessibility from 𝑤 relative to every
𝑥-variant 𝑔′ of 𝑔. By clause (h), this means that ∀𝑥𝐴 is true relative to 𝑔 at every world
𝑣 accessible from 𝑤. So by clause (j), □∀𝑥𝐴 is true at 𝑤 relative to 𝑔.

We’ve shown that whenever ∀𝑥□𝐴 is true at some world 𝑤 in some model 𝑀 relative
some assignment 𝑔, then □𝐴∀𝑥𝐴 is also true at 𝑤 in 𝑀 relative to 𝑔. By clause (f) of
definition 10.2, it follows that ∀𝑥□𝐴 →□𝐴∀𝑥𝐴 is true at every world in every model
relative to every assignment.

Instead of working through definition 10.2, we can use trees to test if a sentence is
CK-valid. The tree rules for CK are all the rules for K (from chapter 3) together with
all the rules for standard predicate logic, with an added world parameter on each node
that is held fixed when applying a rule from predicate logic. (In the predicate logic rules,
a name counts as ‘old’ if it already occurs on the relevant branch, no matter at which
world.)

To get a complete proof system, we need one further identity rule, reflecting the fact
that the reference of a name does not vary from world to world:

Identity Invariance

𝜂1 = 𝜂2 (𝜔)

𝜂1 = 𝜂2 (𝜈)
↑

old

Here is a tree proof for a simple instance of the Barcan Formula, ∀𝑥□𝐹𝑥 →□∀𝑥𝐹𝑥.
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1. ¬(∀𝑥□𝐹𝑥 →□∀𝑥𝐹𝑥) (𝑤) (Ass.)
2. ∀𝑥□𝐹𝑥 (𝑤) (1)
3. ¬□∀𝑥𝐹𝑥 (𝑤) (1)
4. 𝑤𝑅𝑣 (3)
5. ¬∀𝑥𝐹𝑥 (𝑣) (3)
6. ¬𝐹𝑎 (𝑣) (5)
7. □𝐹𝑎 (𝑤) (2)
8. 𝐹𝑎

x
(𝑣) (7,4)

And here is a proof of ∀𝑥∀𝑦(𝑥 =𝑦 →□ 𝑥 =𝑦), the “necessity of identity”:

1. ¬∀𝑥∀𝑦(𝑥 =𝑦 →□ 𝑥 =𝑦) (𝑤) (Ass.)
2. ¬∀𝑦(𝑎=𝑦 →□ 𝑎=𝑦) (𝑤) (1)
3. ¬(𝑎=𝑏 →□ 𝑎=𝑏) (𝑤) (2)
4. 𝑎 = 𝑏 (𝑤) (3)
5. ¬□ 𝑎=𝑏 (𝑤) (3)
6. ¬□ 𝑏=𝑏 (𝑤) (4, 5, LL)
7. 𝑤𝑅𝑣 (6)
8. 𝑏 ≠ 𝑏 (𝑣) (6)
9. 𝑏 = 𝑏

x
(𝑣) (SI)

Exercise 10.2
Use the tree method to show that the following sentences are CK-valid.
(a) □∀𝑥𝐹𝑥 → ∀𝑥□𝐹𝑥
(b) ∃𝑥□𝐹𝑥 →□∃𝑥𝐹𝑥
(c) ∀𝑥□(𝐹𝑥 ∧ 𝐺𝑥) →□∀𝑥𝐹𝑥
(d) □♢∃𝑥𝐹𝑥 →□∃𝑥♢(𝐹𝑥 ∨ 𝐺𝑥)
(e) ∀𝑥□∃𝑦 𝑦=𝑥
(f) ∀𝑥∀𝑦(𝑥 ≠𝑦 →□𝑥 ≠𝑦)
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Exercise 10.3
The following sentences are CK-invalid. Can you describe a countermodel for
each? (It may help to construct a tree and inspect its open branches.)
(a) ♢∃𝑥𝐹𝑥 →♢∃𝑥(𝐹𝑥 ∧ 𝐺𝑥)
(b) □∃𝑥𝐹𝑥 → ∃𝑥□𝐹𝑥
(c) ∀𝑥∀𝑦((♢𝐹𝑥 ∧ ♢¬𝐹𝑦) → 𝑥 ≠𝑦)
(d) ∀𝑥□(𝑃𝑥 → 𝑄𝑥) → ∀𝑥(𝑃𝑥 →□𝑄𝑥)

There are also axiomatic calculi for CK. We can, for example, combine the axiom
schemas and rules of classical predicate logic with those of K, and add two new schemas:
the Barcan Formula (BF) and the “necessity of distinctness”,

(ND) ∀𝑥∀𝑦(𝑥 ≠𝑦 →□𝑥 ≠𝑦).

As I mentioned above, stronger logics can be defined by putting constraints on the
accessibility relation. For example, the system CT is the set of 𝔏𝑀𝑃-sentences that are
valid in the class of constant-domain models with a reflexive accessibility relation. CS4
is the set of 𝔏𝑀𝑃-sentences that are valid in the class of constant-domain models with a
reflexive and transitive accessibility relation. And so on.

Properties of the accessibility relation still correspond to modal schemas, just as in
chapter 3: (T) corresponds to reflexivity, (4) to transitivity, (G) to convergence, etc. Re-
call that a schema corresponds to a property of the accessibility relation if the schema
is valid in all and only the frames in which the accessibility relation has that property.
A frame is a model without an interpretation function. In the present context, a frame
therefore consists of two non-empty sets 𝑊 and 𝐷 and a relation 𝑅 on 𝑊 .

We can still use the tree method or the axiomatic method to test for validity in logics
stronger than CK. To test for CT-validity, for example, we would add the Reflexivity
rule to the tree rules for CK. To test for CS4-validity, we would add the Reflexivity and
Transitivity rules. We can get an axiomatic calculus for CT by adding the (T)-schema to
the calculus for CK; for CS4, we can add (T) and (4). And so on for other systems.

(Curiously, though, this doesn’t always work. You may remember S4.2 as the set of
𝔏𝑀-sentences that are valid in the class of reflexive, transitive, and convergent Kripke
models. Reflexivity corresponds to (T), transitivity to (4), and convergence to (G). If we
add these schemas to the axiomatic calculus for K, we get a sound and complete calculus
for S4.2. But if we add the schemas to the calculus for CK, the resulting calculus is not
complete for CS4.2. There are 𝔏𝑀𝑃-sentences that are valid in the class of reflexive,
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transitive, and convergent constant-domain models that can’t be derived.)

10.2 Quantification and existence

We have assumed that the domain of individuals is the same for every world. This may
seem problematic.

Earlier today I was baking bread. Let’s call the loaf of bread that I made Loafy. Intu-
itively, Loafy could have failed to exist. I could have decided not to bake bread. Even if
determinism is true, we can consider worlds at which the laws of nature or the origin of
the universe are different. In many of these worlds, there are no humans, and no loafs of
bread. So we should allow for worlds at which Loafy doesn’t exist.

If we use 𝑏 as a name for Loafy, we can arguably express Loafy’s existence as

∃𝑥 𝑥 =𝑏.

Why might this express that Loafy exists? Consider a scenario in which Loafy does
exist. In that scenario, there is some thing 𝑥 which is identical to Loafy (namely, Loafy).
Conversely, consider a scenario in which Loafy does not exist. In that scenario, there is
no thing 𝑥 which is identical to Loafy. So ∃𝑥 𝑥 =𝑏 is true in all and only the scenarios in
which Loafy exists.

Now we can sharpen the above worry. Intuitively, it could have been the case that
Loafy doesn’t exist. So ♢¬∃𝑥 𝑥 = 𝑏 is true, on a suitable understanding of the diamond.
But in constant-domain semantics, that sentence is a contradiction: it is false at every
world in every model.

A converse problem arises if we think that something could have existed that doesn’t
actually exist. For example, let’s assume that there could have been unicorns. If we
interpret the predicate 𝑈 as ‘– is a unicorn’ and the box as a suitable kind of circumstantial
necessity, □∀𝑥¬𝑈𝑥 should then be false. But let’s also assume that no individual in our
world could have been a unicorn. So ∀𝑥□¬𝑈𝑥 is true. We then have a counterexample to
the Barcan Formula ∀𝑥□𝐴 →□∀𝑥𝐴. And all instances of the Barcan Formula are valid
in constant-domain semantics.

Exercise 10.4
The Converse Barcan Formula is the schema □∀𝑥𝐴 → ∀𝑥□𝐴. All instances of
the Converse Barcan Formula are CK-valid. Explain why Loafy’s possible non-
existence seems to provide a counterexample to the Converse Barcan Formula.
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Exercise 10.5
Consider the following four schemas.

(1) ♢∃𝑥𝐴 → ∃𝑥♢𝐴
(2) □∃𝑥𝐴 → ∃𝑥□𝐴
(3) ∃𝑥♢𝐴 →♢∃𝑥𝐴
(4) ∃𝑥□𝐴 →□∃𝑥𝐴

(a) Are any of (1)–(4) (schematically) equivalent to the Barcan Formula or the
Converse Barcan Formula (given the duality of □ and ♢, of ∀𝑥 and ∃𝑥, and
the standard truth-tables for propositional connectives)?

(b) Which of these schemas do you think are intuitively valid on a metaphysical
interpretation of the box and the diamond?

An obvious response to these problems is to replace constant-domain semantics with
a semantics in which the domain of individuals can vary from world to world. We will
explore this option in the following section. First I want to mention two other lines of
response.

Some philosophers have argued that we should bite the bullet: we are simply mistaken
when we judge that Loafy could have failed to exist, or that anything could have existed
that doesn’t actually exist. In temporal logic, biting the bullet means to accept that any-
thing that has ever existed still exists today, and that anything that exists today has always
existed and is always going to exist. In epistemic logic, biting the bullet means to accept
that nobody can be unsure or ignorant about which individuals exists: if something exists,
nobody can fail to know that it exists, nor can anyone believe that an individual exists
that doesn’t really exist.

A different response is to break the link between quantification and existence. ∃𝑥 is
traditionally called an “existential” quantifier, and pronounced ‘there is an 𝑥’ or ‘there
exists an 𝑥’. But 𝔏𝑀𝑃 is a made-up language. We can make its symbols mean whatever
we want. We can give a different interpretation of ∃𝑥 so that ‘Loafy exists’ can’t be
translated as ∃𝑥 𝑥 =𝑏.

One alternative to the standard interpretation of quantifiers is associated with the Aus-
trian philosopher Alexius Meinong. Meinong observed that when we describe beliefs,
plans, hopes, or fears, we often seem to refer to non-existent objects. We might say that
someone is afraid of a ghost, or that they are searching for a golden mountain – even
though there are no ghosts or golden mountains. According to Meinong, people who are
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searching for a golden mountain are really searching for something. That something is
a golden mountain. But it is not an existent golden mountain. Meinong concluded that
besides existent mountains, there are also non-existent mountains.

Quantifiers that range over both existent and non-existent individuals are sometimes
called Meinongian. If the 𝔏𝑀𝑃-quantifiers are Meinongian, then clearly ∃𝑥 𝑥 = 𝑏 does
not translate ‘Loafy exists’.

Meinong’s postulation of non-existent individuals raises difficult questions. Suppose
you are searching for a golden mountain. You probably don’t have any firm views about
the mountain’s height. You are not looking for a mountain that is exactly 2000 meters tall,
nor are you looking for a mountain that is exactly 2100 meters tall. On the Meinongian
account, there is a genuine mountain that you are looking for. It is a mountain that is
not 2000 meters tall, not 2100 meters tall, and doesn’t have any other particular height
either. But how could there be a mountain without any particular height? Besides, it
also doesn’t seem right to say that you are looking for a peculiar “mountain” that doesn’t
have any height and doesn’t exist. Intuitively, you are looking for an existent mountain
that does have a height.

A more straightforward alternative to the standard interpretation of quantifiers is the
possibilist interpretation. Here we assume that ∀𝑥 and ∃𝑥 range not only over things that
exist at the world at which the quantifiers are interpreted, but over everything that exists
at any possible world. On this interpretation, too, ∃𝑥 𝑥 = 𝑏 no longer states that Loafy
exists. It merely states that Loafy could have existed, in an unrestricted sense of ‘could’.
Constant-domain semantics then only assumes that the set of individuals that exist at
some world or other does not vary from world to world.

One downside of the possibilist interpretation is that it goes against the “internalist”
spirit of modal logic. As we saw in section 9.2, one of the key features of modal logic is
that it looks at the structure of worlds from the inside, from the perspective of a particular
world, with only the modal operators providing (incomplete) access to other worlds. Pos-
sibilist quantifiers would provide unrestricted access to the inhabitants of other worlds.

Let’s set aside these alternatives and see how constant-domain semantics could be
changed to allow for variable domains.

10.3 Variable-domain semantics

In variable-domain models, every world 𝑤 is associated with its own individual domain
𝐷𝑤. Loafy the bread may be a member of 𝐷𝑤 but not of 𝐷𝑣. Quantifiers range over the
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individuals in the local domain of the world at which they are interpreted: ∃𝑥𝐹𝑥 is true
at 𝑤 iff 𝐹𝑥 is true (at 𝑤) of some individual in 𝐷𝑤.

Here is our revised definition of an 𝔏𝑀𝑃-model.

Definition 10.3
A variable-domain Kripke model for 𝔏𝑀𝑃 is a structure 𝑀 consisting of

1. a non-empty set 𝑊 (the “worlds”),
2. a binary (“accessibility”) relation 𝑅 on 𝑊 ,
3. for each world 𝑤, a non-empty set 𝐷𝑤 (of “individuals”), and
4. an interpretation function 𝑉 that assigns

• to each name a member of some domain 𝐷𝑤, and
• to each 𝑛-place predicate and world 𝑤 a set of 𝑛-tuples from 𝐷𝑤.

To complete the semantics, we need to explain how 𝔏𝑀𝑃-sentences are interpreted
relative to any given world in a variable-domain model. This raises a problem.

Since Loafy could have failed to exist, we want to have models in which ♢¬∃𝑥 𝑥 =𝑏
is true at some world 𝑤. It follows that ¬∃𝑥 𝑥 =𝑏 is true at some world 𝑣 accessible from
𝑤. Intuitively, 𝑣 is a world at which Loafy doesn’t exist. The problem is that we need to
explain how a sentence that contains a name (here, 𝑏) should be interpreted at a world
(here, 𝑣) where the thing that’s picked out by the name doesn’t exist.

In the case of ¬∃𝑥 𝑥 =𝑏, the sentence should come out true. Other cases are less clear.
What about 𝑏 = 𝑏? Is Loafy identical to Loafy at 𝑣, where Loafy doesn’t exist? What
about 𝐹𝑏, ¬𝐹𝑏, or 𝐹𝑏 ∨ ¬𝐹𝑏? Is Loafy delicious at 𝑣? Is Loafy not delicious at 𝑣? Is
Loafy either delicious or not delicious at 𝑣?

These questions are discussed not just in modal logic, but also in a branch of non-
modal logic called free logic. Free logic differs from classical predicate logic by drop-
ping the assumption that every name has a referent. The assumption is, after all, not true
for names in natural language.

