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1 Introduction

We turn now to what is arguably one of the least well behaved
modal languages ever proposed: first-order modal logic.

[Blackburn and van Benthem 2007]

1.1 Beyond Kripke semantics

Modal logic has outgrown its philosophical origins. What used to be the logic of
possibility and necessity has become topic-neutral, with applications ranging from
the validation of computer programs to the study of mathematical proofs.

Along the way, modal predicate logic has lost its role as the centre of investigation,
to the point that it is hardly mentioned in many textbooks. Indeed, propositional
modal logic has emerged as a fragment of first-order predicate logic, with the domain
of “worlds” playing the role of individuals. The distinctive character of modal logic
– emphasized in [Blackburn et al. 2001] – is not its subject matter, but its perspective.
Statements of modal logic describe relational structures from the inside perspective
of a particular node. Modal predicate logic emerges as a somewhat cumbersome
hybrid, combining an internal perspective on one class of objects (the domain of the
modal operators) with an external perspective on a possibly different class of objects
(the domain of quantification).

Cumbersome though it may be, this hybrid perspective is useful and natural for
many applications. When reasoning about time, for example, it makes sense to take
a perspective that is internal to the structure of times (so that what is true at one point
may be false at another), but external to the structure of sticks and stones and people
that exist at the various times.

According to standard “Kripke semantics” for modal predicate logic, modal oper-
ators shift the world of evaluation, and thereby the extension of predicates, but they
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1 Introduction

don’t affect the reference of singular terms. ∃𝑥♢𝐹𝑥 is true at a world 𝑤 iff there is
an individual (at 𝑤) that satisfies 𝐹𝑥 at some world accessible from 𝑤′.

While conceptually simple and possibly adequate for some applications, there are
reasons to look for alternatives.

One well-known alternative is individual concept semantics, in which singular
terms don’t merely pick out individuals, but express functions from world to indi-
viduals. This essay focusses on an alternative that retains the purely referential in-
terpretation of singular terms but allows modal operators to shift their reference: In
counterpart semantics, ∃𝑥♢𝐹𝑥 is true at a world 𝑤 iff the there is an individual (at
𝑤) one of whose counterparts at some accessible point 𝑤′ satisfies 𝐹𝑥.

David Lewis introduced counterpart semantics (in [Lewis 1968]) mainly because
his “realist” interpretation of possible worlds did not allow an individual to be part
of multiple worlds. Even philosophers who reject Lewis’s realism have come to
appreciate counterpart semantics for its power to solve philosophical puzzles about
identity across worlds and times. (See, for example, [Lewis 1971], [Hawley 2001],
[Divers 2007], [Schwarz 2014], [McDonnell 2016], [Ninan 2018], [Kocurek 2018],
[Ramachandran 2020], [Hicks 2022].)

In the meantime, mathematical logicians have found other reasons to study alter-
natives to Kripke semantics. While Kripke semantics for propositional modal logic
has established itself as a potent framework to study a wide range of logical systems,
the situation in modal predicate logic is comparatively bleak. Establishing com-
pleteness requires different techniques for different types of systems (as reviewed,
for example, in [Hughes and Cresswell 1996: chs.14-17] and [Garson 2001: ch.2]),
and many important systems remain incomplete (see [Ono 1973] [Ghilardi 1991],
[Cresswell 1995], [Gasquet 1995], [Belardinelli 2022]).

Notable alternatives to Kripke semantics developed by mathematical logicians in-
clude the functor semantics of [Ghilardi 1989], the metaframe semantics of [Skvortsov
and Shehtman 1993], and the hyperdoctrinal semantics of [Shirasu 1998]. Without
the simplicity and intuitive appeal of Kripke semantics, however, these have gained
no traction in philosophy.

All three alternatives bear a certain abstract resemblance to counterpart semantics
This suggests that some form of counterpart semantics might provide an alternative
to Kripke semantics that simultaneously addresses the latter’s technical and philo-
sophical shortcomings.

I say ‘some form of’ counterpart semantics because the original semantics of
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1 Introduction

[Lewis 1968] arguably won’t do. The logic determined by Lewis’s semantics is
strange – too weak in some respects and too strong and in others. It is too strong
insofar as it validates controversial principles such as the Necessity of Existence
and the Converse Barcan Formula. It is too weak insofar as it fails to validate basic
principles of propositional modal logic such as □(𝐴∧𝐵) ⊃ □𝐴. It also requires mys-
terious restrictions to classical substitution principles: ∀𝑥♢𝐺𝑥𝑦, for example, does
not entail ♢𝐺𝑦𝑦. (See [Hazen 1979] and [Woollaston 1994], among others.)

There are two main sources of this deviance.
The first is Lewis’s choice to interpret the box as “strong necessity”. In effect,

he thereby swapped the traditional, hybrid perspective of Kripke semantics (looking
at individuals from the outside but at the structure of worlds from the inside) for a
thoroughly internal perspective that takes modal contexts to express properties of
individuals, rather than the worlds they inhabit (compare [Lewis 1986: 230-235]).
As I’ll explain in the next section, this calls for a change to the syntax of modal
predicate logic. Silvio Ghilardi and Giancarlo Meloni have used a “typed” language
(as advertised by [Lawvere 1969]) in their formalisation of counterpart semantics
(see, e.g., [Ghilardi and Meloni 1988], [Ghilardi and Meloni 1991], and [Ghilardi
2001]). Good introductions to this approach are [Corsi 2002a], [Belardinelli 2006],
and [Braüner and Ghilardi 2007: 591–616].

The other source of deviance for Lewis’s logic is that he allows individuals to
have multiple counterparts at some accessible world. This, too, arguably calls for
a change – or at least an extension – to the syntax of modal predicate logic. In
Ghildardi’s approach, modal formulas function syntactically like predicates. ♢𝐺𝑥𝑦,
for example, is a binary predicate that combines with two terms 𝑢, 𝑣 to the formula
(♢𝐺𝑥𝑦)𝑢𝑣. The rule of universal instantiation only allows replacing variables outside
the modal predicate: from ∀𝑥(♢𝐺𝑥𝑦)𝑥𝑣 one can infer (♢𝐺𝑥𝑦)𝑢𝑣, but not (♢𝐺𝑢𝑦)𝑢𝑣.

All this works out fine. But what if we want to stick to the standard syntax of modal
predicate logic, and to the hybrid perspective on modal structures? Can we still use
counterpart semantics, without buying into all the deviance of Lewis’s proposal?

This question was raised by Allen Hazen in [Hazen 1977] and [Hazen 1979].
Hazen showed that one can indeed tweak Lewis’s semantics to obtain the familiar
logic of Kripke semantics. More recently, [Kutz 2000] and [Kracht and Kutz 2002]
have offered a more straightforward counterpart semantics for the standard language
of modal predicate logic, building on the metaframe semantics of [Skvortsov and
Shehtman 1993]. Unlike Hazen, their aim is not to recover the same logic as Kripke
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1 Introduction

semantics, but to obtain a more versatile model theory that can be applied to a wider
range of logical systems. (See also [Kracht and Kutz 2005] and [Kracht and Kutz
2007].)

Unfortunately, some key claims in [Kutz 2000] and [Kracht and Kutz 2002] are
incorrect. The logic described by Kutz and Kracht is not complete with respect to
their semantics, and their approach to completeness does not work for many impor-
tant systems.

In this essay, I will adopt and extend the “straightforward” approach chosen by
Kutz and Kracht. I will describe the minimal logics determined by different variants
of this account, and explain how imposing restrictions on the counterpart relations
can determine stronger logics – including some that are incomplete in Kripke seman-
tics.

The main point I want to establish is that counterpart semantics can be tamed.
The logic of [Lewis 1968] is deviant, but its deviance is not an inevitable aspect of
counterpart semantics. On the contrary, by relaxing Kripke’s assumption of strict
transworld identity, one can obtain an intuitive and philosophically attractive model
theory for many important systems of modal predicate logic.

1.2 Overview and Apology

I am sorry about the length of this essay. I’m not a logician, and it is easy for me
to make mistakes in this territory. I have therefore spelled out many proofs in rather
tedious detail, and I have not used shortcuts a more knowledgeable author might
have found.

Let me give an overview of what is to come.
Chapter 2 introduces counterpart models as generalised Kripke models in which

the relation of strict transworld identity is replaced by a counterpart relation – or
rather, by a family of counterpart relations.

Kripke semantics comes in many flavours, and this diversity is inherited by coun-
terpart semantics. One important choice point (in Kripke semantics) is how to deal
with individuals that go out of existence as the point of evaluation moves from world
to world. One option is to stipulate that this never happens, leading to constant do-
main or expanding domain semantics. If one doesn’t want to make this stipulation,
the underlying first-order logic should arguably be weakened to a free logic. Dif-
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1 Introduction

ferent types of free logic recommend themselves depending on whether individuals
that don’t exist at a world can differ in which predicates they satisfy at this world.
A positive answer requires associating each world with two domains, an “inner” do-
main of existing individuals and an “outer” domain of nonexistent individuals. A
negative answer does not require a separate outer domain; individuals are assumed
not to satisfy any atomic predicates at worlds where they don’t exist.

The same choices arise in counterpart semantics, except that what matters here
is not so much whether an individual itself can be found in the domain of accessi-
ble worlds, but whether it has a counterpart there. I am going to explore all three
options: a “classical” semantics in which individuals have counterparts at all acces-
sible worlds, a “positive” semantics with inner and outer domains, and a “negative”
semantics in which nonexistent individuals don’t satisfy atomic predicates.

In chapters 3–6, I will impose a further condition on counterparts: I will focus
on functional models in which a single individual never has multiple counterparts
at the same world, except relative to different counterpart relations. This allows
us to retain the traditional substitution principles of first-order logic. If we add the
assumption that individuals never go out of existence – meaning that every individual
has at least one counterpart at every accessible world – the resulting logic is a simple
combination of classical first-order logic with the minimal modal logic K. If we
allow individuals to go out of existence and adopt a positive approach, we get a
combination of standard positive free logic with K. On the negative approach, the
logic is an extension of standard negative free logic combined with K. Soundness is
proved in chapter 3, completeness in chapter 4.

Chapter 4 also explains how counterpart semantics gets around an obstacle to
the construction of canonical models in Kripke semantics. In Kripke semantics,
the central “truth lemma” requires different constructions of canonical models for
different logics. By contrast, the simple construction in chapter 4 allows proving the
truth lemma for any extension of our base logics.

Unfortunately, many interesting systems are not sound on the structure of their
canonical model, given the construction from chapter 4. Chapter 6 begins to explore
alternative constructions that may be used to prove completeness for some of these
systems.

In between, in chapter 5, I briefly discuss the “correspondence” between modal
formulas (or schemas) and properties of counterpart structures. In Kripke semantics,
the (T) schema □𝐴 ⊃ 𝐴, for example, corresponds to reflexivity of the accessibility
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1 Introduction

relation, in the sense that the schema is valid on a frame iff the relation is reflexive. In
counterpart semantics, the schema instead defines a joint property of the accessibility
relation and the counterpart relation(s).

In chapters 7–9, I drop the functionality assumption. I now allow individuals to
have multiple counterparts at the same world. It is well-known that this breaks the
substitution principles of classical (and free) logic, but it is not well-known exactly
how these principles break, and under what restrictions they still hold. This question
is answered in chapter 7, although completeness is only proved in chapter 9. The
proof requires a more complicated construction of canonical models than the one
used in chapter 4.

The failure of traditional substitution principles is a sign that the standard lan-
guage of modal predicate logic lacks the expressive resources to adequately talk
about non-functional structures. The missing power could be restored by adding
lambda abstraction. In chapter 8, I explore an option that addresses the problem
more directly. I here add an object-language substitution operator to the language
and describe its logic. The completeness proofs in chapter 9 cover both systems in
the original language and systems in the extended language.

Much of this essay was written in 2009–2010, with major revisions in 2022–
2023. While I hope that the main results are correct, some important questions
remain open. Chapter 6 in particular is a mere sketch. I have added red boxes
like this one at points where further work is needed.

Two more apologies. I realize that many of the proofs are not only tedious,
but inelegant and sometimes hard to follow. I have not (yet) bothered rewriting
them once I convinced myself that the result is correct. Also, I should add
more references to (and discussions of) the relevant literature.
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2 Counterpart Models

2.1 Worlds and individuals

There are two obvious ways of combining the standard model theory of first-order
logic with that of propositional modal logic. We can either have a single domain of
individuals, or we can associate each world with its own domain, so that different
individuals can “exist at” different worlds.

In Kripke semantics, the first option – “constant domain semantics” – renders the
Barcan Formula

(BF) ∀𝑥□𝐴 ⊃ □∀𝑥𝐴

valid, even though (BF) is generally not provable in systems that combine the rules
of first-order logic with those of the minimal modal logic K. Constant domain se-
mantics therefore can’t provide a model theory for many natural systems of modal
predicate logic.

If we allow for variable domains, we should arguably weaken the classical logic
of quantification. In classical logic, ∃𝑥 𝑥 = 𝑎 is a logical truth. Since normal modal
logics are closed under necessitation, we could infer □∃𝑥 𝑥 =𝑎. By universal gener-
alization, we derive the “Necessity of Existence”,

(NE) ∀𝑦□∃𝑥 𝑥 =𝑦.

If different individuals can exist at different worlds, however, we probably don’t want
(NE) to be valid.

Free logics are weakenings of classical logic in which ∃𝑥 𝑥 = 𝑎 is not provable:
singular terms are not required to refer to (existing) individuals. The question now
arises if anything interesting can be said about nonexistent individuals. Could we
have 𝐹𝑎 ∧ ¬𝐹𝑏, even though ‘𝑎’ and ‘𝑏’ are both empty? Positive free logic allows
for this. Here we need to distinguish an inner domain 𝐷 of existing individuals –
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2 Counterpart Models

over which the quantifiers range – and an outer domain 𝑈 of individuals that may
not exist but can still serve as referents of singular terms and fall into the extension
of atomic predicates. Negative and nonvalent approaches, by contrast, assume that
atomic predications with empty terms are always either false or indeterminate. Here
we don’t need an extra outer domain.

Each of these options can be used in the semantics of modal predicate logic. In
this context, the outer domain of positive free logic is naturally understood as the
domain of “possible individuals” – the union of the (inner) domains of all worlds.
(See, for example, [Kripke 1963].)

At the opposite end of the spectrum from constant domains to variable domains
lies Lewis’s [1968, 1986] requirement of disjoined domains. According to Lewis,
no ordinary individual exists at more than one world. We are not going to adopt
this assumption. Counterpart semantics, as here developed here, is compatible with
constant domains, disjoined domains, and merely variable domains.

As in Kripke semantics, we will have slightly different models depending on
whether the underlying theory of quantification is classical or free, and on whether
the free logic is positive or negative. (Extension to nonvalent approaches is straight-
forward, but we will not pursue it.) The most general models for a positive approach
associate each world 𝑤 with an inner domain 𝐷𝑤 and an outer domain 𝑈𝑤. In models
for classical and negatively free logic, we only need the single domains 𝐷𝑤.

Whether these domains are constant or variable (or disjoined) is not terribly im-
portant, as we are not going to track individuals by identity. What’s more important
is how the individuals in the various domains are linked by the counterpart relation.
Or, rather, by the counterpart relations – plural.

2.2 Counterpart relations

Lewis introduced counterpart relations as two-place relations between world-bound
individuals. Since we allow the same individual to exist at more than one world, we
generalise this to a four-place relation between individuals at worlds, so that 𝑑1 at
𝑤1 can be a counterpart of 𝑑2 at 𝑤2 but not of 𝑑2 at 𝑤3. Instead of having a single
four-place relation, however, it proves convenient to associate each pair of worlds
𝑤, 𝑤′ with a two-place counterpart relation 𝐶𝑤,𝑤′ , telling us which things in 𝑤′ are
counterparts of which things in 𝑤.
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2 Counterpart Models

In fact, we are going associate each pair of worlds with a set 𝐾𝑤,𝑤′ of such rela-
tions, in order to account for what Allen Hazen calls “internal relations” (see [Hazen
1979: 328–330], [Lewis 1986: 232f.]).

Suppose Dee and Dum are siblings. Imagine a world 𝑤 that embeds two copies of
the actual world, a “left” copy and a “right” copy. We may want to say that 𝑤 contains
two counterparts of Dee and two of Dum, and that Dee and Dum are necessarily
siblings, even though not all counterparts of Dee and Dum at 𝑤 are siblings of one
another.

To model this sort of situations, we need to distinguish different ways of locating
individuals from one world in another world. In the example, we can do this by
having two counterpart relations, one linking Dee and Dum with their counterparts
in the left copy, the other with their counterparts in the right copy. □𝐺𝑎𝑏 will be
true iff, relative to every counterpart relation, all counterparts of 𝑎 are 𝐺-related to
all counterparts of 𝑏.

Having multiple counterpart relations makes no difference to the base logic char-
acterized by our semantics, but it will be useful in the construction of canonical
models for stronger logics.

It may help to think of the set 𝐾𝑤,𝑤′ of counterpart relations as determining a
single counterpart relation between sequences of individuals:

A ⟨𝑑′
1, … , 𝑑′𝑛 ⟩ at 𝑤′ is a counterpart of ⟨𝑑1, … , 𝑑𝑛 ⟩ at 𝑤 iff there is a

𝐶 ∈ 𝐾𝑤,𝑤′ such that 𝑑1𝐶𝑑′
1, … , 𝑑𝑛𝐶𝑑′𝑛.

⟨Dee𝐿, Dum𝐿 ⟩ and ⟨Dee𝑅, Dum𝑅 ⟩, for example, may be counterparts of ⟨Dee, Dum⟩,
but ⟨Dee𝐿, Dum𝑅 ⟩ is not.

That counterparthood should be extended to sequences is suggested in [Lewis
1983] and [Lewis 1986], in response to the problem of internal relations. We could
have taken a single counterpart relation between sequences as primitive, but we
would then have had to impose some conditions on this relation. For example, we’d
want to rule out that a pair ⟨𝑑1, 𝑑2 ⟩ at 𝑤 has ⟨𝑑′

1, 𝑑′
2 ⟩ at 𝑤′ as counterpart even though

𝑑1 at 𝑤 does not have 𝑑′
1 at 𝑤′ as counterpart. We’d also want to ensure that if ⟨𝑑′

1, 𝑑′
2 ⟩

at 𝑤′ is a counterpart of ⟨𝑑1, 𝑑2 ⟩ at 𝑤 then ⟨𝑑′
2, 𝑑′

1 ⟩ at 𝑤′ is a counterpart of ⟨𝑑2, 𝑑1 ⟩
at 𝑤. These (and other) restrictions are automatically satisfied if we take a set 𝐾𝑤,𝑤′

of individual counterpart relations as primitive, and derive the counterpart relation
between sequences in the way just described.
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2 Counterpart Models

Now recall that we have different kinds of models, depending on the underlying
logic of quantification. If the logic is classical, the Necessity of Existence is a theo-
rem. Each world 𝑤 is associated with a (single) domain 𝐷𝑤 of individuals, and we
stipulate that if 𝑤 has access to 𝑤′ then every member of 𝐷𝑤 has a counterpart in
𝐷𝑤′ , relative to every counterpart relation in 𝐾𝑤,𝑤′ . (Otherwise ∀𝑥□∃𝑦 𝑥 = 𝑦 would
be false at 𝑤.)

For positive free logic, we add an outer domain 𝑈𝑤 of individuals to each world.
Informally, these are individuals that can be talked about at 𝑤, even though they don’t
exist there. We stipulate that if 𝑤 has access to 𝑤′ then every member of 𝑈𝑤 has a
counterpart in 𝑈𝑤′ . For negative free logic, we don’t have extra outer domains and
we allow that an individual in 𝐷𝑤 has no counterpart in 𝐷𝑤′ . (Note that models for
classical logic are a special case of the other two kinds of models.)

In the next few chapters, we will impose another restriction on 𝐾𝑤,𝑤′ . We are
going to assume that each counterpart relation 𝐶 ∈ 𝐾𝑤,𝑤′ is a possibly partial func-
tion, so that an individual at one world never has multiple counterparts at another
world relative to the same counterpart relation. We still allow for multiple counter-
parts relative to different counterpart relations, as in the case of Dee and Dum. The
functionality assumption ensures that the logic determined by our semantics satisfies
standard substitution principles of first-order logic. This will be explained in chapter
7, where the assumption will be lifted.

2.3 Weak necessity and strong necessity

Lewis [1968] gave his semantics in the form of translation rules from the language
of modal predicate logic into a non-modal first-order language with explicit quanti-
fiers over worlds and individuals. □𝐹𝑥, for example, is translated into a first-order
formula stating that every counterpart of 𝑥 at every world is 𝐹. Since every individ-
ual at any worlds is identical to itself, ∀𝑦□∃𝑥 𝑥 = 𝑦 is translated into a logical truth:
(NE) comes out as valid.

By letting the box in □𝜙(𝑥) quantify over counterparts of 𝑥, Lewis adopted what
Kripke [1971: 137] called a weak reading of necessity. Consider a statement like

Aristotle is necessarily human,

understood as a metaphysical hypothesis. On its “weak” reading, the statement as-
serts (informally speaking) that Aristotle is human at every world at which he exists.
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2 Counterpart Models

On its “strong” reading, the statement asserts that Aristotle is human at every world
whatsoever. Since every individual exists at every world at which it exists, the weak
reading validates the Necessity of Existence.

Much of the deviance of Lewis’s logic arises from his weak reading of the box.
We can see, for example, why the weak reading does not license the inference from
□(𝐹𝑥 ∧ 𝐹𝑦) to □𝐹𝑥. Informally, the premise □(𝐹𝑥 ∧ 𝐹𝑦) states that 𝑥 and 𝑦 are 𝐹
at every world at which they both exist. This can be true even if 𝑥 is ¬𝐹 at certain
worlds where 𝑥 exists but 𝑦 does not, in which case the conclusion □𝐹𝑥 is false. In
□(𝐹𝑥 ∧ 𝐹𝑦), the box effectively ranges only over worlds where 𝑥 and 𝑦 both exist
(for Lewis: at which they both have counterparts). In □𝐹𝑥, the box ranges over the
wider set of worlds where 𝑥 exists, regardless of whether 𝑦 exists there as well.

The weak reading of the box not only determines a deviant modal logic. It is
also hampered by the standard syntax of modal predicate logic. Consider another
example (from [Baldwin 1984: 254], see also [Hunter and Seager 1981]).

Elizabeth is necessarily the daughter of George, but George isn’t neces-
sarily the father of Elizabeth.

As a statement about weak necessity, this is easily understood: given the necessity
of origin, Elizabeth could not have existed without being the daughter of George,
but George could well have existed without having any offspring. But how could the
statement be expressed in the language of modal predicate logic? We need a way of
saying that 𝐹𝑥𝑦 is necessary for 𝑥, while the same formula is not necessary for 𝑦.

The sentence operators of modal predicate logic are ill suited for expressing weak
necessity. It would be better to use modal predicate operators, as in [Baldwin 1984],
or the indexed operators of [Corsi 2007]. The logical deviance of weak necessity
would then become more intelligible. Suppose we read □𝑥,𝑦 as ‘it is necessary for 𝑥
and 𝑦 that’. We would then say that □𝑥,𝑦(𝐹𝑥 ∧ 𝐹𝑦) entails □𝑥,𝑦𝐹𝑥, but not □𝑥𝐹𝑥.

One can achieve a similar effect by adding indices to entire sentences, as in the
categorical approach of [Lawvere 1969]. Here we would write

□(𝐹𝑥 ∧ 𝐹𝑦) ∶ 𝑥, 𝑦

instead of □(𝐹𝑥 ∧𝐹𝑦). The index ’𝑥, 𝑦’ would make clear that the statement is about
𝑥 and 𝑦. From □(𝐹𝑥 ∧ 𝐹𝑦) ∶ 𝑥, 𝑦 we could infer □𝐹𝑥 ∶ 𝑥, 𝑦, but not □𝐹𝑥 ∶ 𝑥. [Corsi
2002a], [Belardinelli 2006] and [Braüner and Ghilardi 2007] develop counterpart
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semantics for this kind of indexed language, drawing on [Ghilardi and Meloni 1988]
and [Ghilardi and Meloni 1991].

It would be wrong, however, to think that counterpart semantics requires a weak
reading of the box, just as it would be wrong to think that it requires disjoined do-
mains. We are going to develop a version of counterpart semantics that adopts the
strong reading, familiar from Kripke semantics. We don’t need an indexed language
or indexed operators.

[Lewis 1968] did consider giving the box a strong reading. Admitting that the
validity of (NE) may be undesirable, he reports an alternative translation scheme
suggested to him by David Kaplan. The alternative translates □𝜙(𝑥) into ‘at every
world, some counterpart of 𝑥 satisfies 𝜙(x)’. Lewis rightly points out that this would
have unacceptable consequences for cases in which 𝜙 is negated: the mere fact that
𝑥 contingently exists would make ♢𝐹𝑥 (i.e., ¬□¬𝐹𝑥) true, for any predicate 𝐹.

It is, in fact, hard to provide a semantics for strong necessity with Lewisian trans-
lation rules. But the use of translation rules was another of Lewis’s idiosyncrasies.
As [Hazen 1979] points out, one can convert Lewis’s rules into a more standard
model-theoretic semantics. In this framework, the strong reading of the box is eas-
ily accommodated.

Suppose we evaluate □𝐹𝑥 at a world 𝑤, relative to an assignment 𝑔 that maps 𝑥
to an individual 𝑑. In Kripke semantics, □𝐹𝑥 is true at 𝑤 relative to 𝑔 iff 𝐹𝑥 is true
at all accessible worlds 𝑤′, relative to the same assignment 𝑔. If 𝑑 doesn’t exist at
some such world, we use the resources of free logic to guide our interpretation of
𝐹𝑥. On a positive approach, we assume that 𝑑 still inhabits the outer domain of 𝑤′,
and that 𝐹𝑥 is true at 𝑤′ depending on whether 𝑑 is 𝐹 at 𝑤′. On a negative approach,
we treat 𝑥 as genuinely empty at 𝑤′, and infer that 𝐹𝑥 is false at 𝑤′.

We have the same options in counterpart semantics. We’ll say that □𝐹𝑥 is true at
𝑤 relative to 𝑔 iff 𝐹𝑥 is true at all accessible worlds 𝑤′ relative to all assignments 𝑔′

that shift the reference of 𝑥 to a counterpart of 𝑑 at 𝑤′. If 𝑑 doesn’t have a counterpart
at 𝑤′, we can let 𝑔′(𝑥) be undefined. We then stipulate that 𝐹𝑥 is false relative to any
assignment that leaves 𝑥 undefined. This is the negative approach. Alternatively, we
can adopt a positive approache and stipulate that 𝑑 must have a counterpart in the
outer domain of any accessible world. Then 𝐹𝑥 may be true or false at 𝑤′, depending
on whether 𝑑’s counterparts are at 𝑤′ are 𝐹.
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2.4 Models

With all that chit chat out of the way, let’s define our models. A model combines a
structure with an interpretation of the language.

Definition 2.1 (Counterpart structure).
A counterpart structure consists of

1. a non-empty set 𝑊 (of “worlds”),
2. a binary (“accessibility”) relation 𝑅 on 𝑊 ,
3. an (“outer domain”) function 𝑈 that assigns to each 𝑤∈𝑊 a non-empty

set 𝑈𝑤,
4. an (“inner domain”) function 𝐷 that assigns to each 𝑤∈𝑊 a set 𝐷𝑤 ⊆

𝑈𝑤, and
5. a (“counterpart-inducing”) function 𝐾 that assigns to each pair of points

⟨𝑤, 𝑤′ ⟩ ∈ 𝑅 a non-empty set 𝐾𝑤,𝑤′ of (“counterpart”) relations 𝐶 ⊆
𝑈𝑤 × 𝑈𝑤′ .