Consider the story of ‘Vulcan’. In the 19th century, it was observed that Mercury’s
path around the Sun conforms to Newton’s laws only if there is another, smaller planet be-
tween Mercury and the Sun. With the help of Newton’s laws, astronomers calculated the
size and position of that planet, and called it Vulcan. But Vulcan was never discovered.
Eventually, Mercury’s path was explained by Einstein’s theory of relativity, without as-
suming any new planets. The name ‘Vulcan’ turned out to be empty: it doesn’t refer to
anything.
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How should we formalize reasoning with empty names? The orthodox answer is that
we shouldn’t: the function of a name is to pick out an individual; if there is no individual
to be picked out, we shouldn’t use a name. Proponents of free logic disagree. They hold
that we can perfectly well reason with empty names. We then need to answer the same
questions that I posed above: if 𝑏 is an empty name, how should we interpret 𝑏 = 𝑏, 𝐹𝑏,
¬𝐹𝑏, and 𝐹𝑏 ∨ ¬𝐹𝑏?

Within free logic, there are broadly three approaches.
The first is Meinongian. It assumes that apparently empty names are not really empty

after all; they merely pick out a non-existent individual. Statements with such names
are then interpreted as usual: 𝐹𝑏 may be true or false, depending on whether the (non-
existent) individual picked out by 𝑏 has the property expressed by 𝐹.

Non-Meinongian versions of free logic usually assume that atomic sentences with
empty names are never true: if 𝑏 is empty, then 𝐹𝑏 can’t be true. The idea is that predi-
cates express properties, and if something doesn’t exist then it doesn’t have any proper-
ties. For example, it is not true that Vulcan is a planet – as you can see from the fact that
Vulcan would not occur on a list of all planets. Nor is it true that Vulcan orbits the sun,
or that Vulcan has any particular mass.

What shall we say about ¬𝐹𝑏 then, if 𝑏 is an empty name? In some versions of free
logic, the standard semantic rules for complex sentences are applied: since 𝐹𝑏 is not true,
¬𝐹𝑏 is true, and so is 𝐹𝑏 ∨ ¬𝐹𝑏. Other versions of free logic assume that if 𝑏 doesn’t
refer then neither 𝐹𝑏 nor ¬𝐹𝑏 is true. Since a sentence is called false iff its negation
is true, this means that 𝐹𝑏 and ¬𝐹𝑏 are neither true nor false. We get a three-valued
semantics that can be spelled out in different ways, with different verdicts on sentences
like 𝐹𝑏 ∨ ¬𝐹𝑏.

Each version of free logic can be used to give a semantics for modal predicate logic
with variable domains. I am going to use the two-valued non-Meinongian approach,
mainly because it is the simplest. We will assume that at worlds where Loafy doesn’t
exist, every atomic sentence involving a name for Loafy is false: 𝑏 = 𝑏 is false, 𝐹𝑏 is
also false, but ¬𝐹𝑏 and 𝐹𝑏 ∨ ¬𝐹𝑏 are true.

Definition 10.4: Variable-domain Kripke semantics
If 𝑀 = ⟨𝑊, 𝑅, 𝐷, 𝑉 ⟩ is a variable-domain Kripke model, 𝑤 is a member of 𝑊 , 𝜙
is an 𝑛-place predicate (for 𝑛 ≥ 0), 𝜏1, … , 𝜏𝑛 are terms, 𝜒 is a variable, and 𝑔 is
a variable assignment, then
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(a) 𝑀, 𝑤, 𝑔 |= 𝜙𝜏1 … 𝜏𝑛 iff ⟨[𝜏1]𝑀,𝑔, … , [𝜏𝑛]𝑀,𝑔 ⟩ ∈ 𝑉(𝜙, 𝑤).
(b) 𝑀, 𝑤, 𝑔 |= 𝜏1 = 𝜏2 iff [𝜏1]𝑀,𝑔 = [𝜏2]𝑀,𝑔 and [𝜏1]𝑀,𝑔 ∈ 𝐷𝑤.
(c) 𝑀, 𝑤, 𝑔 |= ¬𝐴 iff 𝑀, 𝑤, 𝑔 |≠ 𝐴.
(d) 𝑀, 𝑤, 𝑔 |= 𝐴 ∧ 𝐵 iff 𝑀, 𝑤, 𝑔 |= 𝐴 and 𝑀, 𝑤, 𝑔 |= 𝐵.
(e) 𝑀, 𝑤, 𝑔 |= 𝐴 ∨ 𝐵 iff 𝑀, 𝑤, 𝑔 |= 𝐴 or 𝑀, 𝑤, 𝑔 |= 𝐵.
(f) 𝑀, 𝑤, 𝑔 |= 𝐴 → 𝐵 iff 𝑀, 𝑤, 𝑔 |≠ 𝐴 or 𝑀, 𝑤, 𝑔 |= 𝐵.
(g) 𝑀, 𝑤, 𝑔 |= 𝐴 ↔ 𝐵 iff 𝑀, 𝑤, 𝑔 |= (𝐴 → 𝐵) and 𝑀, 𝑤, 𝑔 |= (𝐵 → 𝐴).
(h) 𝑀, 𝑤, 𝑔 |= ∀𝜒𝐴 iff 𝑀, 𝑤, 𝑔′ |= 𝐴 for all 𝜒-variants 𝑔′ of 𝑔 for

which 𝑔′(𝜒) ∈ 𝐷𝑤.
(i) 𝑀, 𝑤, 𝑔 |= ∃𝜒𝐴 iff 𝑀, 𝑤, 𝑔′ |= 𝐴 for some 𝜒-variant 𝑔′ of 𝑔 for

which 𝑔′(𝜒) ∈ 𝐷𝑤.
(j) 𝑀, 𝑤, 𝑔 |= □𝐴 iff 𝑀, 𝑣, 𝑔 |= 𝐴 for all 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣.
(k) 𝑀, 𝑤, 𝑔 |= ♢𝐴 iff 𝑀, 𝑣, 𝑔 |= 𝐴 for some 𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣.
𝐴 is true at 𝑤 in 𝑀 iff 𝑀, 𝑤, 𝑔 |= 𝐴 for all assignments 𝑔 for 𝑀.

A sentence is VK-valid (‘V’ for ‘variable-domain’) iff it is true at all worlds in all
variable-domain models.

The system VK is weaker than classical predicate logic. Not everything that is valid
in classical predicate logic is CK-valid. For example, both 𝑏 = 𝑏 and ∃𝑥 𝑥 = 𝑏 are valid
in classical predicate logic, but they are not true at every world in every variable-domain
model. If 𝑉(𝑏) is not a member of 𝐷𝑤, then 𝑏 = 𝑏 and ∃𝑥 𝑥 =𝑏 are false at 𝑤.

On the other hand, you can check that ∀𝑥 𝑥 = 𝑥 is VK-valid. So we don’t just have to
revise the rules for identity. We also need to revise the rule of “universal instantiation”:
from the fact that a universal generalisation like ∀𝑥 𝑥 = 𝑥 is true (at a world, or at all
worlds), we can’t infer that all its instances are true: 𝑏 = 𝑏 may be false. For another
example, consider a world 𝑤 where everything is made of chocolate. Let 𝐹 express the
property of being made of chocolate. ∀𝑥𝐹𝑥 is true at 𝑤. But we can’t infer that Loafy
the bread is made of chocolate (𝐹𝑏) at 𝑤, for Loafy may not exist at 𝑤.

In the type of free logic we have adopted, the rule of universal instantiation requires
another premise: from ∀𝑥𝐴 we can infer 𝐴[𝑏/𝑥] only if we also know that 𝑏 exists –
which can be expressed as ∃𝑥 𝑥 = 𝑏, or even simpler as 𝑏 = 𝑏, given our assumption that
atomic sentences with empty names are always false.

Here are the revised tree rules for VK. I only give the quantifier rules for ∀𝜒𝐴 and
∃𝜒𝐴. You can find the rules for ¬∀𝜒𝐴 and ¬∃𝜒𝐴 by converting these into ∃𝜒¬𝐴 and
∀𝜒¬𝐴, respectively.
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(𝜔)

𝜂≠𝜂 (𝜔) 𝐴[𝜂/𝜒] (𝜔)
↑

old

∃𝜒𝐴 (𝜔)

𝜂 = 𝜂 (𝜔)
𝐴[𝜂/𝜒] (𝜔)

↑
new

We keep the rule for Leibniz’s Law. But we replace the Self-Identity and Identity
Invariance rules by the following three rules.

Existence

𝜂 = 𝜂 (𝜔)
↑

new

Identity Invariance

𝜂1 = 𝜂2 (𝜔)
𝜂1 = 𝜂1 (𝜈)

𝜂1 = 𝜂2 (𝜈)

Φ𝜂1 … 𝜂𝑛 (𝜔)

𝜂1 = 𝜂1 (𝜔)
𝜂2 = 𝜂2 (𝜔)

⋮
𝜂𝑛 = 𝜂𝑛 (𝜔)

The Existence rule reflects our assumption that the domain of individuals is never
empty. The unnamed last rule is a rule for expanding atomic nodes. From the assumption
that 𝐹𝑏 is true at a world, for example, the rule allows us to infer that 𝑏 exists at that world,
which can be expressed as 𝑏=𝑏. We then don’t need a separate rule of Self-Identity.

Exercise 10.6
Use the tree method to show that the following sentences are VK-valid.
(a) ∃𝑥□𝐹𝑥 →□∃𝑥𝐹𝑥
(b) □∀𝑥(𝐹𝑥 → 𝐺𝑥) → (□∀𝑥𝐹𝑥 →□∀𝑥𝐺𝑥)
(c) □∃𝑥 𝑥 =𝑥
(d) ♢𝐹𝑎 →♢∃𝑥𝐹𝑥
(e) 𝑎=𝑏 →□(𝑎=𝑎 → 𝑎=𝑏)

It is easy to check that the Barcan Formula, ∀𝑥□𝐴 →□∀𝑥𝐴, and its converse,□∀𝑥𝐴 → ∀𝑥□𝐴,
are invalid in variable-domain semantics. (By this I mean that not all their instances are
valid.) In fact, we can now prove that the Barcan formula corresponds to the assump-
tion that whatever exists at an accessible world also exists at the original world, while its
converse corresponds to the assumption that whatever exists at a world also exists at all
accessible worlds.
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Observation 10.2:

(i) (CBF) is valid on a variable-domain frame iff the frame has increasing do-
mains, meaning that whenever 𝑤𝑅𝑣, then 𝐷𝑤 ⊆ 𝐷𝑣.

(ii) (BF) is valid on a variable-domain frame iff the frame has decreasing do-
mains, meaning that whenever 𝑤𝑅𝑣 then 𝐷𝑣 ⊆ 𝐷𝑤.

Proof of (i). Suppose some variable-domain frame 𝐹 does not have increasing domains.
Then 𝐹 has a world 𝑤 whose domain 𝐷𝑤 contains an individual 𝑑 that does not exist at
some 𝑤-accessible world 𝑣. Let 𝑉 be an interpretation function on 𝐹 so that 𝑉(𝐹, 𝑤) =
𝐷𝑤 and 𝑉(𝐹, 𝑣) = 𝐷𝑣. In the model composed of 𝐹 and 𝑉 , □∀𝑥𝐹𝑥 is true at 𝑤, but
∀𝑥□𝐹𝑥 is false, since 𝑑 is not in 𝑉(𝐹, 𝑣). So (CBF) is not true at all worlds in all
models based on 𝐹.

In the other direction, suppose (CBF) is not valid on a frame 𝐹. This means that
there is a world 𝑤 in some model 𝑀 based on 𝐹 at which some instance of □∀𝑥𝐴 is
true while ∀𝑥□𝐴 is false. If ∀𝑥□𝐴 is false at 𝑤, then there is some 𝑤-accessible world
𝑣 at which 𝐴 is false of some individual 𝑑 in 𝐷𝑤. But since □∀𝑥𝐴 is true at 𝑤, 𝐴 is true
of all members of 𝐷𝑣. So 𝑑 is not in 𝐷𝑣. And so 𝐹 does not have increasing domains.

The proof of (ii) is similar.

Exercise 10.7
Definition 10.3 requires that every name in every model picks out a possible in-
dividual. In that sense, the definition does not allow for genuinely empty names.
How could we change definitions 10.3 and 10.4 if we wanted to allow for names
that don’t pick out anything?

10.4 Trans-world identity

In section 9.5 I mentioned an apparent problem with Leibniz’ Law. The Law allows us
to reason from □𝐹𝑎 and 𝑎=𝑏 to □𝐹𝑏. On some interpretations of the box, this inference
looks problematic. In the Superman stories, Lois Lane knows that Superman can fly, and
Superman is identical to Clark Kent. Can we infer that Lois knows that Clark Kent can
fly?

If we can, we would have to conclude that Lois Lane has inconsistent beliefs, since
she also believes that Clark Kent cannot fly. She would believe that Clark Kent can’t fly,
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but also that he can fly. Intuitively, however, Lois’s beliefs are perfectly consistent. What
she lacks is information, not logical acumen. Her belief worlds are not worlds at which
someone can both fly and not fly. Rather, they are worlds at which one person plays the
Superman role and a different person plays the Clark Kent role.

Consider also the case of Julius. When we introduce the name ‘Julius’ for whoever
invented the zip, we can be sure that Julius invented the zip. But it would be absurd
to think that we have found out who invented the zip merely by making a linguistic
stipulation. If before introducing the name ‘Julius’, we were unsure whether the zip
was invented by Benjamin Franklin or Whitcomb L. Judson, the introduction of the new
name does nothing to remove our ignorance. There are still epistemically accessible
worlds at which the zip was invented by Franklin and others at which it was invented
by Judson. Knowing that Julius invented the zip is not the same thing as knowing that
Judson invented the zip, even if in fact Julius = Judson.

Similar problems have been argued to arise in the logic of metaphysical modality.
Imagine a clay statue, standing on a shelf. Let’s call it Goliath. Since Goliath is made of
clay, there is also a piece of clay on the shelf, at the exact same spot as the statue. Let’s
call that piece of clay Lumpl. How is Lumpl related to Goliath? We might want to say
that they are one and the same thing: Lumpl = Goliath. After all, there is only one statue-
shaped object on the shelf, not two. But we might also want to say that Lumpl could have
had the shape of a bowl, while Goliath could not: if the clay had been formed into a bowl
rather than a statue, then Lumpl would have been a bowl, but Goliath, the statue, would
not have existed. Goliath is necessarily not a bowl, but Lumpl is not necessarily not a
bowl. We have □¬𝐵𝑔 but not □¬𝐵𝑙, even though 𝑙=𝑔.

Exercise 10.8
Explain why the three examples I just presented also cast doubt on the “necessity
of identity”, ∀𝑥∀𝑦(𝑥 =𝑦 →□ 𝑥 =𝑦).

So perhaps we should give up Leibniz’ Law. Semantically, the Law corresponds to
the assumption that names are directly referential, meaning that the only contribution
a name makes to the truth-value of a sentence is its referent. If names are directly refer-
ential, and two names have the same referent, then it makes no difference which of them
we use: replacing one by the other never affects the truth-value of a sentence.