As I’ve explained in the previous sections, we need the outer domains if we want
to say that individuals can differ in their properties even at worlds where they don’t
exist – meaning, where they don’t have counterparts. In this case, we’ll assume
that all counterpart relations are total, so that an individual always has at least one
counterpart at all accessible worlds, if only in the outer domain. If we don’t want to
distinguish between non-existent individuals, we can use single-domain structures
without a separate outer domain.

Definition 2.2 (Types of structure).
Let 𝔖 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩ be a counterpart structure.

• 𝔖 is single-domain if 𝐷𝑤 = 𝑈𝑤 for all 𝑤 ∈ 𝑊 .
• 𝔖 is total iff all counterpart relations are total, meaning that any 𝐶 ∈

𝐾𝑤,𝑤′ relates each 𝑑 ∈ 𝑈𝑤 to at least one 𝑑′ ∈ 𝑈𝑤′ .
• 𝔖 is functional iff all counterpart relations are (partial) functions: any

𝐶 ∈ 𝐾𝑤,𝑤′ relates each 𝑑 ∈ 𝑈𝑤 to at most one 𝑑′ ∈ 𝑈𝑤′ .
• 𝔖 is classical iff it is single-domain, total, and functional.

The label “classical” alludes to the fact that the logic of classical structures is the
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union of classical first-order logic and the minimal normal modal logic K.
Before we can show facts like this, we need to say how sentences of modal predi-

cate logic are interpreted on counterpart structures.

Definition 2.3 (The language of modal predicate logic).
We assume that there is a denumerable list of predicates, each associated with
an arity, a denumerable list of (individual) variables, and a denumerable list
of (individual) constants (aka names). The formulas (a.k.a. sentences) of 𝔏
are generated by the rule

𝑃𝑡1 … 𝑡𝑛 | 𝑡1 =𝑡2 | ¬𝐴 | (𝐴 ⊃ 𝐵) | ∀𝑥𝐴 | □𝐴,

where 𝑃 is a predicate with arity 𝑛, 𝑡1, … , 𝑡𝑛 are terms (variables or constants),
and 𝑥 is a variable.

Formulas involving ‘∧’, ‘∨’, ‘↔’, ‘∃’ and ‘♢’ are defined by the usual metalin-
guistic abbreviations. I will often omit parentheses, assuming that the order of prece-
dence among connectives is ¬, ∧, ∨, ⊃, with association to the right. I am going to
use ‘𝑥’, ‘𝑦’, ‘𝑧’ (sometimes with indices or dashes) as placeholders for arbitrary vari-
ables, ‘𝑎’, ‘𝑏’, ‘𝑐’ for names, ‘𝑡’, ‘𝑠’, ‘𝑟’ for terms, and ‘𝐹’, ‘𝐺’, ‘𝑃’ for predicates
with arity 1, 2 and 𝑛, respectively. For any expression or set of expressions 𝐴, Var(𝐴)
is the set of variables in (members of) 𝐴, and FV(𝐴) is the set of variables with free
occurrences in (members of) 𝐴.

Definition 2.4 (Interpretation).
Let 𝔖 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩ be a counterpart structure. An interpretation 𝐼 (for
𝔏) on 𝔖 is a function 𝐼 that assigns to each world 𝑤 ∈ 𝑊 a function 𝐼𝑤 such
that

(i) for every non-logical predicate 𝑃 with arity 𝑛, 𝐼𝑤(𝑃) ⊆ 𝑈𝑛𝑤, and
(ii) 𝐼𝑤(=) = {⟨𝑑, 𝑑 ⟩ ∶ 𝑑 ∈ 𝑈𝑤}.

(For zero-ary predicates 𝑃, clause (i) says that 𝐼𝑤(𝑃) ⊆ 𝑈0𝑤. For any 𝑈𝑤, there
is exactly one “zero-tuple” in 𝑈0𝑤, which we may identify with the empty set. So
𝑈0𝑤 has exactly two subsets, the empty set ∅ = 0 and the unit set of the empty set
{∅} = 1. It is convenient to think of these as truth-values.)
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Definition 2.5 (Counterpart model).
A counterpart model 𝔐 consists of a counterpart structure 𝔖 and an interpre-
tation 𝐼 on 𝔖.

I will call models single-domain, total, functional or classical in accordance with
their underlying structure.

Formulas are true in a counterpart model relative to a world and an assignment.

Definition 2.6 (Assignment).
An assignment on a set 𝑈 is a function 𝑔 from the 𝔏-terms into 𝑈.

In negative semantics, we will allow assignments to be partial, otherwise they
have to be total.

A few comments on the treatment of names.
According to definition 2.6, assignments interpret not only the variables but also

the names of 𝔏. A more conventional treatment would move the interpretation of
names out of the assignment and into a model’s interpretation function. This could
easily be done, but the present treatment proves a little more convenient for our
purposes.

For one thing, in a positive semantics, we want each name to pick out an indi-
vidual in the outer domain of the world at which a formula is evaluated. If models
don’t contain a designated “actual world” then on which domain 𝑈𝑤 should a model
interpret a name? We would either (a) have to give names an intensional meaning
𝑊 → 𝑈𝑤, even though this intension plays no role in the compositional semantics, or
(b) include a designated actual world in the structures, or (c) assume that all worlds
have the same outer domain.

Another reason for letting names be interpreted by the assignment function is that
modal operators shift the interpretation of names just as they shift the interpretation
of variables. It is convenient to keep track of shiftable parameters as separate index
coordinates, and this way we only need one index coordinate for both names and
variables.

In effect, we are treating names as free variables. This has a third advantage. Many
classical treatments of modal predicate logic – from [Kripke 1963] and [Lewis 1968]
to [Hughes and Cresswell 1996], [Fitting and Mendelsohn 1998], and [Kracht and
Kutz 2002] – don’t have names in their object language. They do, of course, have

19



2 Counterpart Models

variables. If we think of names as free variables, comparisons with those treatments
become easy. (For languages with names, Kracht and Kutz [2005, 2007] switch from
counterpart semantics to what Schurz [2011] calls “worldline semantics” – a cousin
of individual concept semantics.)

In an earlier version of this essay, I didn’t have a separate category of names.
In later chapters, I sometimes still use ‘variable’ to mean ‘singular term’. This
should be corrected, but it doesn’t affect any results. Throughout this essay,
names behave exactly like variables that happen to never be bound.

Note also that names and variables are “objectual”. They simply pick out individ-
uals. In applications of counterpart semantics, it is sometimes useful to have differ-
ent counterpart relations for different sorts of individuals, so that one can distinguish,
for example, between person counterparts and body counterparts (see [Lewis 1971]).
One may then want to associate each term with a sort, and each sort with its own type
of counterpart relation. Here I will focus on the simplest case, where all individuals
are of the same sort.

Many authors have outlined versions of counterpart semantics that allow for
different types of counterpart relation. I don’t think anyone has worked out
the details of the resulting logics. It would be worthwile to do so.

2.5 Truth

Let’s spell out what it takes for an 𝔏-sentence to be true relative to a world and an
assignment in a model.

For the semantics of quantifiers, we need the usual concept of a variant of an
assignment.

Definition 2.7 (Variant).
If 𝑔 is an assignment on some set 𝑈 and 𝑑 ∈ 𝑈, then the 𝑥-variant 𝑔𝑥↦𝑑 is the
assignment on 𝑈 that maps 𝑥 to 𝑑 and all other terms 𝑡 to their original value
𝑔(𝑡).
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In Kripke semantics, the box shifts the world of evaluation. In counterpart seman-
tics, it also shifts the assignment: □𝐴 is true relative to 𝑤, 𝑔 iff 𝐴 is true relative to
𝑤′, 𝑔′ for all 𝑤′, 𝑔′ such that 𝑤′ is accessible from 𝑤 and 𝑔′ assigns to each term
a counterpart at 𝑤′ of its original value. Let’s abbreviate this relationship between
𝑤, 𝑔 and 𝑤′, 𝑔′ as 𝑤, 𝑔 ▷ 𝑤′, 𝑔′.

Definition 2.8 (Image).
Let 𝔖 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩ be a counterpart structure, 𝑤, 𝑤′ worlds in 𝑊 , and
𝑔, 𝑔′ assignments on 𝑈𝑤, 𝑈𝑤′ respectively. We say that 𝑔′ at 𝑤’ is an image
of 𝑔 at 𝑤 (for short, 𝑤, 𝑔 ▷ 𝑤′, 𝑔′) iff there is a 𝐶 ∈ 𝐾𝑤,𝑤′ such that for every
term 𝑡, if 𝑔(𝑡) is 𝐶-related to some 𝑑 ∈ 𝑈𝑤′ then 𝑔(𝑡)𝐶𝑔′(𝑡), otherwise 𝑔′(𝑡)
is undefined.

In total structures, 𝑔(𝑡) is always 𝐶-related to some 𝑑 ∈ 𝑈𝑤′ , so we have: 𝑤, 𝑔 ▷ 𝑤′, 𝑔′

iff there is a counterpart relation 𝐶 ∈ 𝐾𝑤,𝑤′ that relates 𝑔(𝑡) to 𝑔′(𝑡) for every term
𝑡. We don’t need to mention that 𝑤′ is accessible from 𝑤: definition 2.1 ensures that
if 𝑤′ is not accessible from 𝑤’ then there is no 𝐶 ∈ 𝐾𝑤,𝑤′ at all.

Definition 2.9 (Truth).
Let 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ be a counterpart model, 𝑤 a member of 𝑊 , and
𝑔 an assignment on 𝑈𝑤. For any predicate 𝑃, terms 𝑡1, … , 𝑡𝑛, and 𝔏-formulas
𝐴, 𝐵, we define:

𝔐, 𝑤, 𝑔 ⊩ 𝑃𝑡1 … 𝑡𝑛 iff ⟨𝑔(𝑡1), … , 𝑔(𝑡𝑛)⟩ ∈ 𝐼𝑤(𝑃).
𝔐, 𝑤, 𝑔 ⊩ ¬𝐴 iff 𝔐, 𝑤, 𝑔 ⊮ 𝐴.

𝔐, 𝑤, 𝑔 ⊩ 𝐴 ⊃ 𝐵 iff 𝔐, 𝑤, 𝑔 ⊮ 𝐴 or 𝔐, 𝑤, 𝑔 ⊩ 𝐵.

𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐴 iff 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐴 for all 𝑑 ∈ 𝐷𝑤.

𝔐, 𝑤, 𝑔 ⊩ □𝐴 iff 𝔐, 𝑤′, 𝑔′ ⊩ 𝐴 for all 𝑤′, 𝑔′ such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′.

When we’re dealing with functional models, the following formulation of the se-
mantics for □𝐴 is sometimes useful.

21



2 Counterpart Models

Lemma 2.1.
If 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ is a functional counterpart model, 𝑤 a member of
𝑊 , and 𝑔 an assignment on 𝑈𝑤, then

𝔐, 𝑤, 𝑔 ⊩ □𝐴 iff 𝔐, 𝑤′, 𝐶 ∘ 𝑔 ⊩ 𝐴 for all 𝑤′, 𝐶 s.t. 𝑤𝑅𝑤′ and 𝐶 ∈ 𝐾𝑤,𝑤′ .

Here, 𝐶 ∘ 𝑔 is the composition of 𝐶 and 𝑔: the function that maps any term 𝑡 to
𝐶(𝑔(𝑡)). (If either 𝑔(𝑡) or 𝐶(𝑔(𝑡)) is undefined, then (𝐶 ∘ 𝑔)(𝑡) is undefined.

Proof. By definition 2.9, 𝔐, 𝑤, 𝑔 ⊩ □𝐴 iff 𝔐, 𝑤′, 𝑔′ ⊩ 𝐴 for all 𝑤′, 𝑔′ such that
𝑤, 𝑔 ▷ 𝑤′, 𝑔′. By definition 2.8, 𝑤, 𝑔 ▷ 𝑤′, 𝑔′ iff there is a 𝐶 ∈ 𝐾𝑤,𝑤′ such that
for every term 𝑡, if 𝑔(𝑡) is 𝐶-related to some 𝑑 ∈ 𝑈𝑤′ then 𝑔(𝑡)𝐶𝑔′(𝑡), otherwise
𝑔′(𝑡) is undefined. Assume 𝐶 is functional. We can then write 𝑔(𝑡)𝐶𝑔′(𝑡) as
𝑔′(𝑡) = 𝐶(𝑔(𝑡)) = (𝐶 ∘ 𝑔)(𝑡). So we have 𝑤, 𝑔 ▷ 𝑤′, 𝑔′ iff there is a 𝐶 ∈ 𝐾𝑤,𝑤′

such that for every term 𝑡,

𝑔′(𝑡) =
⎧{
⎨{⎩
(𝐶 ∘ 𝑔)(𝑡) if {𝑑 ∶ 𝑔(𝑥)𝐶𝑑} ≠ ∅,
undefined otherwise.

If {𝑑 ∶ 𝑔(𝑥)𝐶𝑑} = ∅ then (𝐶 ∘ 𝑔)(𝑥) is undefined. So 𝑤, 𝑔 ▷ 𝑤′, 𝑔′ iff there is a
𝐶 ∈ 𝐾𝑤,𝑤′ such that 𝑔′ = 𝐶 ∘ 𝑔. And so 𝔐, 𝑤, 𝑔 ⊩ □𝐴 iff 𝔐, 𝑤′, 𝑔′ ⊩ 𝐴 for all
𝑤′, 𝑔′ such that 𝑔′ = 𝐶 ∘ 𝑔 for some 𝐶 ∈ 𝐾𝑤,𝑤′ .

In later proofs, I will sometimes refer to the (obvious) fact the truth-value of a
sentence never depends on the value of terms that aren’t free in the sentence. Let’s
quickly prove this.