So far, we have assumed direct reference in both constant-domain and variable-domain
semantics. On either account, names are interpreted as simply picking out an individual.
It is a matter of debate whether names in ordinary language are directly referential. Some
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hold that Lois Lane really has inconsistent beliefs. Others hold that Lois neither believes
that Superman can fly nor that Clark Kent can’t fly, because the objects of belief or
knowledge are never adequately represented by statements involving ordinary names.
(This also gets around the Julius problem.) With respect to Lumpl and Goliath, some
simply deny that Lumpl is identical to Goliath.

We will not descend into these debates. Instead, let’s explore how we could change
our semantics for 𝔏𝑀𝑃 to block the relevant applications of Leibniz’ Law. There are
several ways to achieve this. We will only look at one.

The approach we will explore drops the assumption that names are rigid. A name
is rigid if it picks out the same individual relative to any possible world. Earlier, we
assumed that no matter at which world the sentence 𝐹𝑎 is interpreted, the name 𝑎 al-
ways picks out the same individual, 𝑉(𝑎). A name like ‘Julius’, however, seems to be
non-rigid. It picks out different individuals relative to different (epistemically) possible
worlds. Relative to a world where Benjamin Franklin invented the zip, ‘Julius’ picks out
Benjamin Franklin. Relative to a world where Whitcomb L. Judson invented the zip, the
name picks out Whitcomb L. Judson.

Let’s assume, then, that a model’s interpretation function assigns an individual to each
name relative to each world. This is equivalent to assuming that each name is interpreted
as expressing a function from worlds to individuals, telling us which individual the name
picks out relative to any given world. Functions from worlds to individuals are known
as individual concepts, which is why the present approach is often called individual
concept semantics.

To motivate this label, return to Lois Lane. When Lois is thinking about Superman,
she is thinking about the audacious hero whose superhuman powers she has witnessed
on several occasions. When she is thinking about Clark Kent, she is thinking about
her shy and awkward colleague. Lois has distinct “concepts” for Superman and Clark
Kent, one associated with the Superman role, the other with the Clark Kent role. The
two concepts actually pick out the same person because one and the same person plays
both the Superman role and the Clark Kent role. We can model each of these roles as
a function from worlds to individuals. The Superman role is represented by a function
that maps every world to whoever plays the Superman role at that world. The Clark Kent
role is represented by a function that maps every world to whoever plays the Clark Kent
role at that world. For the world of the Superman stories, both functions return the same
individual. For Lois Lane’s belief worlds, they return different individuals.
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Exercise 10.9
What individual concepts might be associated with the names ‘Lumpl’ and ‘Go-
liath’?

We can easily convert our earlier constant-domain and variable-domain semantics into
an individual concept semantics. We first need to change the definition of a model, so
that 𝑉 assigns individual concepts to names. In variable-domain semantics, we might
stipulate that an individual concept never maps a world to an individual that doesn’t exist
at the world. We might also want to allow for “partial concepts”: individual concepts
that don’t return any value for certain worlds.

It is advisable to give a parallel treatment for names and variables. So we’ll also
assume that an assignment function 𝑔 interprets each variable as expressing an individual
concept. In the truth definition, we replace [𝜏]𝑀,𝑔, by [𝜏]𝑀,𝑤,𝑔, which is defined as the
referent of 𝜏 in 𝑀 at 𝑤, relative to 𝑔. (That is, if 𝜏 is a name, then [𝜏]𝑀,𝑤,𝑔 = 𝑉(𝜏)(𝑤);
if 𝜏 is a variable, then [𝜏]𝑀,𝑤,𝑔 = 𝑔(𝜏)(𝑤).) Finally, we adjust the definition of an 𝑥-
variant so that 𝑔′ is an 𝑥-variant of 𝑔 iff 𝑔′ differs from 𝑔 at most in the individual concept
it assigns to 𝑥.

The resulting logic of individual concepts has some unexpected features. For example,
all instances of the following schema become valid:

□∃𝑥𝐴 → ∃𝑥□𝐴

To see why, consider the instance □∃𝑥𝐹𝑥 → ∃𝑥□𝐹𝑥. Suppose the antecedent is true at
some world in some model. This means that at every accessible world 𝑣, there is at least
one individual that is 𝐹. In this case, there are functions that map every accessible world
to some individual that is 𝐹. Let 𝑔′(𝑥) be some such function. Relative to 𝑔′, □𝐹𝑥 is
true at 𝑤. So ∃𝑥□𝐹𝑥 is true at 𝑤.

This is widely regarded as problematic. It would suggest that the two readings of
‘something necessarily exists’ are actually equivalent: it is necessary that something or
other exists just in case there is something that necessarily exists.

Another problematic feature of individual concept semantics is that the resulting logic
has no sound and complete proof procedure. There are no tree rules, or natural deduction
rules, or axioms and inference rules that would allow proving all and only the sentences
that are true at all worlds in all models of individual concept semantics (no matter if we
assume constant or variable domains). It’s not just that no-one has yet found a suitable
proof method. One can prove that no such method exists.

Both of these problems can be avoided by putting further constraints on models. We
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have assumed that any function from worlds to individuals is a candidate interpretation
for a name or a variable. Relative to an assignment function, a variable may pick out
Donald Trump in one world, the Eiffel tower in another, a fried egg in a third, and so on.
Ordinary concepts are not that gerrymandered. We might therefore identify a certain
subset of all individual concepts as “eligible” for being expressed by names or variables.
If this is done sensibly, □∃𝑥𝐴 → ∃𝑥□𝐴 becomes invalid, and complete proof methods
become available.

Exercise 10.10
The following line of thought may be attributed to Descartes. “I am certain that I
exist, but not that my body exists. [After all, it could turn out that I am a disem-
bodied soul.] Therefore: I am not my body.” Translate the argument into 𝔏𝑀𝑃. Is
it CK-valid? Is it VK-valid? Do you find it convincing?

Exercise 10.11
The following sentence sounds contradictory.

Some ticket will win, but I don’t know if it will win.

Translate the sentence into 𝔏𝑀𝑃. Explain why its apparent contradictoriness poses
a problem for accounts on which variables are treated as directly referential.

Exercise 10.12
In individual concept semantics, both the necessity of identity and the necessity of
distinctness are invalid. How could we change the semantics to make the necessity
of identity valid, but not the necessity of distinctness? (Assume constant domains.)
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Chapter 1

Exercise 1.1
(a), (c), and (d) are 𝔏𝑀-sentences, (b), (e), and (f) are not.

Exercise 1.2
Here is a combined truth table for all the classical connectives:

A B ¬𝐴 𝐴 ∧ 𝐵 𝐴 ∨ 𝐵 𝐴 → 𝐵 𝐴 ↔ 𝐵
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Exercise 1.3
An operator 𝑂 is truth-functional if you can figure out the truth-value of 𝑂𝑝 from the
truth-value of 𝑝.

(c) and (g) are truth-functional; (a), (b), (d), and (e) are not truth-functional.
(f) is truth-functional if God is omniscient (and infallible); it is also truth-functional

if God doesn’t exist, or if God believes all and only false things; otherwise (f) is not
truth-functional.

Exercise 1.4

(a) ♢𝑝 𝑝: I offended the principal.
(b) ¬♢𝑝 𝑝: It is raining.
(c) ♢𝑝 𝑝: There is life on Mars.
(d) □(𝑝 → 𝑞) 𝑝: The murderer escaped through the window; 𝑞: There are traces on

the ground.
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(e) ♢(𝑝 ∧ 𝑞) 𝑝: The murderer escaped through the window; 𝑞: There are traces on
the ground.

Exercise 1.5

(a) □𝑝 𝑝: I go home.
(b) ¬□𝑝 𝑝: You come.
(c) ¬♢𝑝 𝑝: You have another beer.
(d) □(¬𝑝 → 𝑞) 𝑝: You have a ticket; 𝑞: You pay a fine.

Exercise 1.6

(a) ♢𝑝 𝑝: I study architecture.
(b) ♢𝑝 𝑝: The bridge collapses.
(c) ¬♢(𝑝 ∧ 𝑞) 𝑝: You are talking to me from the kitchen; 𝑞: I hear you.
(d) 𝑝 →♢𝑞 𝑝: You have a smartphone; 𝑞: You use an electronic ticket.

Exercise 1.7
The proposed definition is equivalent to definition 1.2 for many languages, but not for
all. Consider the sentence ∃𝑥∃𝑦¬(𝑥 = 𝑦) in the language of predicate logic. If we treat
the identity symbol as logical, this sentence contains no non-logical expressions at all.
And the sentence is true, because there is in fact more than one object. So the sentence
is true under any interpretation of its non-logical vocabulary. But it’s not logically true;
it doesn’t logically follow from any premises whatsoever. The sentence is false in any
scenario in which there is only one object.

Exercise 1.8
The following pairs are duals: (a) and (c), (b) and (d), (e) and (g), (f) and (h), (i) and (k),
(l) and (l), (m) and (m).

Exercise 1.9
(b) and (e) are equivalent to ♢♢¬𝑝, (a), (c), and (d) are not.

As a rule, you can always replace a modal operator by its dual, insert a negation on
both sides, and remove any double negations to get an equivalent sentence.

Exercise 1.10
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(b) and (d)

Exercise 1.11
(a) ♢♢𝐴 →♢𝐴, (b) ♢□𝐴 →□𝐴, (c) □𝐴 →♢𝐴.

Exercise 1.12
(a) ¬□𝑝 ∧ ¬□¬𝑝; (b) ♢𝑝 ∧ ♢¬𝑝; (c) ¬∇𝑝 ∧ 𝑝. The last answer assumes that every
necessary proposition is true. Without that assumption there is no answer to (c).

Exercise 1.13

(a) All of them.
(b) Only (K) and (CPL).
(c) All except (T).
(d) All of them.

Exercise 1.14

(a)

1. □𝑝 → 𝑝 (T)
2. □(□𝑝 → 𝑝) (1, Nec)

(b)

1. 𝑝 → (𝑞 → (𝑝 ∧ 𝑞)) (CPL)
2. □(𝑝 → (𝑞 → (𝑝 ∧ 𝑞))) (1, Nec)
3. □(𝑝 → (𝑞 → (𝑝 ∧ 𝑞))) → (□𝑝 →□(𝑞 → (𝑝 ∧ 𝑞))) (K)
4. □𝑝 →□(𝑞 → (𝑝 ∧ 𝑞))) (2, 3, CPL)
5. □(𝑞 → (𝑝 ∧ 𝑞))) → (□𝑞 →□(𝑝 ∧ 𝑞)) (K)
6. □𝑝 → (□𝑞 →□(𝑝 ∧ 𝑞)) (4, 5, CPL)
7. (□𝑞 ∧ □𝑞) →□(𝑝 ∧ 𝑞) (6, CPL)
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(c)

1. ¬♢¬𝑝 ↔ □¬¬𝑝 (Dual)
2. ¬¬♢¬𝑝 ↔ ¬□¬¬𝑝 (1, CPL)
3. ♢¬𝑝 ↔ ¬□¬¬𝑝 (2, CPL)
4. ¬¬𝑝 → 𝑝 (CPL)
5. □(¬¬𝑝 → 𝑝) (4, Nec)
6. □(¬¬𝑝 → 𝑝) → (□¬¬𝑝 →□𝑝) (K)
7. □¬¬𝑝 →□𝑝 (5, 6, CPL)
8. 𝑝 → ¬¬𝑝 (CPL)
9. □(𝑝 → ¬¬𝑝) (8, Nec)

10. □(𝑝 → ¬¬𝑝) → (□𝑝 →□¬¬𝑝) (K)
11. □𝑝 →□¬¬𝑝 (9, 10, CPL)
12. □¬¬𝑝 ↔ □𝑝 (7, 11, CPL)
13. ¬□¬¬𝑝 ↔ ¬□𝑝 (12, CPL)
14. ♢¬𝑝 ↔ ¬□𝑝 (3, 13, CPL)

Exercise 1.15
In an axiomatic calculus, every line in a proof is either an axiom or follows from an
earlier line by one of the rules. (Nec) therefore assumes that whenever a sentence 𝐴 is
provable in the axiomatic calculus, then it is necessarily true (reading the box as ‘it is
necessary that’).

The rules of the axiomatic calculus cannot be used to directly derive assumptions from
arbitrary premises. To show that 𝐴 entails 𝐵, you have to prove 𝐴 → 𝐵.
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Chapter 2

Exercise 2.1
Consider a scenario in which (say) it is raining at some worlds and not raining at others.
Let 𝑝 express that it is raining. In this scenario, under this interpretation, ♢𝑝 is true,
because 𝑝 is true at some world. But □𝑝 is false, because 𝑝 is not true at all worlds. So
there are conceivable scenarios and interpretations that render ♢𝑝 true and □𝑝 false.

Exercise 2.2
(b), (e), and (f) are true at 𝑤1, the others false.

Exercise 2.3
♢𝑝 → (𝑞 ∨ ♢□𝑝) is true at both worlds.

Exercise 2.4
The two definitions are not equivalent, as can be seen from the fact that the definition
proposed in the exercise would render 𝑝 |= □𝑝 true. Whenever 𝑝 is true at every world in
a model then (by definition 2.2) □𝑝 is also true at every world in the model. Definition
2.4 renders 𝑝 |= □𝑝 false, since there are models in which 𝑝 is true at some worlds and
not at others.

Exercise 2.5
By definition 2.3, a sentence is valid iff it is true at every world in every model. Suppose
for reductio that □𝑝 →♢𝑝 is false at some world 𝑤 in some model. By definition 2.2, □𝑝
is then true at 𝑤 and ♢𝑝 false. But if ♢𝑝 is false at 𝑤 then (by definition 2.2) 𝑝 is false at
every world in the model. And then □𝑝 isn’t true at 𝑤 (by definition 2.2). Contradiction.

Exercise 2.6
Suppose 𝐴 is valid – true at all worlds in all models (definition 2.3). It follows that in
any given model, 𝐴 is true at every world. By definition 2.2, it follows that □𝐴 is true at
every world in any model.

Exercise 2.7
𝑝 →□𝑝 is false at world 𝑤 in the model(s) given by 𝑊 = {𝑤, 𝑣}, 𝑉(𝑝) = {𝑤}.
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This shows that the truth of 𝑝 (at a world in a model) does not entail the truth of □𝑝
(at the world in the model), even though the validity of 𝑝 entails the validity of □𝑝, as
per the previous exercise.

Exercise 2.8
Assume |= 𝐴 → 𝐵. Then there is no world in any model at which 𝐴 is true and 𝐵 is false.
So if 𝐴 is true at every world in a model, then 𝐵 is also true at every world in the model.
It follows that □𝐴 →□𝐵 is true at every world in every model.

Exercise 2.9

(a) Target: 𝑝 → 𝑞
1. ¬(𝑝 → 𝑞) (𝑤) (Ass.)
2. 𝑝 (𝑤) (1)
3. ¬𝑞 (𝑤) (1)

Countermodel: 𝑊 = {𝑤}, 𝑉(𝑝) = {𝑤}, 𝑉(𝑞) = ∅.

(b) Target: 𝑝 →□(𝑝 ∨ 𝑞)
1. ¬(𝑝 →□(𝑝 ∨ 𝑞)) (𝑤) (Ass.)
2. 𝑝 (𝑤) (1)
3. ¬□(𝑝 ∨ 𝑞) (𝑤) (1)
4. ¬(𝑝 ∨ 𝑞) (𝑣) (3)
5. ¬𝑝 (𝑣) (4)
5. ¬𝑞 (𝑣) (4)

Countermodel: 𝑊 = {𝑤, 𝑣}, 𝑉(𝑝) = {𝑤}, 𝑉(𝑞) = ∅.