Lemma 2.2 (Locality lemma).
Let 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ be a counterpart model, 𝑤 ∈ 𝑊 , 𝐴 an 𝔏-formula
and 𝑔, 𝑔′ assignments on 𝑈𝑤 such that 𝑔(𝑡) = 𝑔′(𝑡) for every term 𝑡 that is
free in 𝐴. Then

𝔐, 𝑤, 𝑔 ⊩ 𝐴 iff 𝔐, 𝑤, 𝑔′ ⊩ 𝐴.
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Proof. By induction on (complexity of) 𝐴.

• 𝐴 is atomic. The claim immediately follows from definition 2.9.

• 𝐴 is ¬𝐵. 𝔐, 𝑤, 𝑔 ⊩ ¬𝐵 iff 𝔐, 𝑤, 𝑔 ⊮ 𝐵 by definition 2.9, iff 𝔐, 𝑤, 𝑔′ ⊮ 𝐵
by induction hypothesis, iff 𝔐, 𝑤, 𝑔′ ⊩ ¬𝐵 by definition 2.9.

• 𝐴 is 𝐵 ⊃ 𝐶. 𝔐, 𝑤, 𝑔 ⊩ 𝐵 ⊃ 𝐶 iff 𝔐, 𝑤, 𝑔 ⊮ 𝐵 or 𝔐, 𝑤, 𝑔 ⊩ 𝐶 by def-
inition 2.9, iff 𝔐, 𝑤, 𝑔′ ⊮ 𝐵 or 𝔐, 𝑤, 𝑔′ ⊩ 𝐶 by induction hypothesis, iff
𝔐, 𝑤, 𝑔′ ⊩ 𝐵 ⊃ 𝐶 by definition 2.9.

• 𝐴 is ∀𝑥𝐵. By definition 2.9, 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐵 iff 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐵 for all 𝑑 ∈ 𝐷𝑤.
For each 𝑑 ∈ 𝐷𝑤, 𝑔𝑥↦𝑑 and 𝑔′𝑥↦𝑑 assign the same value to every variable in 𝐵.
So by induction hypothesis, 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐵 for all 𝑑 ∈ 𝐷𝑤 iff 𝔐, 𝑤, 𝑔′𝑥↦𝑑 ⊩
𝐵 for all 𝑑 ∈ 𝐷𝑤, iff 𝔐, 𝑤, 𝑔′ ⊩ ∀𝑥𝐵 by definition 2.9.

• 𝐴 is □𝐵. By definition 2.9, 𝔐, 𝑤, 𝑔 ⊩ □𝐵 iff 𝔐, 𝑤′, 𝑔∗ ⊩ 𝐵 for all 𝑤′, 𝑔∗

with 𝑤, 𝑔 ▷ 𝑤′, 𝑔∗. Since 𝑔(𝑥) = 𝑔′(𝑥) for all variables 𝑥 in 𝐵, each 𝑤′-image
of 𝑔 at 𝑤 agrees with some 𝑤′-image of 𝑔′ on all variables in 𝐵 and vice
versa. So by induction hypothesis, 𝔐, 𝑤′, 𝑔∗ ⊩ 𝐵 for all 𝔐, 𝑤′, 𝑔∗ such that
𝑤, 𝑔 ▷ 𝑤′, 𝑔∗ iff 𝔐, 𝑤′, 𝑔′∗ ⊩ 𝐵 for all 𝑤′, 𝑔′∗ such that 𝑤, 𝑔′ ▷ 𝑤′, 𝑔′∗, iff
𝔐, 𝑤, 𝑔′ ⊩ □𝐵 by definition 2.9.

2.6 Positive correlates

In this section, I show that a negative model can be “simulated” by a positive model
by adding a “null individual” 𝑜 to the outer domain 𝑈𝑤 of every world 𝑤 and stipu-
lating that 𝑜 doesn’t satisfy any predicates and isn’t denoted by any term.

Definition 2.10 (Positive correlate).
The positive correlate 𝔐+ of a counterpart model 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ is
the model ⟨𝑊, 𝑅, 𝑈+, 𝐷, 𝐾+, 𝐼 ⟩ with 𝑈+, 𝐾+ constructed as follows.

Let 𝑜 be an arbitrary individual (say, the smallest ordinal) not in ⋃𝑤 𝐷𝑤.
For all 𝑤 ∈ 𝑊 , let 𝑈+𝑤 = 𝑈𝑤 ∪ {𝑜}.
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For all ⟨𝑤, 𝑤′ ⟩ ∈ 𝑅, let 𝐾+
𝑤,𝑤′ be the set of relations 𝐶+ ⊆ 𝑈+𝑤 × 𝑈+

𝑤′ such
that for some 𝐶 ∈ 𝐾𝑤,𝑤′ , 𝐶+ = 𝐶 ∪{⟨𝑑, 𝑜⟩ ∶ 𝑑 ∈ 𝑈+𝑤 and there is no 𝑑′ ∈ 𝑈𝑤′

with 𝑑𝐶𝑑′ }.
The positive correlate 𝑔+ of an assignment function 𝑔 is the function that

“completes” 𝑔 by setting

𝑔+(𝑥) =
⎧{
⎨{⎩
𝑔(𝑥) if 𝑔(𝑥) is defined
𝑜 otherwise

Lemma 2.3 (Truth-preservation across correlates).
Let 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ be any counterpart model and 𝔐+ =
⟨𝑊, 𝑅, 𝑈+, 𝐷, 𝐾+, 𝐼 ⟩ its positive correlate. For any world 𝑤 ∈ 𝑊 , assignment
𝑔 on 𝑈𝑤, and formula 𝐴 of 𝔏,

𝔐, 𝑤, 𝑔 ⊩ 𝐴 iff 𝔐+, 𝑤, 𝑔+ ⊩ 𝐴,

where 𝑔+ is the positive correlate of 𝑔.

Proof. By induction on 𝐴.

• 𝐴 is 𝑃𝑥1 … 𝑥𝑛. By definition 2.9, 𝔐, 𝑤, 𝑔 ⊩ 𝑃𝑥1 … 𝑥𝑛 iff ⟨𝑔(𝑥1), … , 𝑔(𝑥𝑛)⟩ ∈
𝐼𝑤(𝑃). Since 𝔐 and 𝔐+ have the same interpretation function 𝐼 , we have
to show that ⟨𝑔(𝑥1), … , 𝑔(𝑥𝑛)⟩ ∈ 𝐼𝑤(𝑃) iff ⟨𝑔+(𝑥1), … , 𝑔+(𝑥𝑛)⟩ ∈ 𝐼𝑤(𝑃). If
𝑔(𝑥𝑖) is defined for all 𝑥1, … , 𝑥𝑛 then this follows from the fact that 𝑔+(𝑥𝑖) =
𝑔(𝑥𝑖). If some 𝑔(𝑥𝑖) is undefined then ⟨𝑔(𝑥1), … , 𝑔(𝑥𝑛)⟩ is undefined and not
in 𝐼𝑤(𝑃). We then also have 𝑔+(𝑥𝑖) = 𝑜. Since 𝐼𝑤(𝑃) doesn’t contains any
tuples involving 𝑜, we have ⟨𝑔+(𝑥1), … , 𝑔+(𝑥𝑛)⟩ ∉ 𝑔+(𝑃).

• 𝐴 is ¬𝐵. 𝔐, 𝑤, 𝑔 ⊩ ¬𝐵 iff 𝔐, 𝑤, 𝑔 ⊮ 𝐵 by definition 2.9, iff 𝔐+, 𝑤, 𝑔+ ⊮ 𝐵
by induction hypothesis, iff 𝔐+, 𝑤, 𝑔+ ⊩ ¬𝐵 by definition 2.9.

• 𝐴 is 𝐵 ⊃ 𝐶. 𝔐, 𝑤, 𝑔 ⊩ 𝐵 ⊃ 𝐶 iff 𝔐, 𝑤, 𝑔 ⊮ 𝐵 or 𝔐, 𝑤, 𝑔 ⊩ 𝐶 by defini-
tion 2.9, iff 𝔐+, 𝑤, 𝑔+ ⊮ 𝐵 or 𝔐+, 𝑤, 𝑔+ ⊩ 𝐶 by induction hypothesis, iff
𝔐+, 𝑤, 𝑔+ ⊩ 𝐵 ⊃ 𝐶 by definition 2.9.
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• 𝐴 is ∀𝑥𝐵. By definition 2.9, 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐵 iff 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐵 for all 𝑑 ∈ 𝐷𝑤.
For each 𝑑 ∈ 𝐷𝑤, 𝑔+𝑥↦𝑑 is the positive correlate of 𝑔𝑥↦𝑑 . Thus by induction
hypothesis, 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐵 for all 𝑑 ∈ 𝐷𝑤 iff 𝔐, 𝑤, 𝑔+𝑥↦𝑑 ⊩ 𝐵 for all
𝑑 ∈ 𝐷𝑤, iff 𝔐+, 𝑤, 𝑔+ ⊩ ∀𝑥𝐵 by definition 2.9.

• 𝐴 is□𝐵. Assume 𝔐, 𝑤, 𝑔 ⊩ □𝐵. By definition 2.9, this means that 𝔐, 𝑤′, 𝑔′ ⊩
𝐵 for all 𝑤′, 𝑔′ with 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. We need to show that 𝔐+, 𝑤′, 𝑔+′ ⊩ 𝐵
for all 𝑤′, 𝑔+′ with 𝑤, 𝑔+ ▷ 𝑤′, 𝑔+′. So let 𝑤′, 𝑔+′ be such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔+′.
Since 𝑔+ is total and 𝔐+ a positive structure, 𝑤, 𝑔 ▷ 𝑤′, 𝑔+′ implies that for ev-
ery variable 𝑥 there is a 𝐶+ ∈ 𝐾+

𝑤,𝑤′ with 𝑔+(𝑥)𝐶+𝑔+′(𝑥). Let 𝑔′ be the assign-
ment on 𝑈𝑤′ that coincides with 𝑔+′ except that 𝑔′(𝑥) is undefined for every
variable 𝑥 for which 𝑔+′(𝑥) = 𝑜. Let 𝐶 = {⟨𝑑, 𝑑′ ⟩ ∈ 𝐶+ ∶ 𝑑 ≠ 𝑜 and𝑑′ ≠ 𝑜}.
Now let 𝑥 be any variable. Assume that there are 𝑑, 𝑑′ with 𝑔(𝑥) = 𝑑 and
𝑑𝐶𝑑′. Then 𝑔+(𝑥) = 𝑑 and 𝑑𝐶+𝑑′ and thus 𝑔+′(𝑥) ≠ 𝑜, as ⟨𝑑, 𝑜⟩ ∈ 𝐶+ only
if there is no 𝑑′ with ⟨𝑑, 𝑑′ ⟩ ∈ 𝐶. So 𝑔′(𝑥) = 𝑔+′(𝑥), and 𝑔(𝑥)𝐶𝑔′(𝑥). On the
other hand, assume there are no 𝑑, 𝑑′ with 𝑔(𝑥) = 𝑑 and 𝑑𝐶𝑑′, either because
𝑔(𝑥) is undefined or because 𝑔(𝑥) = 𝑑 and the only 𝑑′ with ⟨𝑑, 𝑑′ ⟩ ∈ 𝐶+ is 𝑜.
Either way, then 𝑔+′(𝑥) = 𝑜, and so 𝑔′(𝑥) is undefined.

W have shown that for all variables 𝑥, if there are 𝑑, 𝑑′ with 𝑔(𝑥) = 𝑑 and
𝑑𝐶𝑑′ then 𝑔(𝑥)𝐶𝑔′(𝑥), otherwise 𝑔′(𝑥) is undefined. Since 𝐶 ∈ 𝐾𝑤,𝑤′ by
construction of 𝐾+ (in definition 2.10), this means that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. But 𝑔+′

is the positive correlate of 𝑔′. So we’ve shown that whenever 𝑤, 𝑔+ ▷ 𝑤′, 𝑔+′

then there is a 𝑔′ such that 𝑔+′ is the positive correlate of 𝑔′ and 𝑤, 𝑔 ▷ 𝑤′, 𝑔′.
We know that 𝔐, 𝑤′, 𝑔′ ⊩ 𝐵. So by induction hypothesis, 𝑤′, 𝑔+′ ⊩ 𝐵. That
is, 𝑤′, 𝑔+′ ⊩ 𝐵 for each 𝑤′, 𝑔+′ with 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. By definition 2.9, this
means that 𝑤, 𝑔+ ⊩ □𝐵.

In the other direction, assume 𝔐+, 𝑤, 𝑔+ ⊩ □𝐵. That is, 𝔐+, 𝑤′, 𝑔+′ ⊩ 𝐵
for each 𝑤′, 𝑔+′ with 𝑤, 𝑔+ ▷ 𝑤′, 𝑔+′. We have to show that 𝔐, 𝑤′, 𝑔′ ⊩ 𝐵
for all 𝑤′, 𝑔′ with 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. So let 𝑤′, 𝑔′ be such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. Then
there is a 𝐶 ∈ 𝐾𝑤,𝑤′ such that for every variable 𝑥, either 𝑔(𝑥)𝐶𝑔′(𝑥) or 𝑔(𝑥)
has no 𝐶-counterpart at 𝑤′ and 𝑔′(𝑥) is undefined. Let 𝑔′+ be the positive
correlate of 𝑔′. Let 𝐶+ = 𝐶 ∪ {⟨𝑑, 𝑜⟩ ∶ 𝑑 ∈ 𝑈+𝑤 and there is no 𝑑′ ∈ 𝑈𝑤′ with
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𝑑𝐶𝑑′ }. By definition 2.10, 𝐶+ ∈ 𝐾+
𝑤,𝑤′ .

For any variable 𝑥, if 𝑔(𝑥)𝐶𝑔′(𝑥) then both 𝑔(𝑥) and 𝑔′(𝑥) are defined and
thus 𝑔+(𝑥) = 𝑔(𝑥) and 𝑔′+(𝑥) = 𝑔′(𝑥), by definition 2.10; moreover, then
𝑔+(𝑥)𝐶+𝑔′+(𝑥), since 𝐶 ⊆ 𝐶+. On the other hand, if 𝑔(𝑥) has no 𝐶-counterpart
at 𝑤′, so that 𝑔′(𝑥) is undefined, then by construction of 𝐶+ and 𝑔+, 𝑔+(𝑥)
(which equals 𝑔(𝑥) if 𝑔(𝑥) is defined, else 𝑜) has 𝑜 as 𝐶+-counterpart at 𝑤′,
and 𝑔′+(𝑥) = 𝑜; so again 𝑔+(𝑥)𝐶+𝑔′+(𝑥).
So, for every variable 𝑥, there is a 𝐶+ ∈ 𝐾+

𝑤,𝑤′ with 𝑔+(𝑥)𝐶+𝑔′+(𝑥), and so
𝑤, 𝑔+ ▷ 𝑤′, 𝑔′+.

Now we know that 𝔐+, 𝑤′, 𝑔+′ ⊩ 𝐵 for all 𝑤′, 𝑔+′ with 𝑤, 𝑔 ▷ 𝑤′, 𝑔+′. Hence
𝔐+, 𝑤′, 𝑔′+ ⊩ 𝐵. By induction hypothesis, 𝔐, 𝑤′, 𝑔′ ⊩ 𝐵. So we’ve shown
that whenever 𝑤, 𝑔 ▷ 𝑤′, 𝑔′, then 𝔐, 𝑤′, 𝑔′ ⊩ 𝐵. By definition 2.9, this means
that 𝔐, 𝑤, 𝑔 ⊩ □𝐵.
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3.1 FK, QK, and N+K
Until chapter 7, we are now going to limit ourselves to functional counterpart struc-
tures, where an individual never has multiple counterparts at the same world relative
to the same counterpart relation. Among functional structures, we distinguish be-
tween single-domain structures, total structures, and classical structures. Classical
structures are both single-domain and total. The aim of this chapter is to describe
the logics determined by these three types of structures.

In this context, a logic (or system) is simply a set of formulas that I will describe
by recursive clauses corresponding to the axioms and rules of a “Hilbert-style” cal-
culus. The logic of classical structures simply combines standard axioms and rules
of classical first-order logic with those of the minimal normal modal logic K. The
logic of total (functional) structures weakens the first-order component to standard
positive free logic. For single-domain structures, we’ll need an extension of negative
free logic.

Standard (non-modal) positive free logic can be defined as the smallest set of
formulas 𝐿 that contains

(Taut) all propositional tautologies

as well as all instances of the axiom schemas

(VQ) 𝐴 ⊃ ∀𝑥𝐴 provided 𝑥 is not free in 𝐴,

(UD) ∀𝑥(𝐴 ⊃ 𝐵) ⊃ (∀𝑥𝐴 ⊃ ∀𝑥𝐵),
(FUI) ∀𝑥𝐴 ⊃ (𝐸!𝑡 ⊃ [𝑡/𝑥]𝐴),
(∀E!) ∀𝑥𝐸!𝑥,

(=R) 𝑥 = 𝑥,
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(LL) 𝑠=𝑡 ⊃ (𝐴 ⊃ [𝑠/𝑡]𝐵),

and that is closed under modus ponens, universal generalisation, and first-order sub-
stitution:

(MP) if ⊢𝐿 𝐴 and ⊢𝐿 𝐴 ⊃ 𝐵, then ⊢𝐿 𝐵,

(UG) if ⊢𝐿 [𝑡/𝑥]𝐴, then ⊢𝐿 ∀𝑥𝐴,

(Sub) if ⊢𝐿 𝐴, then ⊢𝐿 [𝑦/𝑥]𝐴.

(See, for example, [Nolt 2021] and [Lambert 2017: 265ff.] for variations.)
Here, ⊢𝐿 𝐴 means 𝐴 ∈ 𝐿. 𝐸!𝑥 abbreviates ‘∃𝑦 𝑥 =𝑦’, where 𝑦 is the alphabetically

first variable other than 𝑥. [𝑡/𝑥]𝐴 is the result of substituting all occurrences of 𝑥 in
𝐴 by 𝑡, possibly renaming bound variables to prevent capturing.

Classical logic is obtained by omitting (∀E!) and replacing (FUI) with

(UI) ∀𝑥𝐴 ⊃ [𝑡/𝑥]𝐴.

[Nolt 2021] uses the same axiomatization except that (a) the system is re-
stricted to closed formulas, and (b) (LL) and (Sub) are replaced by the more
standard “partial” formulation of Leibniz’s Law, which is equivalent to the
double-substitution formulation

𝑠=𝑡 ⊃ ([𝑠/𝑥]𝐴 ⊃ [𝑡/𝑥]𝐵).

I should probably change my axiomatization in accordance with (b). (With
my version of (LL), (Sub) is needed to derive 𝑥 =𝑦 ⊃ (𝑥 =𝑥 ⊃ 𝑦=𝑥).) I could
also adopt (a), at the cost of making comparisons with other treatments in the
literature harder.

The minimal normal propositional modal logic K is standardly axiomatized by
(Taut), the axiom schema

(K) □(𝐴 ⊃ 𝐵) ⊃ (□𝐴 ⊃ □𝐵)

and the “necessitation” rule

(Nec) if ⊢𝐿 𝐴, then ⊢𝐿 □𝐴.
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I will use the label ‘FK’ (for “free K”) for the logic that combines the axioms
and rules of positive free logic with those of K. Thus FK is the smallest set 𝐿 that
contains all 𝔏-instances of (Taut), (VQ), (UD), (FUI), (∀E!), (=R), (LL), and (K)
and that is closed under (MP), (UG), and (Nec).

QK (for “quantified K”) is the union of classical predicate logic and L, axiomatized
by (Taut), (VQ), (UD), (UI), (=R), (LL), (K), (MP), (UG), and (Nec).

Standard negative free logic replaces (=R) and (∀E!) with (∀=R) and (Neg):

(∀=R) ∀𝑥(𝑥 =𝑥),
(Neg) 𝑃𝑥1 … 𝑥𝑛 ⊃ 𝐸!𝑥1 ∧ … ∧ 𝐸!𝑥𝑛.

This system, combined with K, is not complete with respect to all single-domain
(functional) counterpart structures, where counterpart relations (and assignments)
are allowed to be partial. The complete logic of these structures has two further
axiom schemas:

(NA) ¬𝐸!𝑡 ⊃ □¬𝐸!𝑡,
(TE) 𝑠=𝑡 ⊃ □(𝐸!𝑠 ⊃ 𝐸!𝑡).

I will use ‘NK’ for the system axiomatized by (Taut), (UD), (VQ), (FUI), (Neg),
(LL), (∀=R), (K), (NA), (TE), (MP), (UG), and (Nec).

(NA) reflects the fact that non-existent objects don’t have any counterparts: if 𝑔(𝑡)
is undefined and we shift the point of evaluation to another world, then 𝑔(𝑡) will still
be undefined.

(TE) says that if 𝑠 is identical to 𝑡, and 𝑠 has a counterpart at some accessible
world, then 𝑡 also has a counterpart at that world. If we had outer domains, an in-
dividual could have some existing and some non-existing counterparts at a world,
which would render (TE) false.

(NA) should not be confused with the claim that no individual exists at an acces-
sible world that isn’t a counterpart of something at the present world. This is rather
expressed by the Barcan Formula,

(BF) ∀𝑥□𝐴 ⊃ □∀𝑥𝐴.

The Barcan Formula is not valid in the class of single-domain models with partial
counterpart relations (and partial assignments). For example, if 𝑊 = {𝑤, 𝑤′}, 𝑤𝑅𝑤′,
𝐷𝑤 = ∅ and 𝐷𝑤′ = {0}, then ∀𝑥□𝑥 ≠𝑥 is true at 𝑤 but □∀𝑥 𝑥 ≠𝑥 is false.
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We could provide a semantics for negative modal predicate logics without (NA)
and (TE). The relevant models would be dual-domain models in which the extension
of all predicates, including identity, is restricted to the inner domain. (NA) then
requires that individuals which only figure in the outer domain of a world never have
counterparts in the inner domain of another world. (TE) requires that if an individual
in the inner domain of a world has a counterpart in the inner domain of another world,
then all its counterparts at that world are in its inner domain. The two requirements
are obviously independent and non-trivial. Hence the axioms (NA) and (TE) are
independent of one another, and of the system that combines negative free logic
with K.

3.2 Substitution

The axiomatizations in the previous section involve the substitution operation [𝑦/𝑥].
This operation will become important, so let me say a little more about it.

Consider “universal instantiation”:

(UI) ∀𝑥𝐴 ⊃ [𝑡/𝑥]𝐴.

Informally, we want to allow the inference from ∀𝑥∃𝑦𝐺𝑥𝑦 to ∃𝑦𝐺𝑧𝑦 but not to ∃𝑦𝐺𝑦𝑦:
in the second inference, the variable 𝑦 that is substituted for 𝑥 in ∃𝑦𝐺𝑥𝑦 gets “cap-
tured” by the quantifier ∃𝑦. There are three common strategies to rule out such
unwanted instances of (UI).

First, we could require that the substituted term is an individual constant. Con-
stants can’t be bound and thus can’t be captured. This evidently assumes that the
language contains individual constants.

A second strategy is to restrict principles like (UI) to cases where the substituted
term 𝑡 is “free (to be substituted) for 𝑥 in 𝐴”, meaning that there is no free occurrence
of 𝑥 in 𝐴 that falls in the scope of a quantifier binding 𝑡.

The third option is to redefine the substitution operation so that it renames bound
variables in cases where the substituted term is not free for 𝑥 in 𝐴. This is the option
I have chosen, although the others would have worked as well.

I haven’t explained how exactly the redefined substitution operation works. There
are a number of options. What’s important is that the operation satisfies the following
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condition, known as the “substitution lemma”.

𝑔 ⊩ [𝑦/𝑥]𝐴 iff 𝑔[𝑦/𝑥] ⊩ 𝐴,

Here, 𝑔[𝑦/𝑥] is the 𝑥-variant of 𝑔 with 𝑔[𝑦/𝑥](𝑥) = 𝑔(𝑦). Informally, the substitution
lemma ensures that [𝑦/𝑥]𝐴 “says about 𝑦” what 𝐴 says about 𝑥.

Later, we’ll sometimes want to substitute multiple variables at once. I will there-
fore define substitutions as (total) functions 𝜎 from Var to Var. The substitution
lemma now requires that

𝑔 ⊩ 𝜎(𝐴) iff 𝑔 ∘ 𝜎 ⊩ 𝐴,
where 𝑔 ∘ 𝜎 is the assignment that maps any variable 𝑥 to 𝑔(𝜎(𝑥)). The following
definition does the job.

Definition 3.1 (Substitution).
A substitution (on a set of terms Var) is a total function 𝜎 ∶ Var → Var. Ap-
plication of a substitution 𝜎 to a formula 𝐴 is defined as follows.

𝜎(𝑃𝑥1 … 𝑥𝑛) = 𝑃𝜎(𝑥1) … 𝜎(𝑥𝑛)
𝜎(¬𝐴) = ¬𝜎(𝐴)
𝜎(𝐴 ⊃ 𝐵) = 𝜎(𝐴) ⊃ 𝜎(𝐵)

𝜎(∀𝑧𝐴) =
⎧{
⎨{⎩
∀𝑣𝜎𝑣↦𝑣([𝑣/𝑧]𝐴) if there is an 𝑥 ∈ FV(∀𝑧𝐴) with 𝜎(𝑥) = 𝜎(𝑧)
∀𝜎(𝑧)𝜎(𝐴) otherwise,

where 𝑣 is the alphabetically first variable not in FV(𝜎(𝐴)) ∪
FV(𝐴) and 𝜎𝑣↦𝑣 is the substitution that maps 𝑣 to 𝑣 and other-
wise coincides with 𝜎.

𝜎(□𝐴) = □𝜎(𝐴).

To save space, I will sometimes write ‘𝜙𝜎’ instead of ‘𝜎(𝜙)’.
We define [𝑡/𝑥] as the substitution 𝜎 that maps 𝑥 to 𝑡 and every other variable to

itself (Note that 𝑔[𝑦/𝑥] = 𝑔 ∘ [𝑦/𝑥].) More generally, [𝑡1 … 𝑡𝑛/𝑠1 … 𝑠𝑛] is the substi-
tution 𝜎 that maps 𝑠𝑖 to 𝑡𝑖 (for 1 ≤ 𝑖 ≤ 𝑛) and every other variable to itself.
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Lemma 3.1 (Substitution lemma).
For any functional counterpart model 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩, world 𝑤 ∈ 𝑊 ,
assignment 𝑔 on 𝑈𝑤, 𝔏-formula 𝐴, and substitution 𝜎,

𝔐, 𝑤, 𝑔 ∘ 𝜎 ⊩ iff 𝔐, 𝑤, 𝑔 ⊩ 𝜎(𝐴).

Proof. By induction on 𝐴.

1. 𝐴 is 𝑃𝑥1 … 𝑥𝑛. 𝔐, 𝑤, 𝑔 ∘ 𝜎 ⊩ 𝑃𝑥1 … 𝑥𝑛 iff (𝑔 ∘ 𝜎)(𝑥1) … (𝑔 ∘ 𝜎)(𝑥𝑛) ∈
𝐼(𝑃) (by definition 2.9), iff 𝑔(𝜎(𝑥1)) … 𝑔(𝜎(𝑥𝑛)) ∈ 𝐼(𝑃), iff 𝔐, 𝑤, 𝑔 ⊩
𝑃(𝜎(𝑥1)) … (𝜎(𝑥𝑛)) (by definition 2.9), iff 𝔐, 𝑤, 𝑔 ⊩ 𝜎(𝑃𝑥1 … 𝑥𝑛) (by
definition 3.1).

2. 𝐴 is ¬𝐵. 𝔐, 𝑤, 𝑔 ∘ 𝜎 ⊩ ¬𝐵 iff 𝔐, 𝑤, 𝑔 ∘ 𝜎 ⊮ 𝐵 by definition 2.9, iff
𝔐, 𝑤, 𝑔 ⊮ 𝜎(𝐵) by induction hypothesis, iff 𝔐, 𝑤, 𝑔 ⊩ ¬𝜎(𝐵) by defini-
tion 2.9, iff 𝔐, 𝑤, 𝑔 ⊩ 𝜎(¬𝐵) by definition 3.1.