(c) Target: □𝑝 ∨ □¬𝑝
1. ¬(□𝑝 ∨ □¬𝑝) (𝑤) (Ass.)
2. ¬□𝑝 (𝑤) (1)
3. ¬□¬𝑝 (𝑤) (1)
4. ¬𝑝 (𝑣) (2)
5. ¬¬𝑝 (𝑢) (3)
6. 𝑝 (𝑢) (5)
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Countermodel: 𝑊 = {𝑤, 𝑣, 𝑢}, 𝑉(𝑝) = {𝑢}.
(d) Target: ♢(𝑝 → 𝑞) → (♢𝑝 →♢𝑞)

1. ¬(♢(𝑝 → 𝑞) → (♢𝑝 →♢𝑞)) (𝑤) (Ass.)
2. ♢(𝑝 → 𝑞) (𝑤) (1)
3. ¬(♢𝑝 →♢𝑞) (𝑤) (1)
4. ♢𝑝 (𝑤) (3)
5. ¬♢𝑞 (𝑤) (3)
6. 𝑝 → 𝑞 (𝑣) (2)
7. 𝑝 (𝑢) (4)
8. ¬𝑞 (𝑤) (5)
9. ¬𝑞 (𝑣) (5)
10. ¬𝑞

hhhh
hhhh

hhhh
hh

VVVV
VVVV

VVVV
VV

(𝑢) (5)

11. ¬𝑝 (𝑣) (6) 12. 𝑞
x

(𝑣) (6)

Countermodel: 𝑊 = {𝑤, 𝑣, 𝑢}, 𝑉(𝑝) = {𝑢}, 𝑉(𝑞) = ∅.

(e) □♢𝑝 → 𝑝
1. ¬(□♢𝑝 → 𝑝)) (𝑤) (Ass.)
2. □♢𝑝 (𝑤) (1)
3. ¬𝑝 (𝑤) (1)
4. ♢𝑝 (𝑤) (2)
5. 𝑝 (𝑣) (4)
6. ♢𝑝 (𝑣) (2)
7. 𝑝 (𝑢) (6)
8. ♢𝑝 (𝑢) (2)
9. 𝑝 (𝑡) (8)

�

The tree grows forever. The target sentence isn’t valid, but the tree method only
gives us an infinite countermodel. In such a case, it may be useful to read off a
model from an incomplete version of the tree and manually check whether it is a
genuine countermodel. The model determined by the first five nodes of the present
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tree is 𝑊 = {𝑤, 𝑣}, 𝑉(𝑝) = {𝑣}, and you can confirm that it is a countermodel to the
target sentence.

If you read off a model from an incomplete tree, you can’t be sure that it is a coun-
termodel for the target sentence. You must always double-check!

Exercise 2.10
You can enter the schemas at umsu.de/trees. After entering a formula, tick the checkbox
for ‘universal (S5)’. Alternatively, follow these links: (K), (T), (4), (5),

Exercise 2.11
(a), (b), (c) and (e) are valid. You can find the trees at umsu.de/trees (Remember to tick
the checkbox for ‘universal (S5)’) or by following these links: (a), (b), (c), (e).

(d) and (f) are invalid. Here is a tree for (d):

1. ¬((♢𝑝 ∧ ♢𝑞) →♢(𝑝 ∧ 𝑞)) (𝑤) (Ass.)
2. ♢𝑝 ∧ ♢𝑞 (𝑤) (1)
3. ¬♢(𝑝 ∧ 𝑞) (𝑤) (1)
4. ♢𝑝 (𝑤) (2)
5. ♢𝑞 (𝑤) (2)
6. 𝑝 (𝑣) (4)
7. 𝑞 (𝑢) (5)
8. ¬(𝑝 ∧ 𝑞)

hhhh
hhhh

hhhh
hh

VVVV
VVVV

VVVV
VV

(𝑣) (3)

9. ¬𝑝
x

(𝑣) (8) 10. ¬𝑞 (𝑣) (8)
11. ¬(𝑝 ∧ 𝑞)

hhhh
hhhh

hhhh
hh

VVVV
VVVV

VVVV
VV

(𝑢) (3)

12. ¬𝑝 (𝑢) (11) 13. ¬𝑞
x

(𝑢) (11)
14. ¬(𝑝 ∧ 𝑞)

hhhh
hhhh

hhhh
hh

VVVV
VVVV

VVVV
VV

(𝑤) (3)

15. ¬𝑝 (𝑤) (14) 16. ¬𝑞 (𝑤) (14)

We can choose either of the open branches to read off a countermodel. In fact, here we get
the same countermodel no matter which open branch we choose: 𝑊 = {𝑤, 𝑣, 𝑢}, 𝑉(𝑝) =
{𝑣}, 𝑉(𝑞) = {𝑢}.
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A tree for (e) might begin like this:
1. ¬(□♢𝑝 →♢□𝑝) (𝑤) (Ass.)
2. □♢𝑝 (𝑤) (1)
3. ¬♢□𝑝 (𝑤) (1)
4. ♢𝑝 (𝑤) (2)
5. 𝑝 (𝑣) (4)
6. ¬□𝑝 (𝑤) (3)
7. ¬𝑝 (𝑢) (6)
8. ♢𝑝 (𝑣) (2)
9. 𝑝 (𝑠) (8)
10. ¬□𝑝 (𝑣) (3)
11. ¬𝑝 (𝑡) (10)

�

The tree grows forever. The model determined by the first seven nodes of the present
tree is 𝑊 = {𝑤, 𝑣, 𝑢}, 𝑉(𝑝) = {𝑣}. It is a countermodel to the target sentence.

Exercise 2.12
By observation 1.1, 𝐴1, … , 𝐴𝑛 entail 𝐵 iff (𝐴1 ∧ … ∧ 𝐴𝑛) → 𝐵 is valid. To show that
𝐴1, … , 𝐴𝑛 entail 𝐵 we could therefore draw a tree for (𝐴1 ∧… ∧ 𝐴𝑛) → 𝐵. In practice, we
can save a few steps by starting the tree with multiple assumptions: one for each of the
premises 𝐴1, … , 𝐴𝑛, and one for the negated conclusion ¬𝐵. (All of these are assumed
to be true at world 𝑤.) If the tree closes, 𝐴1, … , 𝐴𝑛 entail 𝐵.

To show that 𝐴 and 𝐵 are equivalent, we can draw a tree for 𝐴 ↔ 𝐵.
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Chapter 3

Exercise 3.1

(a) One answer: 𝐴 is physically necessary iff 𝐴 is true at all worlds that are compatible
with the laws of physics. A possibly better answer: 𝐴 is physically necessary iff 𝐴 is
true at all worlds that are compatible with the laws of physics and the current state
of the universe.

(b) A simple, if somewhat uninformative answer: We know that 𝐴 iff 𝐴 is true at all
worlds that are compatible which our knowledge.

(c) It is true that 𝐴 iff 𝐴 is true at all worlds that are identical to the actual world.

Exercise 3.2
𝑣 has access to no world. So any sentence 𝐴 is true at all (zero) worlds accessible from
𝑣.

If this seems strange, remember that □𝐴 is equivalent to ¬♢¬𝐴. And ♢¬𝐴 means that
there’s an accessible world where ¬𝐴 is true. If there are no accessible worlds, then this
is false. So ¬♢¬𝐴 is true.

Exercise 3.3
(a) 𝑤1, 𝑤2, and 𝑤3; (b) 𝑤3; (c) –; (d) 𝑤1, 𝑤2 and 𝑤4; (e) all.

Exercise 3.4
There are infinitely many correct answers for each world. For example: 𝑤1 ∶ ♢□𝑝,
𝑤2 ∶ ¬𝑝 ∧ ¬𝑞, 𝑤3 ∶ □𝑝, 𝑤4 ∶ □𝑞.

Exercise 3.5

𝑝
𝑤1

𝑝
𝑤3

𝑞
𝑤4
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Exercise 3.6

(a) For example: 𝑊 = {𝑤, 𝑣}, 𝑅 = {(𝑤, 𝑣), (𝑣, 𝑤)}, 𝑉(𝑝) = {𝑣}. □𝑝 →□□𝑝 is false at
𝑤. (‘𝑅 = {(𝑤, 𝑣), (𝑣, 𝑤)}’ means that 𝑅 relates 𝑤 to 𝑣 and 𝑣 to 𝑤 and nothing else to
anything else.)

(b) For example: 𝑊 = {𝑤, 𝑣}, 𝑅 = {(𝑤, 𝑤), (𝑤, 𝑣)}, 𝑉(𝑝) = {𝑤}. ♢𝑝 →□♢𝑝 is false at
𝑤.

Exercise 3.7
For example: □(𝑝 ∨ ¬𝑝) → (𝑝 ∨ ¬𝑝).

Exercise 3.8
By clause (g) of definition 3.2, □(𝑝 ∨ ¬𝑝) is false at a world 𝑤 in a Kripke model only if
𝑝 ∨ ¬𝑝 is false at some world accessible from 𝑤. By clause (d) of definition 3.2, 𝑝 ∨ ¬𝑝
is false at a world only if both 𝑝 and ¬𝑝 are false at the world, which by clause (a) means
that 𝑝 is both true and false at the world. This is impossible. So □(𝑝 ∨ ¬𝑝) is not false
at any world in any Kripke model.

Exercise 3.9
By definition 3.2, □𝑝 →♢𝑝 is false at a world 𝑤 in a Kripke model only if □𝑝 is true at
𝑤 and ♢𝑝 is false at 𝑤. But if 𝑤 has access to itself then the truth of □𝑝 at 𝑤 implies that
𝑝 is true at 𝑤, and then ♢𝑝 is false at 𝑤. So □𝑝 →♢𝑝 can’t be false at any world in any
Kripke model in which each world has access to itself.

Exercise 3.10
Reflexive no, serial no, transitive no, euclidean no, symmetric yes, universal no.

Exercise 3.11

(a) Suppose 𝑅 is symmetric and transitive, and that 𝑥𝑅𝑦 and 𝑥𝑅𝑧. By symmetry, 𝑦𝑅𝑥.
By transitivity, 𝑦𝑅𝑧.

(b) Suppose 𝑅 is symmetric and euclidean, and that 𝑥𝑅𝑦 and 𝑦𝑅𝑧. By symmetry, 𝑦𝑅𝑥.
By euclidity, 𝑥𝑅𝑧.

(c) Suppose 𝑅 is reflexive and euclidean, and that 𝑥𝑅𝑦. By reflexivity, 𝑥𝑅𝑥. By euclidity,
𝑦𝑅𝑥.
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Exercise 3.12
It’s true that if 𝑅 is symmetric and transitive then 𝑤𝑅𝑣 implies 𝑣𝑅𝑤 which implies 𝑤𝑅𝑤.
But this only shows that every world 𝑤 that can see some world 𝑣 can see itself. Sym-
metry, transitivity, and seriality together imply reflexivity. Symmetry and transitivity
alone do not.

Exercise 3.13

(a) Every world has access only to itself.
(b) No world has access to any world.

Exercise 3.14
You can enter the sentences at umsu.de/trees. To check for K-validity, leave all the check-
boxes (for ‘universal’ etc.) empty.

Exercise 3.15
You can enter the sentences at umsu.de/trees. To test for K4-validity, check the ‘transitive’
box. To test for D-validity, check ‘serial’. To test for B-validity, check ‘symmetric’. To
test for T-validity, check ‘reflexive’.
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Chapter 4

Exercise 4.1
Methods A and B are genuine proof methods. Method C is not because there is no simple
mechanical check of whether a sentence occurs in some logic textbook.

Exercise 4.2
Method A is complete, but not sound. Everything that’s K-valid is provable with the
method, but so is everything that’s not K-valid.

Method B is sound, but not complete. Since every instance of □(𝐴 ∨ ¬𝐴) is K-valid,
everything that is provable with method B is K-valid. But many K-valid sentences (e.g.,
𝑝 → 𝑝) aren’t provable with method B.

Method C is neither sound nor complete. It is not sound because many K-invalid
sentences figure in logic textbooks. It is not complete because there are infinitely many
K-valid sentences almost all of which don’t occur in any textbooks.

Exercise 4.3
For 𝐴 → 𝐵: Suppose 𝛽 contains a node of the form 𝐴 → 𝐵 (𝜔) and the branch is split
into two, with ¬𝐴 (𝜔) appended to one end and 𝐵 (𝜔) to the other. Since the expanded
node is a correct statement about 𝑀 under 𝑓 , we have 𝑀, 𝑓 (𝜔) |= 𝐴 → 𝐵. By clause (e)
of definition 3.2, it follows that either 𝑀, 𝑓 (𝜔) |≠ 𝐴 or 𝑀, 𝑓 (𝜔) |= 𝐵. By clause (b),
this means that either 𝑀, 𝑓 (𝜔) |= ¬𝐴 or 𝑀, 𝑓 (𝜔) |= 𝐵. So at least one of the resulting
branches also correctly describes 𝑀.

For ¬♢𝐴: Suppose 𝛽 contains nodes of the form ¬♢𝐴 (𝜔) and 𝜔𝑅𝜐, and the branch
is extended by adding ¬𝐴 (𝜐). Since ¬♢𝐴 (𝜔) and 𝜔𝑅𝜐 are correct statement about
𝑀 under 𝑓 , we have 𝑀, 𝑓 (𝜔) |= ¬♢𝐴 and 𝑓 (𝜔)𝑅𝑓 (𝜐). By clause (b) of definition 3.2,
𝑀, 𝑓 (𝜔) |= ¬♢𝐴 implies 𝑀, 𝑓 (𝜔) |≠ ♢𝐴. By clause (h), it follows that 𝑀, 𝑓 (𝜐) |= ¬𝐴.
So the extended branch correctly describes 𝑀.

Exercise 4.4
Yes. The function 𝑓 can map both ‘𝑤’ and ‘𝑣’ to 𝑤.

Exercise 4.5
A sentence is K4-valid iff it is true at all worlds in all transitive Kripke models. We only
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need to check that the Transitivity rule is sound, in the sense that if a branch correctly
describes a transitive model 𝑀, and the branch is extended by the Transitivity rule, then
the resulting branch also correctly describes 𝑀. (The Transitivity rule allows adding a
node 𝜔𝑅𝜐 to a branch that already contains nodes 𝜔𝑅𝜈 and 𝜈𝑅𝜐. If these nodes correctly
describe a transitive model then so does 𝜔𝑅𝜐.)

Exercise 4.6
For 𝐵 → 𝐶: If 𝐴 is a conditional 𝐵 → 𝐶, then 𝛽 contains either ¬𝐵 (𝜔) or 𝐶 (𝜔). By
induction hypothesis, 𝑀, 𝜔 |= ¬𝐵 or 𝑀, 𝜔 |= ¬𝐶. Either way, clauses (b) and (e) of
definition 3.2 imply that 𝑀, 𝜔 |= 𝐴.