3. 𝐴 is 𝐵 ⊃ 𝐶. Analogous to the previous case.

4. 𝐴 is ∀𝑧𝐵. By definition 2.9, 𝔐, 𝑤, 𝑔 ∘ 𝜎 ⊩ ∀𝑧𝐵 iff 𝔐, 𝑤, (𝑔 ∘ 𝜎)𝑧↦𝑑 ⊩ 𝐵
for all 𝑑 ∈ 𝐷𝑤.

Assume first that there is an 𝑥 ∈ FV(∀𝑧𝐵) with 𝜎(𝑥) = 𝜎(𝑧), so that
𝜎(∀𝑧𝐵) = ∀𝑣𝜎𝑣↦𝑣([𝑣/𝑧]𝐵), where 𝑣 ∉ FV(𝐵) ∪ FV(𝜎(𝐵)).
By definition 2.9, 𝔐, 𝑤, 𝑔 ⊩ ∀𝑣𝜎𝑣↦𝑣([𝑣/𝑧]𝐵) iff 𝔐, 𝑤, 𝑔𝑣↦𝑑 ⊩ 𝜎𝑣↦𝑣([𝑣/𝑧]𝐵)
for all 𝑑 ∈ 𝐷𝑤. Let 𝑑 be any element of 𝐷𝑤. By induction hypoth-
esis, 𝔐, 𝑤, 𝑔𝑣↦𝑑 ⊩ 𝜎𝑣↦𝑣([𝑣/𝑧]𝐵) iff 𝔐, 𝑤, 𝑔𝑣↦𝑑 ∘ 𝜎𝑣↦𝑣 ⊩ [𝑣/𝑧]𝐵, iff
𝔐, 𝑤, 𝑔𝑣↦𝑑 ∘ 𝜎𝑣↦𝑣 ∘ [𝑣/𝑧] ⊩ 𝐵.

Let 𝑔∗ be 𝑔𝑣↦𝑑 ∘ 𝜎𝑣↦𝑣 ∘ [𝑣/𝑧]. Observe that for any variable 𝑥,

𝑔∗(𝑥) =
⎧{
⎨{⎩
𝑑 if (𝜎𝑣↦𝑣 ∘ [𝑣/𝑧])(𝑥) = 𝑣,
𝑔(𝜎(𝑥)) otherwise.

The first case, (𝜎𝑣↦𝑣 ∘ [𝑣/𝑧])(𝑥) = 𝑣, can arise in three ways: (i) 𝑥 = 𝑧
or (ii) 𝑥 = 𝑣 or (iii) 𝜎(𝑥) = 𝑣. We know that 𝑣 has no free occurrence in
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𝐵. Neither does any variable 𝑥 for which 𝜎(𝑥) = 𝑣, as otherwise 𝑣 would
be in FV(𝜎(𝐵)). (Substitutions never rename free variables. So if 𝑥 ∈
FV(𝐵), then 𝜎(𝑥) ∈ FV(𝜎(𝐵)).) Cases (ii) or (iii) therefore cannot arise
for 𝑥 ∈ FV(𝐵). Thus 𝑔∗(𝑥) = (𝑔 ∘ 𝜎)𝑧↦𝑑(𝑥) for all 𝑥 ∈ FV(𝐵). By the
locality lemma 2.2, it follows that 𝔐, 𝑤, 𝑔∗ ⊩ 𝐵 iff 𝔐, 𝑤, (𝑔 ∘ 𝜎)𝑧↦𝑑 ⊩ 𝐵.

So we have 𝔐, 𝑤, 𝑔 ⊩ ∀𝑣𝜎𝑣↦𝑣([𝑣/𝑧]𝐵) iff 𝔐, 𝑤, (𝑔 ∘ 𝜎)𝑧↦𝑑 ⊩ 𝐵 for all
𝑑 ∈ 𝐷𝑤, iff 𝔐, 𝑤, 𝑔 ∘ 𝜎 ⊩ ∀𝑧𝐵.

Next, assume that there is no 𝑥 ∈ FV(∀𝑧𝐵) with 𝜎(𝑥) = 𝜎(𝑧), so that
𝜎(∀𝑧𝐵) = ∀𝜎(𝑧)𝜎(𝐵).
By definition 2.9, 𝔐, 𝑤, 𝑔 ⊩ ∀𝜎(𝑧)𝜎(𝐵) iff 𝔐, 𝑤, 𝑔𝜎(𝑧)↦𝑑 ⊩ 𝜎(𝐵) for
all 𝑑 ∈ 𝐷𝑤. Let 𝑑 be any element of 𝐷𝑤. By induction hypothesis,
𝔐, 𝑤, 𝑔𝜎(𝑧)↦𝑑 ⊩ 𝜎(𝐵) iff 𝔐, 𝑤, 𝑔𝜎(𝑧)↦𝑑 ∘ 𝜎 ⊩ 𝐵. Now for any variable
𝑥,

(𝑔𝜎(𝑧)↦𝑑 ∘ 𝜎)(𝑥) =
⎧{
⎨{⎩
𝑑 if𝜎(𝑥) = 𝜎(𝑧),
𝑔(𝜎(𝑥)) otherwise.

By assumption, there is no variable 𝑥 besides 𝑧 in FV 𝐵 for which 𝜎(𝑥) =
𝜎(𝑧). So 𝑔𝜎(𝑧)↦𝑑 ∘ 𝜎 and (𝑔 ∘ 𝜎)𝑧↦𝑑 agree for all 𝑥 ∈ FV(𝐵). As before,
it follows that 𝔐, 𝑤, 𝑔 ⊩ ∀𝜎(𝑧)𝜎(𝐵) iff 𝔐, 𝑤, 𝑔 ∘ 𝜎 ⊩ ∀𝑧𝐵.

5. 𝐴 is □𝐵. 𝔐, 𝑤, 𝑔 ∘ 𝜎 ⊩ □𝐵 iff 𝔐, 𝑤′, 𝐶 ∘ 𝑔 ∘ 𝜎 ⊩ 𝐵 for all 𝐶 ∈ 𝐾𝑤,𝑤′

by lemma 2.1, iff 𝔐, 𝑤′, 𝐶 ∘ 𝑔 ⊩ 𝜎(𝐵) for all 𝐶 ∈ 𝐾𝑤,𝑤′ by induction
hypothesis, iff 𝔐, 𝑤, 𝑔 ⊩ □𝜎(𝐵) by lemma 2.1, iff 𝔐, 𝑤, 𝑔 ⊩ 𝜎(□𝐵) by
definition 3.1.

The restriction to functional models is crucial. As we’ll see in section 7.2, the
substitution lemma does not hold in non-functional models.

3.3 Soundness of the base logics

Let’s show that all theorems of FK are valid on every functional counterpart structure.
As usual, validity means truth at all points of evaluation under all interpretations.
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We don’t want any (genuinely) empty terms in FK (or QK), so we ignore points of
evaluation 𝑤, 𝑔 whose assignment 𝑔 is not total.

Definition 3.2 (Validity).
An 𝔏-formula 𝐴 is valid on a counterpart structure 𝔖 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩ iff
𝔖, 𝐼, 𝑤, 𝑔 ⊩ 𝐴 for all interpretations 𝐼 on 𝔖, all worlds 𝑤 in 𝑊 , and all total
assignments 𝑔 on 𝑈𝑤.

We first prove a lemma about existence.

Lemma 3.2.
For any counterpart model 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩, world 𝑤 ∈ 𝑊 , assign-
ment 𝑔 on 𝑈𝑤, and term 𝑡,

𝔐, 𝑤, 𝑔 ⊩ 𝐸!𝑡 iff 𝑔(𝑡) ∈ 𝐷𝑤.

Proof. Since 𝐸!𝑡 is shorthand for ∃𝑥 𝑥 =𝑡, definition 2.9 implies that 𝔐, 𝑤, 𝑔 ⊩
𝐸!𝑥 iff there is a 𝑑 ∈ 𝐷𝑤 for which 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝑥 =𝑡 and thus ⟨𝑔𝑥↦𝑑(𝑥), 𝑔𝑥↦𝑑(𝑡)⟩ ∈
𝐼𝑤(=). Since 𝑥 and 𝑡 are distinct, 𝑔𝑥↦𝑑(𝑥) = 𝑑 and 𝑔𝑥↦𝑑(𝑡) = 𝑔(𝑡). By defini-
tion 2.4, ⟨𝑑, 𝑔(𝑥)⟩ ∈ 𝐼𝑤(=) iff 𝑑 = 𝑔(𝑥). So 𝔐, 𝑤, 𝑔 ⊩ 𝐸!𝑡 iff there is a 𝑑 ∈ 𝐷𝑤
for which 𝑑 = 𝑔(𝑡).

Lemma 3.3 (Soundness of the FK axioms).
Every instance of (Taut), (VQ), (UD), (FUI), (∀E!), (=R), (LL), and (K)
is valid on every total functional counterpart structure.

Proof. Let 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ be any total functional counterpart model,
𝑤 a world in 𝑊 , and 𝑔 a (total) assignment on 𝑈𝑤. We show that 𝔐, 𝑤, 𝑔 ⊩ 𝐴
for every instance 𝐴 of every axiom.

1. (Taut). Propositional tautologies are true at every point of evaluation due
to the standard rules for ¬𝐴 and 𝐴 ⊃ 𝐵 in definition 2.9.
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2. (VQ). Suppose for reductio that 𝔐, 𝑤, 𝑔 ⊮ 𝐴 ⊃ ∀𝑥𝐴. By definition 2.9,
this means that 𝔐, 𝑤, 𝑔 ⊩ 𝐴 and 𝔐, 𝑤, 𝑔 ⊮ ∀𝑥𝐴. The latter means that
𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊮ 𝐴 for some 𝑑 ∈ 𝐷𝑤. Since 𝑥 is not free in 𝐴, it follows by
the locality lemma 2.2 that 𝔐, 𝑤, 𝑔 ⊮ 𝐴. Contradiction.

3. (UD). Assume 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥(𝐴 ⊃ 𝐵) and 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐴. By def-
inition 2.9, then 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐴 ⊃ 𝐵 and 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐴 for ev-
ery 𝑑 ∈ 𝐷𝑤, wherefore 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐵 for every 𝑑 ∈ 𝐷𝑤, and so
𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐵.

4. (FUI). Assume 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐴 and 𝔐, 𝑤, 𝑔 ⊩ 𝐸!𝑡. By lemma 3.2, the
latter means that 𝑔(𝑡) ∈ 𝐷𝑤. By definition 2.9, the former means that
𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐴 for every 𝑑 ∈ 𝐷𝑤. So in particular, 𝔐, 𝑤, 𝑔𝑥↦𝑔(𝑡) ⊩ 𝐴.
Since 𝑔𝑥↦𝑔(𝑡) = 𝑔[𝑡/𝑥], it follows by lemma 3.1 that 𝔐, 𝑤, 𝑔 ⊩ [𝑡/𝑥]𝐴.

5. (∀E!). 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐸!𝑥 iff 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐸!𝑥 for every 𝑑 ∈ 𝐷𝑤 by
definition 2.9, iff 𝑔𝑥↦𝑑(𝑥) ∈ 𝐷𝑤 for every 𝑑 ∈ 𝐷𝑤 by lemma 3.2. Since
𝑔𝑥↦𝑑(𝑥) = 𝑑, this is always the case.

6. (=R). By definition 2.4, 𝐼𝑤 = {⟨𝑑, 𝑑 ⟩ ∶ 𝑑 ∈ 𝑈𝑤}. Since 𝑔(𝑡) ∈ 𝑈𝑤, it
follows by definition 2.9 that 𝔐, 𝑤, 𝑔 ⊩ 𝑡 =𝑡.

7. (LL). Assume 𝔐, 𝑤, 𝑔 ⊩ 𝑠 = 𝑡 and 𝔐, 𝑤, 𝑔 ⊩ 𝐴. By definitions 2.9
and 2.4, the former implies that 𝑔(𝑠) = 𝑔(𝑡). So 𝑔[𝑠/𝑡] = 𝑔. Since
𝔐, 𝑤, 𝑔 ⊩ 𝐴, we have 𝔐, 𝑤, 𝑔[𝑠/𝑡] ⊩ 𝐴. By the substitution lemma 3.1,
it follows that 𝔐, 𝑤, 𝑔 ⊩ [𝑠/𝑡]𝐴.

8. (K). Assume 𝔐, 𝑤, 𝑔 ⊩ □(𝐴 ⊃ 𝐵) and 𝔐, 𝑤, 𝑔 ⊩ □𝐴. By definition 2.9,
this means that for all 𝑤′, 𝑔′ such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′, 𝔐, 𝑤′, 𝑔′ ⊩ 𝐴 ⊃ 𝐵
and 𝔐, 𝑤′, 𝑔′ ⊩ 𝐴 It follows by the clause for ⊃ in definition 2.9 that
𝔐, 𝑤′, 𝑔′ ⊩ 𝐵 for all such 𝑤′, 𝑔′. And so 𝔐, 𝑤, 𝑔 ⊩ □𝐵 by the clause for
the box.
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Lemma 3.4 (Soundness of the FK rules).
If all elements of a set of formulas Γ are valid on a counterpart structure 𝔖,
and Γ is extended by (MP), (UG), (Nec), or (Sub), then the new sentences
are still valid on 𝔖.

Proof.
1. (MP). Assume that 𝐴 and 𝐴 ⊃ 𝐵 are in Γ. By definition 2.9, this means

that 𝔐, 𝑤, 𝑔 ⊩ 𝐴 and 𝔐, 𝑤, 𝑔 ⊩ 𝐴 ⊃ 𝐵 for every 𝔐, 𝑤, 𝑔 based on 𝔖.
Then 𝔐, 𝑤, 𝑔 ⊩ 𝐵 for every such 𝔐, 𝑤, 𝑔, by definition 2.9.

2. (UG). We argue by contraposition. Assume that 𝔐, 𝑤, 𝑔 ⊮ ∀𝑥𝐴 for
some 𝔐, 𝑤, 𝑔 based on 𝔖. Then 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊮ 𝐴 for some 𝑑 ∈ 𝐷𝑤, by
definition 2.9. So 𝐴 is not valid on 𝔖.

3. (Nec). Again, we argue by contraposition. Assume that 𝔐, 𝑤, 𝑔 ⊮ □𝐴
for some 𝔐, 𝑤, 𝑔 based on 𝔖. Then 𝔐, 𝑤′, 𝑔′ ⊮ 𝐴 for some 𝑤′, 𝑔′ with
𝑤, 𝑔 ▷ 𝑤′, 𝑔′, by definition 2.9. So 𝐴 is not valid on 𝔖.

4. (Sub). For contraposition, assume that 𝔐, 𝑤, 𝑔 ⊮ 𝜎(𝐴) for some 𝔐, 𝑤, 𝑔
based on 𝔖. By the substitution lemma 3.1, 𝔐, 𝑤, 𝑔 ∘ 𝜎 ⊮ 𝐴. Since 𝑔 ∘ 𝜎
is an assignment on 𝑈𝑤, this means that 𝐴 is not valid in Σ.

Theorem 3.5 (Soundness of FK).
Every member of FK is valid on every total functional counterpart structure.

Proof. Immediate from lemmas 3.3 and 3.4.

Lemma 3.6 (Soundness of (UI)).
Every instance of (UI) is valid on every classical counterpart structure.
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Proof. Recall that a structure is classical if it is total, functional, and single-
domain, so that 𝐷𝑤 = 𝑈𝑤 for all 𝑤 ∈ 𝑊 .

Assume 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐴. By definition 2.9, 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐴 for every 𝑑 ∈
𝐷𝑤. Since 𝑔 is total, 𝑔(𝑡) ∈ 𝑈𝑤. So 𝑔(𝑡) ∈ 𝐷𝑤. And so 𝔐, 𝑤, 𝑔𝑥↦𝑔(𝑡) ⊩ 𝐴.
Since 𝑔𝑥↦𝑔(𝑡) = 𝑔[𝑡/𝑥], it follows by lemma 3.1 that 𝔐, 𝑤, 𝑔 ⊩ [𝑡/𝑥]𝐴.

Theorem 3.7 (Soundness of QK).
Every member of QK is valid on every classical counterpart structure.

Proof. Immediate from lemmas 3.3, 3.4 and 3.6.

For negative logics, we redefine the concept of validity. We want to allow for
terms that go genuinely empty. So assignment functions can be partial.

Definition 3.3 (N-Validity).
An 𝔏-formula 𝐴 is n-valid on a counterpart structure 𝔖 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩ iff
𝔖, 𝐼, 𝑤, 𝑔 ⊩ 𝐴 for all interpretations 𝐼 on 𝔖, all worlds 𝑤 in 𝑊 , and all partial
assignments 𝑔 on 𝑈𝑤.

Lemma 3.8 (Soundness of the NK axioms).
Every instance of (Taut), (VQ), (UD), (FUI), (Neg), (∀=R), (LL), (NA),
(TE), and (K) is N-valid on every single-domain functional counterpart struc-
ture.

Proof. Let 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ be any single-domain functional counter-
part model, 𝑤 a world in 𝑊 , and 𝑔 an assignment on 𝑈𝑤.

We show that 𝔐, 𝑤, 𝑔 ⊩ 𝐴 for every instance 𝐴 of every axiom. The proofs for
(Taut), (VQ), (UD), (FUI), (LL), and (K) are just as in the proof of lemma 3.3.
Let’s go through the remaining cases.

• (Neg). Assume 𝔐, 𝑤, 𝑔 ⊩ 𝑃𝑥1 … 𝑥𝑛. By definition 2.4, 𝐼(𝑃) ⊆ 𝑈𝑛𝑤. Since
𝐷 = 𝑈, we have 𝐼(𝑃) ⊆ 𝐷𝑛𝑤. By definition 2.9, ⟨𝑔(𝑥1), … , 𝑔(𝑥𝑛)⟩ ∈ 𝐼(𝑃). So
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𝑔(𝑥𝑖) ∈ 𝐷𝑤 for all 𝑥𝑖 ∈ 𝑥1, … , 𝑥𝑛. So 𝔐, 𝑤, 𝑔 ⊩ 𝐸!𝑥1 ∧ … ∧ 𝐸!𝑥𝑛 by lemma
3.2.

• (∀=R). By definition 2.9, 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥 𝑥 = 𝑥 iff 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝑥 = 𝑥 for all
𝑑 ∈ 𝐷𝑤, which in turns holds iff ⟨𝑔𝑥↦𝑑(𝑥), 𝑔𝑥↦𝑑(𝑥)⟩ ∈ 𝐼(=) for all 𝑑 ∈ 𝐷𝑤.
This is always the case by definition 2.4.

• (NA). Assume 𝔐, 𝑤, 𝑔 ⊩ ¬𝐸!𝑥. By definition 2.9, this means that 𝑔(𝑥) ∉
𝐷𝑤. Since 𝐷 = 𝑈, 𝑔(𝑥) must be undefined. In that case, there is no world
𝑤′, individual 𝑑 and counterpart relation 𝐶 ∈ 𝐾𝑤,𝑤′ such that 𝑔(𝑥)𝐶𝑑. Thus
whenever 𝑤, 𝑔 ▷ 𝑤′, 𝑔′, then 𝑔′(𝑥) is undefined, by definition 2.8, By lemma
3.2, 𝔐, 𝑤′, 𝑔′ ⊩ □¬𝐸!𝑥 if 𝑔′(𝑥) is undefined. So 𝔐, 𝑤, 𝑔 ⊩ □¬𝐸!𝑥 by
definition 2.9.

• (TE). Assume 𝔐, 𝑤, 𝑔 ⊩ 𝑥 = 𝑦. Then 𝑔(𝑥) = 𝑔(𝑦) by definitions 2.4 and
2.9. Let 𝑤′, 𝑔′ be such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′ and 𝔐, 𝑤′, 𝑔′ ⊩ 𝐸!𝑥. We have
𝑔′(𝑥) ∈ 𝐷𝑤′ by lemma 3.2. By definition 2.8, 𝑤, 𝑔 ▷ 𝑤′, 𝑔′ means that there
is a 𝐶 ∈ 𝐾𝑤,𝑤′ such that 𝑔(𝑥)𝐶𝑔′(𝑥). So there is a 𝑑 ∈ 𝐷𝑤′ (namely, 𝑔′(𝑥))
for which 𝑔(𝑦)𝐶𝑑. By definition 2.8, it follows that 𝑔′(𝑦) can’t be undefined.
So 𝑔′(𝑦) ∈ 𝑈𝑤′ , and so 𝑔′(𝑦) ∈ 𝐷𝑤′ because 𝑈 = 𝐷. By lemma 3.2, it
follows that 𝑤′, 𝑔′ ⊩ 𝐸!𝑦.

Theorem 3.9 (Soundness of NK).
Every member of NK is N-valid on every single-domain functional counter-
part structure.

Proof. Immediate from lemmas 3.8 and 3.4.

3.4 Some consequences

In this section, I will prove a few consequences of the above axiomatizations. Some
of these will be needed in the completeness proofs. The consequences hold not only
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for the base logics, but also for extensions of the base logics. We define two types
of extension.

Definition 3.4 (Positive logics).
A set of 𝔏-sentences is a positive logic if it includes FK and is closed under
(MP), (UG), (Nec) and (Sub).

Definition 3.5 (Negative logics).
A set of 𝔏-sentences is a negative logic if it includes NK and is closed under
(MP), (UG), (Nec) and (Sub).

These definitions allow for “logics” in which (say) 𝐹1𝑥 is a theorem but not 𝐹2𝑥.
A genuine logic should also satisfy some second-order closure condition, but we will
not worry about that here.

From now on, let 𝐿 be an arbitrary positive or negative logic, in the sense of the
above definitions.

Lemma 3.10 (Closure under propositional consequence).
For all 𝔏-formulas 𝐴1, … , 𝐴𝑛, 𝐵,

(PC) if ⊢𝐿 𝐴1, …, ⊢𝐿 𝐴𝑛, and 𝐵 is a propositional consequence of
𝐴1, … , 𝐴𝑛, then ⊢𝐿 𝐵.

Proof. If 𝐵 is a propositional consequence of 𝐴1, … , 𝐴𝑛, then 𝐴1 ⊃ (… ⊃
(𝐴𝑛 ⊃ 𝐵) …) is a tautology. So by (Taut), ⊢𝐿 𝐴1 ⊃ (… ⊃ (𝐴𝑛 ⊃ 𝐵) …). If
⊢𝐿 𝐴1, … , ⊢𝐿 𝐴𝑛, then by 𝑛 applications of (MP), ⊢𝐿 𝐵.

When giving proofs, I will often omit reference to (PC).

Lemma 3.11 (Redundant axioms).
For any 𝔏-formulas 𝐴 and variables 𝑥,

(∀E!) ⊢𝐿 ∀𝑥𝐸!𝑥,
(∀=R) ⊢𝐿 ∀𝑥(𝑥 =𝑥).
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Proof. If 𝐿 is positive, then (∀E!) is an axiom. In N, we have ⊢𝐿 𝑥 = 𝑥 ⊃ 𝐸!𝑥
by (Neg); so by (UG) and (UD), ⊢𝐿 ∀𝑥(𝑥 = 𝑥) ⊃ ∀𝑥𝐸!𝑥. Since ⊢𝐿 ∀𝑥(𝑥 = 𝑥)
by (=R), ⊢𝐿 ∀𝑥𝐸!𝑥.

If 𝐿 is negative, then (∀=R) is an axiom. In P, we have ⊢𝐿 𝑥 = 𝑥 by (=R),
and so (∀=R) by (UG).

Lemma 3.12 (Existence and self-identity).
If 𝐿 is negative, then for any 𝔏-variable 𝑥,

(EI) ⊢𝐿 𝐸!𝑥 ↔ 𝑥 =𝑥;

Proof. By (FUI), ⊢𝐿 ∀𝑥(𝑥 =𝑥) ⊃ (𝐸!𝑥 ⊃ 𝑥 =𝑥). By (∀=R), ⊢𝐿 ∀𝑥(𝑥 =𝑥). So
⊢𝐿 𝐸!𝑥 ⊃ 𝑥 =𝑥. Conversely, 𝑥 =𝑥 ⊃ 𝐸!𝑥 by (Neg).

Lemma 3.13 (Symmetry and transitivity of identity).
For any 𝔏-variables 𝑥, 𝑦, 𝑧,

(=S) ⊢𝐿 𝑥 =𝑦 ⊃ 𝑦=𝑥;

(=T) ⊢𝐿 𝑥 =𝑦 ⊃ 𝑦=𝑧 ⊃ 𝑥 =𝑧.

Proof. For (= S), let 𝑣 be some variable ∉ {𝑥, 𝑦}. Then

1. ⊢𝐿 𝑣=𝑦 ⊃ (𝑣=𝑥 ⊃ 𝑦=𝑥). (LL)
2. ⊢𝐿 𝑥 =𝑦 ⊃ (𝑥 =𝑥 ⊃ 𝑦=𝑥). (1, (Sub))
3. ⊢𝐿 𝑥 =𝑦 ⊃ 𝑥 =𝑥. ((=R), or (Neg) and (∀=R))
4. ⊢𝐿 𝑥 =𝑦 ⊃ 𝑦=𝑥. (2, 3)
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For (= T),

1. ⊢𝐿 𝑥 =𝑦 ⊃ 𝑦=𝑥. (=S)
2. ⊢𝐿 𝑦=𝑥 ⊃ (𝑦=𝑧 ⊃ 𝑥 =𝑧). (LL)
3. ⊢𝐿 𝑥 =𝑦 ⊃ (𝑦=𝑧 ⊃ 𝑥 =𝑧). (1, 2)

Lemma 3.14 (Necessity of identity).
For any 𝔏-variables 𝑥, 𝑦,

(NI) 𝑥 =𝑦 ⊃ □(𝑥 =𝑥 ⊃ 𝑥 =𝑦).

Proof. Let 𝑣 be some variable ∉ {𝑥, 𝑦}. Then

1. ⊢𝐿 𝑣=𝑦 ⊃ □(𝑥 =𝑥 ⊃ 𝑥 =𝑣) ⊃ □(𝑥 =𝑥 ⊃ 𝑥 =𝑦). (LL)
2. ⊢𝐿 𝑥 =𝑦 ⊃ □(𝑥 =𝑥 ⊃ 𝑥 =𝑥) ⊃ □(𝑥 =𝑥 ⊃ 𝑥 =𝑦). (1, (Sub))
3. ⊢𝐿 𝑥 =𝑥 ⊃ 𝑥 =𝑥. (Taut)
4. ⊢𝐿 □(𝑥 =𝑥 ⊃ 𝑥 =𝑥). (3,(Nec))
5. ⊢𝐿 𝑥 =𝑦 ⊃ □(𝑥 =𝑥 ⊃ 𝑥 =𝑦). (2,4)

Finally, we prove that sentences that differ by renaming bound variables are prov-
ably equivalent.

Definition 3.6 (Alphabetic variant).
A formula 𝐴′ is an alphabetic variant of a formula 𝐴 if one of the following
conditions is satisfied.

1. 𝐴 = 𝐴′.

2. 𝐴 = ¬𝐵, 𝐴′ = ¬𝐵′, and 𝐵′ is an alphabetic variant of 𝐵.
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3. 𝐴 = 𝐵 ⊃ 𝐶, 𝐴′ = 𝐵′ ⊃ 𝐶′, and 𝐵′, 𝐶′ are alphabetic variants of 𝐵, 𝐶,
respectively.

4. 𝐴 = ∀𝑥𝐵, 𝐴′ = ∀𝑧[𝑧/𝑥]𝐵′, 𝐵′ is an alphabetic variant of 𝐵, and either
𝑧 = 𝑥 or 𝑧 ∉ Var(𝐵′).