For ¬♢𝐵: If 𝐴 is a negated diamond sentence ¬♢𝐵, then 𝛽 contains a node ¬𝐵 (𝜐)
for each world variable 𝜐 for which 𝜔𝑅𝜐 is on 𝛽 (because the tree is fully developed).
By induction hypothesis, 𝑀, 𝜐 |= ¬𝐵, for each such 𝜐. By definition 4.2, it follows that
𝑀, 𝜐 |= ¬𝐵 for all worlds 𝜐 such that 𝜔𝑅𝜐. By clauses (b) and (g) of definition 3.2, it
follows that 𝑀, 𝜔 |= 𝐴.

Exercise 4.7
We need to check that the model induced by an open branch on a fully developed K4-
tree is transitive. (Suppose the model contains worlds 𝑤, 𝑣, 𝑢 for which 𝑤𝑅𝑣 and 𝑣𝑅𝑢.
Then the Transitivity rule has been applied to the corresponding nodes on the branch,
generating a node 𝑤𝑅𝑢. By definition 4.2, 𝑤𝑅𝑢 holds in the induced model.)

Exercise 4.8
Suppose 𝐴 is true at some world in some Kripke model. Then ¬𝐴 is K-invalid. Take any
regular K-tree for ¬𝐴. By observation 4.1, that tree is fully developed. By the soundness
theorem for K-trees, the tree has an open branch. Let 𝑀 be the model induced by some
such branch 𝛽. Then 𝑀 is acyclical. This is because the only rules that allow adding a
node 𝜔𝑅𝜐 to a branch of a K-tree are the rules for expanding ♢𝐴 and ¬□𝐴 nodes. In
both cases, the rule requires that the relevant world variable 𝜐 is new on the branch. (Call
this the novelty requirement.) Now suppose the accessibility relation in 𝑀 has a cycle
𝜔1𝑅𝜔2, 𝜔2𝑅𝜔3, …, 𝜔𝑛−1𝑅𝜔𝑛, 𝜔𝑛𝑅𝜔1. Each of these facts about 𝑅 must correspond
to a node on 𝛽. Of these nodes, the one that was added last (to 𝛽) violates the novelty
requirement. So 𝑀 is acyclical.

By the Completeness Lemma, the target sentence ¬¬𝐴 is true at world 𝑤 in 𝑀. So 𝐴
is true at 𝑤 in 𝑀. So 𝐴 is true at some world in some acyclical model.
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Exercise 4.9
The S5 rules are not sound with respect to K-validity. For example, □𝑝 → 𝑝 is provable
with the S5 rules, but it isn’t K-valid. The rules are, however, complete with respect to
K-validity. This follows from the completeness of the S5 rules and the fact that every
K-valid sentence is S5-valid (observation 3.1).

Exercise 4.10
We need to show that everything that’s derivable in the axiomatic calculus for S4 is true
at every world in every transitive and reflexive Kripke model. From the soundness proof
for K, we know that all instances of (Dual) and (K) are true at every world in every Kripke
model. From observation 3.2, we know that all instances of (T) are true at every world
in every reflexive Kripke model. From observation 3.3, we know that all instances of (4)
are true at every world in every transitive Kripke model. So all axioms in the S4-calculus
are valid in the class of transitive and reflexive Kripke frames. Since (CPL) and (Nec)
preserve validity in any class of Kripke frames, it follows that everything that’s derivable
in the S4-calculus is valid in the class of transitive and reflexive frames.

Exercise 4.11
(a), (b), and (c) are K-consistent, (d) is not.

Exercise 4.12
We have to show that all S5-valid sentences are provable in the axiomatic calculus for
S5, which extends the calculus for T by the axiom schemas □𝐴 →□□𝐴 and ♢𝐴 →□♢𝐴.
(The second schema alone would be sufficient, as I mentioned in chapter 1, but it doesn’t
hurt to have the first.) The argument is by contraposition: We suppose that some sentence
is not S5-provable and show that it is not S5-valid.

Suppose 𝐴 is not S5-provable. Then {¬𝐴} is S5-consistent. It follows by Linden-
baum’s Lemma that {¬𝐴} is included in some maximal S5-consistent set Γ. By defini-
tion of canonical models, this set is a world in the canonical model 𝑀𝑆5 for S5. Since ¬𝐴
is in Γ, it follows from the Canonical Model Lemma that 𝑀𝑆5, Γ |= ¬𝐴. So 𝑀𝑆5, 𝑆 |≠ 𝐴.

It remains to show that the accessibility relation in 𝑀𝑆5 has the right formal properties.
We know that a sentence is S5-validity iff it is valid in the class of Kripke models whose
accessibility relation is an equivalence relation. So we will show that the accessibility
relation in 𝑀𝑆5 is reflexive, transitive, and symmetric.

By definition, a world 𝑣 in a canonical model is accessible from 𝑤 iff whenever□𝐴 ∈ 𝑤
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then 𝐴 ∈ 𝑣. Since the worlds in 𝑀𝑆5 are maximal S5-consistent sets of sentences, and
every such set contains every instance of the (T)-schema □𝐴 → 𝐴, there is no world in
𝑀𝑆5 that contains □𝐴 but not 𝐴. So every world in 𝑀𝑆5 has access to itself.

For transitivity, suppose for some worlds 𝑤, 𝑣, 𝑢 in 𝑀𝑆5 we have 𝑤𝑅𝑣 and 𝑣𝑅𝑢. We
need to show that 𝑤𝑅𝑢. Given how 𝑅 is defined in 𝑀𝑆5, we have to show that 𝑢 contains
all sentences 𝐴 for which 𝑤 contains □𝐴. So let 𝐴 be an arbitrary sentence for which 𝑤
contains □𝐴. Since every world in 𝑀𝑆5 contains every instance of □𝐴 →□□𝐴, we know
that 𝑤 also contains □□𝐴. From 𝑤𝑅𝑣, we can infer that 𝑣 contains □𝐴. And from 𝑣𝑅𝑢,
we can infer that 𝑢 contains 𝐴.

For symmetry, suppose for some worlds 𝑤, 𝑣 in 𝑀𝑆5 we have 𝑤𝑅𝑣 and not 𝑣𝑅𝑤. Given
how 𝑅 is defined, this means that there is some sentence 𝐴 for which □𝐴 is in 𝑣 but
¬𝐴 is in 𝑤. Since 𝑤 contains the T-provable sentence ¬𝐴 →♢¬𝐴 and the (5)-instance
♢¬𝐴 →□♢¬𝐴, it also contains □♢¬𝐴. So 𝑣 contains ♢¬𝐴. This contradicts the assump-
tion that 𝑣 is S5-consistent, given that 𝑣 contains □𝐴.

Exercise 4.13
(a) Method A from exercise 4.1 is sound and complete for 𝑋. (b) No set of 𝔏𝑀-sentences
is 𝑋-consistent, but every Kripke model must have at least one world.

Exercise 4.14
Let Γ be an infinite set of 𝔏𝑀-sentences. If Γ is K-satisfiable then obviously every finite
subset of Γ is satisfiable as well. For the converse direction, assume Γ is not K-satisfiable:
There is no world in any Kripke model at which all members of Γ are true. Then there is
no world in any Kripke model at which all members of Γ are true while 𝑝 ∧ ¬𝑝 is false.
So Γ |= 𝑝 ∧ ¬𝑝. By the compactness theorem, it follows that there is a finite subset Γ−

for which Γ− |= 𝑝 ∧ ¬𝑝. If Γ− |= 𝑝 ∧ ¬𝑝 then there is no world in any Kripke model at
which all members of Γ− are true while 𝑝 ∧ ¬𝑝 is false. Since 𝑝 ∧ ¬𝑝 is false at every
world in every Kripke model, it follows that there is no world in any Kripke model at
which all members of Γ− are true. This shows that if Γ is not K-satisfiable then there is
a finite subset (Γ−) of Γ that is not K-satisfiable. Conversely, if every finite subset of Γ
is K-satisfiable then Γ is K-satisfiable.

Exercise 4.15
Suppose there is a proof of ¬□(𝑝 ∧ ¬𝑝). By (CPL), we can infer □(𝑝 ∧ ¬𝑝) → (𝑝 ∧ ¬𝑝),
because 𝐴 → 𝐵 is a truth-functional consequence of ¬𝐴. By (Nec), we get □(□(𝑝 ∧
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¬𝑝) → (𝑝 ∧ ¬𝑝)). By (GL) and modus ponens (an instance of (CPL)), we can derive
□(𝑝 ∧ ¬𝑝).
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Chapter 5

Exercise 5.1
For an agent who knows all truths only the actual world is epistemically accessible. For
an agent who knows nothing all worlds are epistemically accessible.

Exercise 5.2
(a) K(𝑟 ∨ 𝑠)

𝑟: It is raining; 𝑠: It is snowing

(b) K 𝑟 ∨ K 𝑠
𝑟: It is raining; 𝑠: It is snowing

(c) K 𝑟 ∨ K ¬𝑟
𝑟: It is raining

(d) This sentence is ambiguous. On one reading, it could be translated as M 𝑔 → K 𝑔,
on the other as K(M 𝑔 → 𝑔)
𝑔: You are guilty

Exercise 5.3
You can use umsu.de/trees/ to create the tree proof. We can assume S5 for the box
because it quantifies unrestrictedly over all worlds (as in chapter 2).

Exercise 5.4
(NT) is valid on all and only the frames in which no world can see any world.

Exercise 5.5
We assume that ignorance of 𝐴 can be formalized as 𝐴 ∧ ¬ K 𝐴. Ignorance of ignorance
of 𝐴 is therefore formalized as (𝐴 ∧ ¬ K 𝐴) ∧ ¬ K(𝐴 ∧ ¬ K 𝐴). A tree proof shows that
the former K-entails the latter.

Exercise 5.6
In a Gettier case, the relevant proposition 𝑝 (say, that you’re looking at a barn) is true but
unknown. By (0.4), it would follow that the agent knows that they don’t know 𝑝. But in
a typically Gettier case the agent does not know that they don’t know 𝑝.
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Exercise 5.7
All except (a) and (d) are correct. You can find trees or counterexamples for (a)-(e) on
umsu.de/trees/ if you write K as a box and M as a diamond. Here is a tree for (f):

1. ¬((M K 𝑝 ∧ M K 𝑞) → M K(𝑝 ∧ 𝑞)) (𝑤) (Ass.)
2. M K 𝑝 ∧ M K 𝑞 (𝑤) (1)
3. ¬ M K(𝑝 ∧ 𝑞) (𝑤) (1)
4. M K 𝑝 (𝑤) (2)
5. M K 𝑞 (𝑤) (2)
6. 𝑤𝑅𝑣 (4)
7. K 𝑝 (𝑣) (4)
8. 𝑤𝑅𝑢 (5)
9. K 𝑞 (𝑢) (5)
10. 𝑣𝑅𝑡 (6,8,Con)
11. 𝑢𝑅𝑡 (6.8,Con)
12. 𝑤𝑅𝑡 (6.10,Tr)
13. ¬ K(𝑝 ∧ 𝑞) (𝑡) (3,12)
14. 𝑡𝑅𝑠 (13)
15. ¬(𝑝 ∧ 𝑞)

hhhh
hhhh

hhhh
hh

VVVV
VVVV

VVVV
VV

(𝑠) (13)

16. ¬𝑝 (𝑠) (15) 17. ¬𝑞 (𝑠) (15)
18. 𝑣𝑅𝑠 (10.14,Tr) 19. 𝑢𝑅𝑠 (11.14,Tr)
20. 𝑝

x
(𝑠) (7,18) 21. 𝑞

x
(𝑠) (9,19)

Exercise 5.8
see https://plato.stanford.edu/entries/dynamic-epistemic/appendix-B-solutions.html (where
all the dates are 10 days later than they are in my version).

Exercise 5.9
(a) and (b) are valid, (c) and (d) are invalid. Here is a tree proof for (a).
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1. ¬(M1 K2 𝑝 → M1 𝑝) (𝑤) (Ass.)
2. M1 K2 𝑝 (𝑤) (1)
3. ¬ M1 𝑝 (𝑤) (1)
4. 𝑤𝑅1𝑣 (2)
5. K2 𝑝 (𝑣) (2)
6. ¬𝑝 (𝑣) (3,4)
7. 𝑣𝑅2𝑣 (Refl.)
8. 𝑝

x
(𝑣) (5,7)

The tree for (c) doesn’t close:

1. ¬(M1 K2 𝑝 → M2 K1 𝑝) (𝑤) (Ass.)
2. M1 K2 𝑝 (𝑤) (1)
3. ¬ M2 K1 𝑝 (𝑤) (1)
4. 𝑤𝑅1𝑣 (2)
5. K2 𝑝 (𝑣) (2)
6. 𝑣𝑅2𝑣 (Refl.)
7. 𝑝 (𝑣) (5,6)
8. 𝑤𝑅2𝑤 (Refl.)
9. ¬ K1 𝑝 (𝑤) (3,8)
10. 𝑤𝑅1𝑢 (9)
11. ¬𝑝 (𝑢) (9)

We could add a few more applications of Reflexivity, but the tree would remain open. It
also gives us a countermodel: let 𝑊 = {𝑤, 𝑣, 𝑢}; 𝑤 has 1-access to 𝑣 and 𝑢; each world
has 1- and 2-access to itself; 𝑉(𝑝) = {𝑣}. In this model, at world 𝑤, M1 K2 𝑝 is true while
M2 K1 𝑝 is false.

Cases (b) and (d) are similar.

Exercise 5.10
The (5)-schema for E𝐺 states that ¬ E𝐺 ¬𝐴 → E𝐺 ¬ E𝐺 ¬𝐴. To show that some instance
of this is invalid, we need to find a case where some instance of ¬ E𝐺 ¬𝐴 is true while
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E𝐺 ¬ E𝐺 ¬𝐴 is false. We can take the simplest instance, with 𝐴 = 𝑝. Assume the relevant
group has two agents, and consider a world 𝑤 at which K1 ¬𝑝 and ¬ K2 ¬𝑝 are true. By
the assumption that (5) is valid for K𝑖, K2 ¬ K2 ¬𝑝 is also true at 𝑤. But K1 ¬ K2 ¬𝑝 can
be false (at 𝑤). If it is, then ¬ E𝐺 ¬𝑝 is true at 𝑤 while E𝐺 ¬ E𝐺 ¬𝑝 is false.

Exercise 5.11
No, a transitive, serial, and euclidean relation is not always symmetric. Counterexample:
wRv, vRv. This means that not all instances of (B) (which corresponds to symmetry) are
valid in KD45.

Exercise 5.12
You can e.g. do a tree proof, using B as the box.

Exercise 5.13
Let 𝐴 be an arbitrary proposition.

By (PI), B 𝐴 → K B 𝐴 is valid. By (KB), so is K B 𝐴 → B B 𝐴. By propositional logic,
these entail B 𝐴 → B B 𝐴.

By (NI), ¬ B ¬𝐴 → K ¬ B ¬𝐴 is valid. By (KB), so is K ¬ B ¬𝐴 → B ¬ B ¬𝐴. By
propositional logic, these entail ¬ B ¬𝐴 → B ¬ B ¬𝐴.

Exercise 5.14
The left-to-right direction is (KB). For the right-to-left direction, let 𝐴 be an arbitrary
proposition. By (SB), B 𝐴 → B K 𝐴 is valid. By (D) for belief, B K 𝐴 → ¬ B ¬ K 𝐴 is valid.
The contraposition of (KB) gives us ¬ B ¬ K 𝐴 → ¬ K ¬ K 𝐴. Finally, the contraposition
of (5) for knowledge yields ¬ K ¬𝐴 → K 𝐴. The target proposition B 𝐴 → K 𝐴 is a truth-
functional consequence of these four propositions.

Exercise 5.15
If the logic of belief is KD45 then□♢𝑝 is equivalent to♢𝑝 (as you can show, for example,
with a tree proof).

Exercise 5.16
Suppose B(𝑝 ∧ ¬ B 𝑝). In any logic that extends K, it follows that B 𝑝 and B ¬ B 𝑝. By
(4), B 𝑝 entails B B 𝑝. Now we have B ¬ B 𝑝 and B B 𝑝, which violates (D).
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Chapter 6

Exercise 6.1

(a) O ¬𝑝; 𝑝: You go into the garden.
(b) O ¬𝑝; 𝑝: You go into the garden.
(c) O 𝑝; 𝑝: Jones helps his neighbours.
(d) O(𝑝 → 𝑞); 𝑝: Jones helps his neighbours, 𝑞: Jones tells his neighbours that he’s

coming.
(e) You might try O(¬𝑝 → ¬𝑞) or ¬𝑝 → O ¬𝑞 𝑝: Jones helps his neighbours, 𝑞: Jones

tells his neighbours that he’s coming.
See section 6.3, especially exercise 6.14, for why neither translation of (e) is fully satis-
factory.

Exercise 6.2
No, not unless all (or no) worlds are ideal. If 𝑤 is ideal and 𝑣 is not, then 𝑤𝑅𝑣 but not
𝑣𝑅𝑤.

Exercise 6.3
𝑅 is euclidean if ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑥𝑅𝑧) → 𝑦𝑅𝑧). Suppose 𝑤𝑅𝑣. Instantiating the universal
formula with 𝑤 for 𝑥 and with 𝑣 for 𝑦 and 𝑧, we have (𝑤𝑅𝑣 ∧ 𝑤𝑅𝑣) → 𝑣𝑅𝑣. So 𝑣𝑅𝑣.

Exercise 6.4
Let 𝑤 be a world in which the only relevant norm is that one must drive on the left. Let 𝑣
and 𝑢 be worlds in which everyone drives on the left even though the law requires driving
on the right. Both 𝑣 and 𝑢 are accessible from 𝑤, but 𝑢 is not accessible from 𝑣, and 𝑣 is
not accessible from itself.

Exercise 6.5

Use https://www.umsu.de/trees/. (Write O as a box and P as a diamond. For D, make
the accessibility relation serial; for KD45, make it serial, transitive, and euclidean.)

Exercise 6.6
(Dual1) says that ¬♢𝐴 is equivalent to □¬𝐴. If nothing is permitted then ¬♢𝐴 is true
for all 𝐴. But if nothing is forbidden then □¬𝐴 is false for all 𝐴.
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(Dual2) says that ¬□𝐴 is equivalent to ♢¬𝐴. If nothing is forbidden then ¬□𝐴 is true
for all 𝐴. But if nothing is permitted then ♢¬𝐴 is false for all 𝐴.

Exercise 6.7
We assume that every world has some norms. (See the previous exercise.) Suppose
a world 𝑣 is accessible from a world 𝑤, meaning that 𝑣 conforms to the norms of 𝑤.
Since the norms are intolerant, the norms at 𝑣 must be the same as at 𝑤. So whatever
is accessible from 𝑣 is accessible from 𝑤. It follows that the accessibility relation is
transitive and euclidean. (In fact, the complete relativist logic of intolerant norms is
KD45.)

Note that the absolutist approach validates schemas like O 𝐴 → O O 𝐴 without assum-
ing that the norms say anything about whether they should be in force.

Exercise 6.8
P 𝐴 could be defined as ¬□(N → ¬𝐴), or more simply (and equivalently) as ♢(N ∧𝐴).

Exercise 6.9
In the Leibnizian language, the (U)-schema turns into □(N → (□(N → 𝐴) → 𝐴)). You
can use a tree proof to show that this is T-valid. (See umsu.de/trees/.)

Exercise 6.10
In the described situation, it ought to be the case that Amy is either obligated to help
Betty or obligated to help Carla, but Amy is neither obligated to help Betty nor to help
Carla. So if 𝑝 translates ‘Amy helps Betty’ and 𝑞 ‘Amy helps Carla’, we seem to have
O(O 𝑝 ∨ O 𝑞) and ¬ O 𝑝 and ¬ O 𝑞. But these assumptions are inconsistent in K5. You
can draw a K5-tree (using the K-rules and the Euclidity rule) starting with O(O 𝑝 ∨ O 𝑞)
and ¬ O 𝑝 and ¬ O 𝑞 on which all branches close. This shows that there is no world in
any euclidean model at which the three assumptions are true.

Exercise 6.11
Since we assume that there is always at least one best world among the accessible worlds,
and the accessible worlds comprise just one world, it follows that O 𝐴 is true at 𝑤 iff 𝐴 is
true at 𝑤. The logic we get is the “Triv” logic that is axiomatized by adding the (Triv)-
schema □𝐴 ↔ 𝐴 to the standard axioms and rules for K. This logic is stronger than S5:
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all S5-valid sentences are Triv-valid. We also have, among other things, all instances of
□𝐴 ↔ ♢𝐴. The choice between absolutism and relativism makes no difference.

Exercise 6.12
Use umsu.de/trees/.

Exercise 6.13
Deontic detachment is valid. Suppose 𝐴 is true at the best of the (circumstantially) ac-
cessible worlds, and 𝐵 is true at the best of the accessible worlds at which 𝐴 is true. Then
𝐵 is true at the best of the accessible worlds.

Factual detachment is invalid. A counterexample is the “gentle murder puzzle”. Sup-
pose John is determined to kill his grandmother. If he will go ahead and kill her, he
ought to do so gently. Can we conclude that John ought to gently kill his grandmother?
Arguably not. He shouldn’t kill her at all! We have 𝑘 and O(𝑔/𝑘), but not O(𝑔). For-
mally, 𝑔 is true at the best of the accessible 𝑘-worlds, but since all the 𝑘-worlds are quite
bad, 𝑔 is not true at the best of the accessible worlds.

Exercise 6.14

(c) can obviously be translated as O 𝑝, (f) as ¬𝑝.
You probably translated (d) as either 𝑝 → O 𝑞 or as O(𝑝 → 𝑞). 𝑝 → O 𝑞 is entailed by

(f), so it violates the non-entailment condition. Assume then that (d) is translated as
O(𝑝 → 𝑞).

The most obvious translations for (e) are ¬𝑝 → O ¬𝑞 and O(¬𝑝 → ¬𝑞). The latter is
entailed by (c). If we choose the former, then (c)–(f) constitute a deontic dilemma: (e)
and (f) would entail O ¬𝑡, but (c) and (d) would entail O 𝑡.

Exercise 6.15

Simply replace ‘all’ in the semantics for O(𝐵/𝐴) with ‘some’.

Exercise 6.16
Ross’s Paradox: ‘Alice must be in the office or in the library’ seems to imply that Alice
might be in the office and that she might be in the library.

The Paradox of Free Choice: ‘Alice might be in the office or in the library’ seems to
imply that Alice might be in the office and that she might be in the library.
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Exercise 6.17
For every world 𝑤, every member of 𝑁(𝑤) contains 𝑤.

Exercise 6.18
In Kripke semantics, □𝑝 and □𝑞 together entail □(𝑝 ∧ 𝑞). But if the probability of 𝑝 is
above the threshold and the probability of 𝑞 is above the threshold, it does not follow that
the probability of 𝑝∧𝑞 is above the threshold. For example, we could have Pr(𝑝) = 0.95,
Pr(𝑞) = 0.94, and Pr(𝑝 ∧ 𝑞) = 0.95 × 0.94 = 0.893.
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Chapter 7

Exercise 7.1

(a) H ¬𝑝
𝑝: It is warm

(b) F 𝑝
𝑝: There is a sea battle

(c) ¬ F P 𝑝 or, perhaps, F ¬ P 𝑝
𝑝: There is a sea battle

(d) F(𝑝 ∨ P 𝑞) or F(F 𝑝 ∨ F P 𝑞)
𝑝: It is warm

(e) ¬ P 𝑝 → ¬ F 𝑞 or G(¬ P 𝑝 → ¬𝑞)
𝑝: You study, 𝑞: you pass the exam

(f) P(𝑝 ∧ 𝑞)
𝑝: I am having tea, 𝑞: the door bell rings

Exercise 7.2
(a), (c), (f), (g), and (h) are true, (b), (d), and (e) are false.

Exercise 7.3
(Con1): Suppose some sentence of the form 𝐴 → G P 𝐴 is false at some time 𝑡 in some
temporal model. By clause (e) of definition 7.2, this means that 𝐴 is true at 𝑡 and G P 𝐴
is false at 𝑡. By clause (h), the latter means that there is a time 𝑠 with 𝑡 < 𝑠 such that P 𝐴
is not true at 𝑠. By clause (i), it follows that 𝐴 is not true at 𝑡. Contradiction.

The argument for (Con2) is analogous.

Exercise 7.4
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(a) 1. ¬(𝐴 → G P 𝐴) (𝑡) (Ass.)
2. 𝐴 (𝑡) (1)
3. ¬ G P 𝐴 (𝑡) (1)
4. 𝑡 < 𝑠 (3)
5. ¬ P 𝐴 (𝑠) (3)
6. ¬𝐴

x
(𝑡) (4,5)

(b) 1. ¬(𝐴 → H F 𝐴) (𝑡) (Ass.)
2. 𝐴 (𝑡) (1)
3. ¬ H F 𝐴 (𝑡) (1)
4. 𝑠 < 𝑡 (3)
5. ¬ F 𝐴 (𝑠) (3)
6. ¬𝐴

x
(𝑡) (4,5)

(c) 1. ¬(F 𝐴 → H F F 𝐴) (𝑡) (Ass.)
2. F 𝐴 (𝑡) (1)
3. ¬ H F F 𝐴 (𝑡) (1)
4. 𝑠 < 𝑡 (3)
5. ¬ F F 𝐴 (𝑠) (3)
6. ¬ F 𝐴

x
(𝑡) (4,5)

(d) 1. ¬(P G 𝐴 → P F 𝐴) (𝑡) (Ass.)
2. P G 𝐴 (𝑡) (1)
3. ¬ P F 𝐴 (𝑡) (1)
4. 𝑠 < 𝑡 (2)
5. G 𝐴 (𝑠) (2)
6. 𝐴 (𝑡) (4,5)
7. ¬ F 𝐴 (𝑠) (3,4)
8. ¬𝐴

x
(𝑡) (4,7)
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(e) 1. ¬(H 𝐴 ↔ H F H 𝐴)
ggggg

ggggg
ggggg

gg

WWWWW
WWWWW

WWWWW
WW

(𝑡) (Ass.)

2. H 𝐴 (𝑡) (1) 4. ¬ H 𝐴 (𝑡) (1)
3. ¬ H F H 𝐴 (𝑡) (1) 5. H F H 𝐴 (𝑡) (1)
6. 𝑠 < 𝑡 (3) 9. 𝑠 < 𝑡 (4)
7. ¬ F H 𝐴 (𝑠) (3) 15. ¬𝐴 (𝑠) (4)
8. ¬ H 𝐴

x
(𝑡) (6,7) 11. F H 𝐴 (𝑠) (5,9)

12. 𝑠 < 𝑟 (11)
13. H 𝐴 (𝑟) (11)
14. 𝐴

x
(𝑠) (12,13)

Exercise 7.5
Suppose < is transitive, and 𝑥 > 𝑦 and 𝑦 > 𝑧. Equivalently, 𝑦 < 𝑥 and 𝑧 < 𝑦.By transitivity
of <, we have 𝑧 < 𝑥. So 𝑥 > 𝑧.

Exercise 7.6
Suppose 𝑅 is transitive. If there are points 𝑥 and 𝑦 for which 𝑥𝑅𝑦 and 𝑦𝑅𝑥 then 𝑥𝑅𝑥 by
transitivity. So if 𝑅 isn’t asymmetric then it isn’t irreflexive. If 𝑅 isn’t irreflexive then
there is a point 𝑥 with 𝑥𝑅𝑥. This violates asymmetry, because asymmetry demands that
if 𝑥𝑅𝑥 then not 𝑥𝑅𝑥.

Exercise 7.7
If time is transitive and circular, then it is neither asymmetric nor irreflexive.

Exercise 7.8
(a), (d), and (e) are invalid. Here are trees for (b), (c), and (f). I can’t typeset the one for
(g).
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(b) 1. ¬(P G G 𝑝 → G G 𝑝) (𝑡) (Ass.)
2. P G G 𝑝 (𝑡) (1)
3. ¬ G G 𝑝 (𝑡) (1)
4. 𝑠 < 𝑡 (2)
5. G G 𝑝 (𝑠) (2)
6. 𝑡 < 𝑟 (3)
7. ¬ G 𝑝 (𝑟) (3)
8. 𝑠 < 𝑟 (3,6)
9. G 𝑝

x
(𝑟) (5,8)

(c) 1. ¬(P F 𝑝 → (P 𝑝 ∨ (𝑝 ∨ F 𝑝))) (𝑡) (Ass.)
2. P F 𝑝 (𝑡) (1)
3. ¬(P 𝑝 ∨ (𝑝 ∨ F 𝑝)) (𝑡) (1)
4. ¬ P 𝑝 (𝑡) (3)
5. ¬(𝑝 ∨ F 𝑝) (𝑡) (3)
6. ¬𝑝 (𝑡) (5)
7. ¬ F 𝑝 (𝑡) (5)
8. 𝑠 < 𝑡 (2)
9. F 𝑝 (𝑠) (2)
10. 𝑠 < 𝑟 (9)
11. 𝑝

dddddddd
dddddddd

dddddddd
dd

ZZZZZZZZ
ZZZZZZZZ

ZZZZZZZZ
ZZ (𝑟) (9)

12. 𝑡 < 𝑟 13. 𝑡 = 𝑟 14. 𝑟 < 𝑡
15. ¬𝑝

x
(𝑟) (7,12) 16. ¬𝑝

x
(𝑟) (6,13) 17. ¬𝑝

x
(𝑟) (4,16)
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(f) 1. ¬(F(G 𝑞 ∧ ¬𝑝) → G(𝑝 → (G 𝑝 → 𝑞))) (𝑡) (Ass.)
2. F(G 𝑞 ∧ ¬𝑝) (𝑡) (1)
3. ¬ G(𝑝 → (G 𝑝 → 𝑞)) (𝑡) (1)
4. 𝑡 < 𝑠 (2)
5. G 𝑞 ∧ ¬𝑝 (𝑠) (2)
6. G 𝑞 (𝑠) (5)
7. ¬𝑝 (𝑠) (5)
8. 𝑡 < 𝑟 (3)
9. ¬(𝑝 → (G 𝑝 → 𝑞)) (𝑟) (3)
10. 𝑝 (𝑟) (9)
11. ¬(G 𝑝 → 𝑞) (𝑟) (9)
12. G 𝑝 (𝑟) (11)
13. ¬𝑞

dddddddd
dddddddd

dddddddd
dd

ZZZZZZZZ
ZZZZZZZZ

ZZZZZZZZ
ZZ (𝑟) (11)

14. 𝑠 < 𝑟 15. 𝑠 = 𝑟 16. 𝑟 < 𝑠
17. 𝑞

x
(𝑟) (6,14) 18. 𝑝

x
(𝑠) (10,15) 19. 𝑝

x
(𝑠) (12,16)

Exercise 7.9

(a) For example, G 𝐴 → F 𝐴.
(b) For example, H 𝐴 → P 𝐴.
(c) No schema corresponds to the class of frames with a last time. If we also assume

linearity, G(𝐴 ∧ ¬𝐴) ∨ F G(𝐴 ∧ ¬𝐴) works.
(d) No schema corresponds to the class of frames with a first time. If we assume linear-

ity, then H(𝐴 ∧ ¬𝐴) ∨ P H(𝐴 ∧ ¬𝐴) works.

Exercise 7.10
Assume a frame is dense. Suppose for reductio that some instance of F 𝐴 → F F 𝐴 is false
at some point 𝑡 in some model 𝑀 based on that frame. Then F 𝐴 is true at 𝑡 and F F 𝐴 is
false. Since F 𝐴 is true at 𝑡, it follows by definition 7.2 that 𝐴 is true at some point 𝑠 such
that 𝑡 < 𝑠. By density, there is a point 𝑟 such that 𝑡 < 𝑟 < 𝑠. But since 𝐴 is true at 𝑠, F 𝐴
is true at 𝑟, and so F F 𝐴 is true at 𝑡; contradiction.
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In the other direction, we have to show that if a frame isn’t dense then some instance
of F 𝐴 → F F 𝐴 is false at some point 𝑡 in some model 𝑀 based on that frame. We take
the simplest instance F 𝑝 → F F 𝑝. If a frame isn’t dense then there are points 𝑡, 𝑠 such
that 𝑡 < 𝑠 and no point lies in between 𝑡 and 𝑠. Let 𝑉 be an interpretation function that
makes 𝑝 true at 𝑠 and false everywhere else. Then F 𝑝 is true at 𝑡 but F F 𝑝 is false. So
F 𝑝 → F F 𝑝 is false at 𝑡.

Exercise 7.11
Without assumptions about the flow of time there is no way to express in 𝔏𝑇 that 𝑝 is
true at all times (or at some time). In linear flows, 𝑝 ∧ H 𝑝 ∧ G 𝑝 does the job.

Exercise 7.12
Consider a model with three times ordered by 𝑠 < 𝑡 and 𝑠 < 𝑟. Assume 𝑝 is true at 𝑡 and
not at 𝑟. Then 𝑝 → H F 𝑝 is false on the Peircean interpretation.

Exercise 7.13
(a)–(d) are valid, (e) is invalid.

To show that a schema is valid, assume for reductio that there is some time 𝑡 on some
history 𝐻 in some model 𝑀 at which the schema is false. Then (repeatedly) use definition
7.3 to derive a contradiction.

For (e), consider a model with three times 𝑡, 𝑠, 𝑟 such that 𝑠 < 𝑡, 𝑟 < 𝑡, and neither
𝑠 < 𝑟 nor 𝑟 < 𝑠. Let 𝑞 be true at 𝑠 and false at the other two times. P 𝑞 →□P♢𝑞 is false
at 𝑡 on the history ⟨𝑠, 𝑡 ⟩.

Exercise 7.14
A sentence 𝐴 is super-valid iff 𝑀, 𝑡 |= 𝐴 for all temporal models 𝑀 and times 𝑡 in 𝑀. By
supervaluationism, this holds iff 𝑀, 𝐻, 𝑡 |= 𝐴 for all 𝑀, 𝑡, and histories 𝐻 containing 𝑡.
That’s how Ockhamist validity was originally defined.

Exercise 7.15
Ockham-entailment is stronger than super-entailment: whenever 𝐴 Ockham-entails 𝐵,
then 𝐴 super-entails 𝐵, but not the other way around.

Suppose 𝐴 Ockham-entails 𝐵. Let 𝑡 be any time in any temporal model at which 𝐴 is
true, i.e.: true relative to all histories through 𝑡. Since 𝐴 Ockham-entails 𝐵, 𝐵 is true at 𝑡
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relative to all histories through 𝑡. So 𝐴 super-entails 𝐵.
But suppose 𝐴 super-entails 𝐵. Let 𝑡 be any time on any history ℎ in any temporal

model at which 𝐴 is true. We can’t infer that 𝐵 is true at 𝑡 on ℎ, for 𝐴 may be false at
𝑡 relative to other histories ℎ′. So we can’t infer that 𝐴 Ockham-entails 𝐵. Indeed, F 𝑝
super-entails □ F 𝑝, but F 𝑝 does not Ockham-entail □ F 𝑝.

Exercise 7.16
(𝐴 ∧ ¬𝐴) U 𝐴.

Exercise 7.17
A 𝑝 → 𝑝.
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Chapter 8

Exercise 8.1
(E1)–(E5) are invalid assuming that ‘if 𝐴 then 𝐵’ is true iff both 𝐴 and 𝐵 are true. There
are, of course, strong reasons against the analysis of English conditionals as conjunctions.

Exercise 8.2
For example: ¬𝐴 J 𝐴 or (𝐴 ∨ ¬𝐴) J 𝐴.

Exercise 8.3

𝑊 = {𝑤}, 𝑅 = ∅, 𝑉(𝑝) = {𝑤}, 𝑉(𝑞) = ∅.

Exercise 8.4
Use umsu.de/trees/.

Exercise 8.5
(E1)–(E5) all work equally well in the subjunctive mood. For (E4) and (E5):

• If our opponents had been cheating, we would never have found out. Therefore: If we
had found out that our opponents are cheating, then they wouldn’t have been cheating.

• If you had added sugar to your coffee, it would have tasted good. Therefore: If you
had added sugar and vinegar to your coffee, it would have tasted good.

Both of these inferences are valid if subjunctive conditionals are strict conditionals. But
they don’t sound good.

Exercise 8.6
Suppose 𝐴 → 𝐵 is assertable. Then 𝐴 → 𝐵 is known. So K(𝐴 → 𝐵). In S4, it follows that
K K(𝐴 → 𝐵). So the epistemically strict conditional K(𝐴 → 𝐵) is assertable. Conversely,
if K(𝐴 → 𝐵) is assertable, then it is known; so K K(𝐴 → 𝐵). In S4, it follows that K(𝐴 → 𝐵).
So 𝐴 → 𝐵 is assertable.

Exercise 8.7
The ‘or-to-if’ inference is not valid on the assumption that the conditional is epistemically
strict. For example, if 𝑝 and 𝑞 are both true at the actual world and both false at some
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epistemically accessible world, then ‘𝑝 or 𝑞’ is true but ‘if 𝑝 then 𝑞’ is false (on the strict
analysis).

The inference might nonetheless look reasonable because it would normally be inap-
propriate to assert a disjunction ‘𝑝 or 𝑞’ unless the disjunction is known – unless it is true
at all epistemically accessible worlds. And if 𝑝 ∨ 𝑞 is true at all epistemically accessible
worlds then ¬𝑝 → 𝑞 is also true at all epistemically accessible worlds, and so □(¬𝑝 → 𝑞)
is true. Thus the conclusion of or-to-if is true in any situation in which the premise is
assertable. If the logic of knowledge validates the (4)-schema, we can go further and
say that the conclusion is assertable in any situation in which the premise is assertable.

Exercise 8.8
Assume that 𝑅 is asymmetric and quasi-connected. We want to show that 𝑅 is transitive.
So assume we have 𝑥𝑅𝑦 and 𝑦𝑅𝑧. By quasi-connectedness, 𝑦𝑅𝑧 implies that either 𝑦𝑅𝑥
or 𝑥𝑅𝑧. By asymmetry, we can’t have 𝑦𝑅𝑥, since we have 𝑥𝑅𝑦. So 𝑥𝑅𝑧.

Exercise 8.9
We have the following equivalences (using ‘⇔’ to mean that the expressions on either
side are equivalent):

𝑢 ⪯̸𝑤 𝑣 ⇔ ¬(𝑢 ⪯𝑤 𝑣) ⇔ ¬(𝑣 ⊀𝑤 𝑢) ⇔ 𝑣 ≺𝑤 𝑢.

So you can simply replace every instance of 𝜔 ≺𝑤 𝜈 in the conditions by 𝜈 ⪯̸𝑤 𝜔, and
every instance of 𝜔 ⊀𝑤 𝜈 by 𝜈 ⪯𝑤 𝜔.

Asymmetry thereby turns into: if 𝑢 ⪯̸𝑤 𝑣 then 𝑣 ⪯𝑤 𝑢. Equivalently: either 𝑢 ⪯𝑤 𝑣
or 𝑣 ⪯𝑤 𝑢. This property of relations is called completeness. Notice that it entails
reflexivity.

Quasi-connectedness turns into: if 𝑢 ⪯̸𝑤 𝑣 then for all 𝑡, either 𝑡 ⪯̸𝑤 𝑣 or 𝑢 ⪯̸𝑤 𝑡. This
is equivalent to transitivity for ⪯.

The Limit Assumption turns into: for any non-empty set of worlds 𝑋 and world 𝑤 there
is a 𝑣 ∈ 𝑋 such that there is no 𝑢 ∈ 𝑋 with 𝑣 ⪯̸𝑤 𝑢. Equivalently, for any non-empty set
of worlds 𝑋 and world 𝑤 there is a 𝑣 ∈ 𝑋 such that 𝑣 ⪯𝑤 𝑢 for all 𝑢 ∈ 𝑋.

Exercise 8.10

No. We don’t want 𝐴 and O(𝐵/𝐴) to entail 𝐵. Semantically, we don’t want to assume
that every world is among the best worlds relative to its own norms.
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Exercise 8.11
Suppose 𝐴� 𝐵 is true at some world 𝑤 in some model 𝑀. So 𝐵 is true at all the closest
𝐴-worlds to 𝑤. Now either 𝐴 is true at 𝑤 or 𝐴 is false at 𝑤. If 𝐴 is false at 𝑤, then 𝐴 → 𝐵 is
true at 𝑤. If 𝐴 is true at 𝑤, then 𝑤 is one of the closest 𝐴-worlds to 𝑤, by Weak Centring;
so 𝐵 is true at 𝑤; and so 𝐴 → 𝐵 is true at 𝑤. Either way, then, 𝐴 → 𝐵 is true at 𝑤.

Exercise 8.12

If 𝐴 is true at no worlds, then Min≺𝑤({𝑢 ∶ 𝑀, 𝑢 |= 𝐴}) is the empty set. So it is vacuously
true that 𝑀, 𝑣 |= 𝐵 for all 𝑣 ∈ Min≺𝑤({𝑢 ∶ 𝑀, 𝑢 |= 𝐴}).

Exercise 8.13
(E1) is an inference from 𝑞 to 𝑝 � 𝑞. To show that this is invalid, we need to give a
model in which 𝑞 is true at some world (𝑤) while 𝑝� 𝑞 is false (at 𝑤).

𝑞
𝑤

𝑝
𝑣

This model also shows that (E2) and (E3) are invalid. (E2) is an inference from ¬𝑝
to 𝑝� 𝑞. In the model, ¬𝑝 is true at 𝑤 but 𝑝� 𝑞 is false. (E3) is an inference from
¬(𝑝� 𝑞) to 𝑝. In the model, ¬(𝑝� 𝑞) is true at 𝑤 but 𝑝 is false.

(E4) is an inference from 𝑝� 𝑞 to ¬𝑞� ¬𝑝. In the following model, the premise
is true at 𝑤 and the conclusion false.

𝑝, 𝑞
𝑤

𝑝
𝑣

Exercise 8.14
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Frances has never learnt a foreign language, although she would have loved to learn
French. If Frances had been given a choice between learning French and learning Italian,
she would have chosen French. If Frances had learned French or Italian then she would
have learned French. It does not follow that if Frances had learned Italian then she would
have learned French.

The same style of example works for indicative conditionals.

Exercise 8.15

(a) Assume 𝐴 ∧ 𝐵 is true at some world 𝑤 in some model 𝑀. By Centring, 𝑤 is among
the closest 𝐴-worlds to 𝑤. By connectedness, 𝑤 is the unique closest 𝐴-world to 𝑤.
So 𝐵 is true at all closest 𝐴-worlds to 𝑤.

(b) Assume 𝐴� (𝐵 ∨ 𝐶) is true at some world 𝑤 in some model 𝑀. So all the closest
𝐴-worlds to 𝑤 are (𝐵 ∨ 𝐶)-worlds. If there are no 𝐴-worlds then 𝐴 � 𝐵 and
𝐴� 𝐶 are both true. If there are 𝐴-worlds then Stalnaker’s semantics implies that
there is a unique closest 𝐴-world 𝑣 to 𝑤. Since 𝐵 ∨ 𝐶 is true at 𝑣, either 𝐵 or 𝐶 must
be true at 𝑣. So either 𝐵 is true at all closest 𝐴-worlds to 𝑤 or 𝐶 is true at all closest
𝐴-worlds to 𝑣.

Exercise 8.16
‘All dogs are barking’: ∀𝑥(𝐷𝑥 → 𝐵𝑥)
‘Some dogs are barking’: ∃𝑥(𝐷𝑥 ∧ 𝐵𝑥)
‘Most dogs are barking’ cannot be translated in terms of M 𝑥. We need a binary quantifier:
M 𝑥(𝐵𝑥/𝐷𝑥)

Exercise 8.17
On this proposal, bare indicative conditionals like (8) are material conditionals. If 𝑝 is
true and 𝑞 is false then there is an accessible 𝑝-world at which 𝑞 is false, and so 𝑞 is not
true at all accessible worlds at which 𝑝 is true. In all other cases, 𝑞 is true at all accessible
worlds at which 𝑝 is true.

Exercise 8.18
Conditional Excluded Middle is valid iff there is never more than one closest/accessible
𝐴-world. On that assumption, ‘some closest/accessible 𝐴-world is a 𝐵-world’ entails ‘all
closest/accessible 𝐴-worlds are 𝐵-worlds’. But (10) does not entail ‘If I had played the
lottery, I would have won’.
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Chapter 9

Exercise 9.1

(a) 𝑆𝑟𝑗 ∧ 𝑆𝑘𝑗; 𝑟: Keren, 𝑘: Keziah, 𝑗: Jemima, 𝑆: – is a sister of –
(b) ∀𝑥(𝑀𝑥 → 𝑂𝑥); 𝑀: – is a myriapod, 𝑂: – is oviparous
(c) ∃𝑥(𝐶𝑥 ∧ 𝑁𝑥 ∧ 𝐻𝑓 𝑥); 𝑓 : Fred, 𝐶: – is a car, 𝑁 : – is new, 𝐻: – has –
(d) ¬∀𝑥(𝑆𝑥 → 𝐿𝑥𝑙); 𝑙: logic; 𝑆: – is a student, 𝐿: – loves –
(e) ∀𝑥((𝑆𝑥 ∧ 𝐿𝑥𝑙) → ∃𝑦𝐿𝑥𝑦); 𝑙: logic; 𝑆: – is a student, 𝐿: – loves –

Exercise 9.2
Let the model 𝑀 be given by 𝐷 = {Rome, Paris} and 𝑉(𝐹) = {Rome}. By clause (a)
of definition 9.2, 𝑀, 𝑔′ |= 𝐹𝑥 holds for every assignment function 𝑔′ that maps 𝑥 to
Rome, because then 𝑔′(𝑥) ∈ 𝑉(𝐹). By clause (h) it follows that 𝑀, 𝑔 |= ∃𝑥𝐹𝑥 for every
assignment function 𝑔. By clause (a) again, 𝑀, 𝑔′ |≠ 𝐹𝑥 for every assignment function
𝑔′ that maps 𝑥 to Paris. By clause (g), it follows that 𝑀, 𝑔 |≠ ∀𝑥𝐹𝑥 for every assignment
function 𝑔. So ∃𝑥𝐹𝑥 is true (in 𝑀) relative to every assignment function while ∀𝑥𝐹𝑥 is
false relative to every assignment function. By clause (e) it follows that ∃𝑥𝐹𝑥 → ∀𝑥𝐹𝑥 is
false in 𝑀 relative to every assignment function.

Exercise 9.3
For both cases, use 𝐹𝑥 as the sentence 𝐴, and ¬𝐹𝑥 as 𝐵, and consider a model in which
𝐹 applies to some but not to all individuals. Both 𝐹𝑥 and ¬𝐹𝑥 are then true relative to
some assignment functions and false relative to others. So neither sentence is true in the
model. But 𝐹𝑥 ∨ ¬𝐹𝑥 is true relative to every assignment function.

Exercise 9.4
(a) There are many non-reflexive models in which □𝑝 → 𝑝 is true at some world – for
example, any non-reflexive model in which 𝑝 is false at all worlds.

(b) Let 𝑀1 be a model with a single world that can see itself. Let 𝑀2 be a model with
two worlds, each of which can see the other but not itself. In both models, all sentence
letters are false at all worlds. The very same 𝔏𝑀-sentences are true at all worlds in these
models (as a simple proof by induction shows). But the first model is reflexive and the
second isn’t. So there is no 𝔏𝑀-question that is true at a world in a model iff the model’s
accessibility relation is reflexive.
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Exercise 9.5
Use umsu.de/trees/.

Exercise 9.6
If a sentence is valid (in first-order predicate logic) then a fully expanded tree for the
sentence will close and show that the sentence is valid. But if a sentence is not valid, the
tree might grow forever. There is no algorithm for detecting whether a tree will grow
forever.

Exercise 9.7
(a) □𝐹𝑎

𝑎: John, 𝐹: – is hungry.
(Might be classified as either de re or de dicto.)

(b) □∀𝑥(𝐹𝑥 → 𝐺𝑥)
𝐹: – is a cyclist, 𝐺: – has legs.
This is de dicto. Also correct (but different in meaning) is the de re translation
∀𝑥(𝐹𝑥 →□𝐺𝑥). Close but incorrect (and de re): ∀𝑥□(𝐹𝑥 → 𝐺𝑥).

(c) ∀𝑥(𝐹𝑥 →♢𝐺𝑥)
𝐹: – is a day, 𝐺: – is our last day.
Better: ∀𝑥(𝐹𝑥 →♢(𝐻𝑥 ∧ ¬∃𝑦(𝐹𝑦 ∧ 𝐿𝑦𝑥 ∧ 𝐻𝑦)))
𝐹: – is a day, 𝐿: – is later than –, 𝐻: We are alive on –.
Both de re. The English sentence could also be understood de dicto, as♢∀𝑥(𝐹𝑥 → 𝐺𝑥),
but that would be a very strange thing to say.

(d) I would translate this as ∀𝑥 O(𝐹𝑥 → 𝐺𝑥)
𝐹: – wants to leave early, 𝐺: – leaves quietly.
Even better, if we can use the conditional obligation operator: ∀𝑥 O(𝐺𝑥/𝐹𝑥). Also
defensible are ∀𝑥(𝐹𝑥 → O 𝐺𝑥) and O ∀𝑥(𝐹𝑥 → 𝐺𝑥).
All of these are de re.

(e) ∀𝑥(∃𝑦(𝐹𝑦 ∧ 𝐻𝑥𝑦) → P 𝐺𝑥)
𝐹: – is a ticket, 𝐺: – enters, 𝐻: – bought –.
Perhaps even better: ∀𝑥 P(𝐺𝑥/∃𝑦(𝐹𝑦 ∧ 𝐻𝑥𝑦)). Both of these are de re.
You could translate ‘bought a ticket’ as a simple predicate here; you could also use
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a temporal operator to account for the past tense of ‘bought’ (but it’s confusing to
use two different kinds of ‘P’ in one sentence).

Exercise 9.8
See the previous answer.

Exercise 9.9
Use umsu.de/trees/.

Exercise 9.10
We assume that some branch on a tree contains nodes 𝜂1 = 𝜂2 and 𝐴. We have to
show that we can add 𝐴[𝜂1//𝜂2] without using the second version of Leibniz’ Law.

k. 𝜂1 = 𝜂2
n. 𝐴
m. 𝜂1 = 𝜂1 (SI)

m+1. 𝜂2 = 𝜂1 (k, m, LL (first version))
m+2. 𝐴[𝜂1//𝜂2] (m+1, n, LL (first version))

Exercise 9.11
(a)

1. 𝑎 = 𝑎 (SI)
2. ∀𝑥 𝑥 ≠ 𝑎 → 𝑎 ≠ 𝑎 (UI)
3. ¬∀𝑥 𝑥 ≠ 𝑎 (1, 2, CPL)
4. ¬∃𝑥 𝑥 = 𝑎 ↔ ∀𝑥 𝑥 ≠ 𝑎 (∀∃)
5. ∃𝑥 𝑥 = 𝑎 (3, 4, CPL)
6. □∃𝑥 𝑥 = 𝑎 (5, Nec)

(b) There are many correct answers. For example: historians debate whether Homer
ever existed. If 𝑎 translates ‘Homer’ then ∃𝑥 𝑥 = 𝑎 is arguably false if Homer isn’t a
real person. Since the available evidence is compatible with ¬∃𝑥 𝑥 = 𝑎, the sentence
□∃𝑥 𝑥 = 𝑎 is false on an epistemic interpretation of the box.
Where does the proof go wrong? Each of steps 1, 2, and 6 might be blamed.
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Exercise 9.12

(a) ∃𝑥∃𝑦(𝐹𝑥 ∧ 𝐹𝑦 ∧ 𝑥 ≠ 𝑦 ∧ ∀𝑧(𝐹𝑧 → (𝑧 = 𝑥 ∨ 𝑧 = 𝑦)))
(b) ∀𝑥∀𝑦∀𝑧∀𝑣(𝐹𝑥 ∧ 𝐹𝑦 ∧ 𝐹𝑧 ∧ 𝐹𝑣 → (𝑥 = 𝑦 ∨ 𝑥 = 𝑧 ∨ 𝑥 = 𝑣 ∨ 𝑦 = 𝑧 ∨ 𝑦 = 𝑣 ∨ 𝑧 = 𝑣))

Exercise 9.13
The de dicto reading of (a) can be translated as

♢∃𝑥(𝑃𝑥 ∧ ∀𝑦(𝑃𝑦 → 𝑥 =𝑦) ∧ 𝑥 =𝑐),

where ‘𝑃’ translates ‘– is 45th US President’ and ‘𝑐’ denotes Hillary Clinton. The de re
reading can be translated as

∃𝑥(𝑃𝑥 ∧ ∀𝑦(𝑃𝑦 → 𝑥 =𝑦) ∧ ♢𝑥 =𝑐).

The answers to (b) and (c) are analogous.
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Chapter 10

Exercise 10.1
(a), (b), (d), and (f) are true; (c) and (e) are false.

Exercise 10.2
Use umsu.de/trees/. Note that the website uses slightly different identity rules: instead
of the Self-Identity rule, it has a rule for closing any branch that contains a statement of
the form 𝜏 ≠ 𝜏.

Exercise 10.3

(a) 𝑊 = {𝑤}, 𝑤𝑅𝑤, 𝐷 = {Alice}, 𝑉(𝐹, 𝑤) = {Alice}, 𝑉(𝐺, 𝑤) = ∅
(b) 𝑊 = {𝑤, 𝑣}, 𝑤𝑅𝑤 and 𝑤𝑅𝑣, 𝐷 = {Alice, Bob}, 𝑉(𝐹, 𝑤) = {Alice}, 𝑉(𝐹, 𝑣) = {Bob}
(c) 𝑊 = {𝑤, 𝑣}, 𝑤𝑅𝑤 and 𝑤𝑅𝑣, 𝐷 = {Alice, Bob}, 𝑉(𝐹, 𝑤) = {Alice}, 𝑉(𝐹, 𝑣) = ∅
(d) 𝑊 = {𝑤, 𝑣}, 𝑤𝑅𝑤 and 𝑤𝑅𝑣, 𝐷 = {Alice, Bob}, 𝑉(𝑃, 𝑤) = {Alice}, 𝑉(𝑃, 𝑣) = ∅,

𝑉(𝑄, 𝑤) = {Alice}, 𝑉(𝑄, 𝑣) = ∅

Exercise 10.4
□∀𝑥∃𝑦 𝑥 = 𝑦 → ∀𝑥□∃𝑦 𝑥 = 𝑦 is an instance of the Converse Barcan Formula. If we read
the box as a relevant kind of circumstantial necessity, and Loafy could have failed to
exist, then the consequent of this conditional is false. But the antecedent is true.

Exercise 10.5
(1) is equivalent to the Barcan Formula, (3) to the Converse Barcan Formula. (2) is highly
implausible. (1) and (3) are often regarded as implausible, for the reasons I discuss in
the text.

Curiously, (4) seems to be equivalent to the Converse Barcan Formula: it, too, is valid
on a frame iff the frame has increasing domains. It also rules out scenarios in which
individuals at one world may fail to exist at an accessible world.

Exercise 10.6
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(a) 1. ∃𝑥□𝐹𝑥 →□∃𝑥𝐹𝑥 (𝑤) (Ass.)
2. ∃𝑥□𝐹𝑥 (𝑤) (1)
3. ¬□∃𝑥𝐹𝑥 (𝑤) (1)
4. □𝐹𝑎 (𝑤) (2)
5. 𝑤𝑅𝑣 (3)
6. ¬∃𝑥𝐹𝑥 (𝑣) (3)
7. 𝐹𝑎 (𝑣) (4,5)
8. 𝑎=𝑎

ggggg
ggggg

ggggg
gg

WWWWW
WWWWW

WWWWW
WW

(𝑣) (7)

9. 𝑎≠𝑎
x

(𝑣) (6) 9. ¬𝐹𝑎
x

(𝑣) (6)

(b) DIY. The tree has four branches. I can’t typeset it.

(c) 1. ¬□∃𝑥 𝑥 =𝑥 (𝑤) (Ass.)
2. 𝑤𝑅𝑣 (1)
3. ¬∃𝑥 𝑥 =𝑥 (𝑣) (1)
4. 𝑎=𝑎

ggggg
ggggg

ggggg
gg

WWWWW
WWWWW

WWWWW
WW

(𝑣) (Ex.)

9. 𝑎≠𝑎
x

(𝑣) (3) 9. 𝑎≠𝑎
x

(𝑣) (3)

(d) 1. ¬(♢𝐹𝑎 →♢∃𝑥𝐹𝑥) (𝑤) (Ass.)
2. ♢𝐹𝑎 (𝑤) (1)
3. ¬♢∃𝑥 𝐹𝑥 (𝑤) (1)
4. 𝑤𝑅𝑣 (2)
5. 𝐹𝑎 (𝑣) (2)
6. 𝑎=𝑎 (𝑣) (5)
7. ¬∃𝑥 𝐹𝑥

ggggg
ggggg

ggggg
gg

WWWWW
WWWWW

WWWWW
WW

(𝑣) (3,4)

9. 𝑎≠𝑎
x

(𝑣) (3) 10. ¬𝐹𝑎
x

(𝑣) (3)
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(e) 1. ¬(𝑎=𝑏 →□(𝑎=𝑎 → 𝑎=𝑏)) (𝑤) (Ass.)
2. 𝑎=𝑏 (𝑤) (1)
3. ¬□(𝑎=𝑎 → 𝑎=𝑏) (𝑤) (1)
4. 𝑤𝑅𝑣 (3)
5. ¬(𝑎=𝑎 → 𝑎=𝑏) (𝑣) (3)
6. 𝑎=𝑎 (𝑣) (5)
7. ¬𝑎=𝑏 (𝑣) (5)
8. 𝑎=𝑏

x
(𝑣) (2,6)

Exercise 10.7
In the definition of a model, we could allow the interpretation function to be undefined
for some names. We might also allow the sets 𝐷𝑤 to be empty. In the truth definition
10.4, we only need to clarify that 𝑀, 𝑤, 𝑔 |≠ 𝐴 for every atomic sentence 𝐴 that contains
a term 𝜏 for which [𝜏]𝑀,𝑔 is undefined.

Exercise 10.8
In the Superman case, Clark Kent and Superman are the same person, but Lois Lane
doesn’t know that they are. So we appear to have 𝑐 = 𝑠 but not □ 𝑐 = 𝑠. Similarly, in
the Julius case, Julius and Whitcomb L. Judson are the same person, but one may well
not know that they are. In the Goliath case, we have Lumpl = Goliath without it being
metaphysically necessary that Lumpl = Goliath, as there are worlds in which Lumpl is a
bowl and Goliath is not.

Exercise 10.9
‘Lumpl’ might express a concept that maps every world 𝑤 to a certain piece of clay at
𝑤, where that piece is perhaps individuated by its matter or origin. The piece’s shape
doesn’t matter. ‘Goliath’ might instead express a concept that maps every world 𝑤 to a
certain statue at 𝑤, where the statue is perhaps individuated by its shape and origin.

Exercise 10.10
If we treat ’my body’ as a name, the premises are □∃𝑥 𝑥 = 𝑖 and ¬□∃𝑥 𝑥 = 𝑏. The
conclusion is 𝑖≠𝑏. This argument is CK-valid and VK-valid. (It is not valid in individual
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concept semantics.) It might be better to translate ’my body’ as a description. This would
make the argument CK-invalid and VK-invalid.

Exercise 10.11
Translation: ∃𝑥(𝑇𝑥 ∧ 𝑊𝑥 ∧ ¬𝐾𝑊𝑥 ∧ ¬𝐾¬𝑊𝑥), where 𝑇 translates ‘– is a ticket’ and ‘–
will win’.

If variables are directly referential, then this sentence is true in any scenario in which
I don’t know which ticket will win.

Exercise 10.12
To render ∀𝑥∀𝑦(𝑥 = 𝑦 →□𝑥 = 𝑦) valid, we can restrict the eligible individual concepts
in a model as follows. For any (eligible) individual concepts 𝑓 and 𝑔 and worlds 𝑤 and
𝑣, if 𝑤𝑅𝑣 and 𝑓 (𝑤) = 𝑔(𝑤) then 𝑓 (𝑣) = 𝑔(𝑤). (We do not stipulate that if 𝑤𝑅𝑣 and
𝑓 (𝑣) = 𝑔(𝑣) then 𝑓 (𝑤) = 𝑔(𝑤), which would render the necessity of distinctness valid.)
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