5. 𝐴 = □𝐵, 𝐴′ = □𝐵′, and 𝐵′ is an alphabetic variant of 𝐴′.

Lemma 3.15 (Syntactic alpha-conversion).
If 𝐴, 𝐴′ are 𝔏-formulas, and 𝐴′ is an alphabetic variant of 𝐴, then

(AC) ⊢𝐿 𝐴 ↔ 𝐴′.

Proof. by induction on 𝐴.

1. 𝐴 is atomic. Then 𝐴 = 𝐴′ and 𝐴 ↔ 𝐴′ is a propositional tautology.

2. 𝐴 is ¬𝐵. Then 𝐴′ is ¬𝐵′, where 𝐵′ is an alphabetic variant of 𝐴′. By
induction hypothesis, ⊢𝐿 𝐵 ↔ 𝐵′. So by (PC), ⊢𝐿 ¬𝐵 ↔ ¬𝐵′.

3. 𝐴 is 𝐵 ⊃ 𝐶. Then 𝐴′ is 𝐵′ ⊃ 𝐶′, where 𝐵′, 𝐶′ are alphabetic variants of
𝐵, 𝐶, respectively. By induction hypothesis, ⊢𝐿 𝐵 ↔ 𝐵′ and ⊢𝐿 𝐶 ↔ 𝐶′.
So by (PC), ⊢𝐿 (𝐵 ⊃ 𝐶) ↔ (𝐵′ ⊃ 𝐶′).

4. 𝐴 is ∀𝑥𝐵. Then 𝐴′ is either ∀𝑥𝐵′ or ∀𝑧[𝑧/𝑥]𝐵′, where 𝐵′ is an alphabetic
variant of 𝐵 and 𝑧 ∉ Var(𝐵′). Assume first that 𝐴′ is ∀𝑥𝐵′. By induction
hypothesis, ⊢𝐿 𝐵 ↔ 𝐵′. So by (UG) and (UD), ⊢𝐿 ∀𝑥𝐵 ↔ ∀𝑥𝐵′.

Alternatively, assume 𝐵 is ∀𝑧[𝑧/𝑥]𝐵′ and 𝑧 ∉ Var(𝐵′). Since 𝐵′ differs
from 𝐵 at most in renaming bound variables, if 𝑧 were free in 𝐵, then
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𝑧 ∈ Var(𝐵′). So 𝑧 is not free in 𝐵. Then

1. ⊢𝐿 𝐵 ↔ 𝐵′ (induction hypothesis)
2. ⊢𝐿 [𝑧/𝑥]𝐵 ↔ [𝑧/𝑥]𝐵′ (1, (Sub))
3. ⊢𝐿 ∀𝑥𝐵 ⊃ 𝐸𝑧 ⊃ [𝑧/𝑥]𝐵 (FUI)
4. ⊢𝐿 ∀𝑥𝐵 ⊃ 𝐸𝑧 ⊃ [𝑧/𝑥]𝐵′ (2, 3)
5. ⊢𝐿 ∀𝑧∀𝑥𝐵 ⊃ ∀𝑧𝐸𝑧 ⊃ ∀𝑧[𝑧/𝑥]𝐵′ (4, (UG), (UD))
6. ⊢𝐿 ∀𝑧𝐸𝑧 (∀Ex)
7. ⊢𝐿 ∀𝑧∀𝑥𝐵 ⊃ ∀𝑧[𝑧/𝑥]𝐵′ (5, 6)
8. ⊢𝐿 ∀𝑥𝐵 ⊃ ∀𝑧∀𝑥𝐵 ((VQ), 𝑧 not free in 𝐵)
9. ⊢𝐿 ∀𝑥𝐵 ⊃ ∀𝑧[𝑧/𝑥]𝐵′. (7, 8)

Conversely,

10. ⊢𝐿 ∀𝑧[𝑧/𝑥]𝐵′ ⊃ 𝐸𝑥 ⊃ [𝑥/𝑧][𝑧/𝑥]𝐵′ (FUI)
11. ⊢𝐿 ∀𝑧[𝑧/𝑥]𝐵′ ⊃ 𝐸𝑥 ⊃ 𝐵 (1, 10, 𝑧 ∉ Var(𝐵′))
12. ⊢𝐿 ∀𝑥∀𝑧[𝑧/𝑥]𝐵′ ⊃ ∀𝑥𝐵 (11, (UG), (UD), (∀E!x))
13. ⊢𝐿 ∀𝑧[𝑧/𝑥]𝐵′ ⊃ ∀𝑥∀𝑧[𝑧/𝑥]𝐵′ (VQ)
14. ⊢𝐿 ∀𝑧[𝑧/𝑥]𝐵′ ⊃ ∀𝑥𝐵 (12, 13)

5. 𝐴 is □𝐵. Then 𝐴′ is □𝐵′, where 𝐵′ is an alphabetic variant of 𝐵. By
induction hypothesis, ⊢𝐿 𝐵 ↔ 𝐵′. Then by (Nec), ⊢𝐿 □(𝐵 ↔ 𝐵′), and
by (K) and (PC), ⊢𝐿 □𝐵 ↔ □𝐵′.
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4.1 Preview

We are going to use the canonical model technique to prove that our base logics
are complete. Recall that a logic 𝐿 is (strongly) complete with respect to a class
of structures Σ iff every 𝐿-consistent set of formulas Γ is satisfiable in Σ. A set
of formulas Γ is 𝐿-consistent iff there are no formulas 𝐴1, … , 𝐴𝑛 in Γ for which
⊢𝐿 ¬(𝐴1 ∧ ⋯ ∧ 𝐴𝑛). In our context, a set of formulas Γ is satisfiable in a class of
structures iff there is a structure 𝔖 ∈ Σ, an interpretation 𝐼 on 𝔖, a world 𝑤 in 𝔖,
and a (suitable) assignment 𝑔 on 𝑈𝑤 such that 𝔖, 𝐼, 𝑤, 𝑔 ⊩ 𝐴 for all formulas 𝐴 in Γ.

To establish completeness for a logic 𝐿, we define a canonical model 𝔐𝐿 whose
worlds are maximal 𝐿-consistent sets of formulas. We show that for each world 𝑤
there is an assignment 𝑔𝑤 such that a formula is true at 𝑤 under 𝑔𝑤 iff it is a member
of 𝑤:

𝔐𝐿, 𝑤, 𝑔𝑤 |= 𝐴 iff 𝐴 ∈ 𝑤.
This is known as the truth lemma. Since every 𝐿-consistent set of formulas can
be extended to a maximal 𝐿-consistent set, it follows that every 𝐿-consistent set
of formulas is satisfiable in any set of structures that contains the structure of the
canonical model.

To secure the truth lemma for atomic sentences, we stipulate that for any variable
𝑥, 𝑔𝑤(𝑥) is the set of variables 𝑧 for which 𝑤 contains 𝑥 = 𝑧. (We denote this set by
‘[𝑥]𝑤’.) The 𝔐𝐿-interpretation 𝐼 will then assign to each predicate 𝑃 at 𝑤 the set of
𝑛-tuples ⟨[𝑥1]𝑤, … , [𝑥𝑛]⟩ for which 𝑃𝑥1 … 𝑥𝑛 ∈ 𝑤.

When we turn to quantified sentences, we face a well-known problem. Classical
first-order logic does not require every individual to have a name: there are consistent
sets Γ that contain ∃𝑥𝐹𝑥 as well as ¬𝐹𝑣𝑖 for every variable 𝑣𝑖. If 𝑤 extends such a
set, then the construction just outlined would make 𝐼𝑤(𝐹) the empty set. We would
have 𝔐, 𝑤, 𝑔𝑤 ⊩ ¬∃𝑥𝐹𝑥 even though ∃𝑥𝐹𝑥 ∈ 𝑤. The standard response, which
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we adopt, is to stipulate that the worlds in a canonical model are witnessed, so that
whenever an existential formula ∃𝑥𝐹𝑥 is in 𝑤, then some witnessing instance 𝐹𝑦 is
in 𝑤 as well. To ensure that sets like Γ are satisfiable in 𝔐𝐿, we construct the worlds
of 𝔐𝐿 in a larger language 𝔏∗ that adds infinitely many new variables to the original
language 𝔏.

In modal predicate logic, the problem of witnesses reappears in another form.
If the worlds of a canonical model are maximal consistent and witnessed sets of
𝔏∗-sentences, then a world 𝑤 might contain ♢∃𝑥𝐹𝑥 as well as □¬𝐹𝑣𝑖 for every 𝔏∗-
variable 𝑣𝑖. For these sentences to be true at 𝑤 under 𝑔𝑤, Kripke semantics demands
that there is a world 𝑤′ accessible from 𝑤 that verifies all instances of ¬𝐹𝑣𝑖 as well
as ∃𝑥𝐹𝑥. But then 𝑤′ isn’t witnessed!

In response, one can use different extensions of 𝔏𝑤 for different worlds 𝑤, and
stipulate that if 𝑤𝑅𝑤′ then 𝔏𝑤 ⊂ 𝔏𝑤′ . (See [Hughes and Cresswell 1996: ch.15],
[Corsi 2002b].) This, however, does not work for quantified extensions of B, where
the accessibility relation is symmetrical, as 𝐿𝑤 can’t be a proper subset of itself. For
extensions of B with a classical theory of quantification, one can, however, construct
all worlds in the same language 𝔏∗. That’s because these logics contain the Barcan
Formula, which ensures that any world that contains ♢∃𝑥𝐹𝑥 also contains ∃𝑥♢𝐹𝑥,
so the standard witnessing requirement ensures that it contains ♢𝐹𝑦 for some 𝑦. (See
[Hughes and Cresswell 1996: ch.14].) A similar approach works if the underlying
predicate logic is free, provided that it is closed under what Corsi [2002b] calls the
“Extended Barcan Rule” (see also [Hughes and Cresswell 1996: ch.16]).

Counterpart semantics provides an easier way out. By definition 2.9, the truth of
♢∃𝑥𝐹𝑥 at 𝑤 under 𝑔𝑤 requires that there is an accessible world 𝑤′ for which 𝐼𝑤′(𝐹)
is non-empty. But □¬𝐹𝑣𝑖 at 𝑤 under 𝑔𝑤 only requires that ¬𝐹𝑣𝑖 is true at 𝑤′ under
all assignments 𝑔′ that map each variable to a counterpart of its 𝑔𝑤-value. If, say,
each [𝑥𝑖]𝑤 at 𝑤 has [𝑥2𝑖]𝑤′ as its counterpart at 𝑤′, then [𝑥1]𝑤′ , [𝑥3]𝑤′ , etc. might
become available as witnesses for ∃𝑥𝐹𝑥.

Fixing a particular counterpart relation like this would make it hard to prove com-
pleteness for stronger systems. A better idea – due to [Kutz 2000] – is to determine
which individuals are counterparts of one another by looking at what the relevant
worlds say about them.
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For example, suppose 𝑤 and 𝑤′ look as follows.

𝑤 ∶ {𝑥 ≠𝑦,□𝑥 ≠𝑦,□𝐹𝑥,□𝐹𝑦, …}
𝑤′ ∶ {¬𝐹𝑥, 𝐹𝑢, 𝐹𝑣, 𝑢≠𝑣, …}

We can see that [𝑥]𝑤′ does not qualify as counterpart of [𝑥]𝑤, since it doesn’t satisfy
the “modal profile” that 𝑤 attributes to [𝑥]𝑤: all counterparts of [𝑥]𝑤 should be
𝐹. Both [𝑢]𝑤′ and [𝑣]𝑤′ meet this condition. We might say that both of them are
counterparts of [𝑥]𝑤. But then they should also be counterparts of [𝑦]𝑤, and we get
a violation of the “joint modal profile” expressed by □𝑥 ≠𝑦, which requires that no
counterpart of [𝑥]𝑤 is identical to any counterpart of [𝑦]𝑤.

Structurally, this is Hazen’s problem of internal relations (discussed in section
2.2). In response, we assume that there can be multiple counterpart relations. One
(𝐶1) links [𝑥]𝑤 uniquely with [𝑢]𝑤′ , and [𝑦]𝑤 with [𝑣]𝑤, another (𝐶2) links [𝑥]𝑤
with [𝑣]𝑤′ , and [𝑦]𝑤 with [𝑢]𝑤′ . So [𝑥]𝑤 has both [𝑢]𝑤′ and [𝑣]𝑤′ as counterpart,
but the pair ⟨[𝑥]𝑤, [𝑦]𝑤 ⟩ has only two rather than four counterparts: ⟨[𝑢]𝑤′ , [𝑣]𝑤′ ⟩
relative to 𝐶1 and ⟨[𝑣]𝑤′ , [𝑢]𝑤′ ⟩ relative to 𝐶2.

In general, we’ll say that a world 𝑤′ in the canonical model is accessible from
a world 𝑤 iff there is a substitution 𝜎 such that 𝑤′ contains all sentences 𝜎(𝐴) for
which 𝑤 contains □𝐴. We’ll say that 𝐶 is a counterpart relation in 𝐾𝑤,𝑤′ iff it links
individuals that are related by some such substitution, so that [𝑥]𝑤𝐶[𝑥′]𝑤′ iff there
is a 𝑦 ∈ [𝑥]𝑤 with 𝜎(𝑦) ∈ [𝑥′]𝑤′ .

On to the details.

4.2 Constructing canonical models

Let 𝐿 be a positive or negative modal predicate logic (in the sense of section 3.4).
Let 𝔏∗ be generated by the rules of definition 2.3 applied to the variables Var∗ =
Var ∪ Var+, where Var+ is a denumerable set of new variables. The worlds in the
canonical model for 𝐿 are the Henkin sets for 𝐿 in 𝔏∗, defined as follows.

Definition 4.1 (Henkin set).
A Henkin set for 𝐿 in 𝔏∗ is a set 𝐻 of 𝔏∗-formulas that is
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1. 𝐿-consistent: there are no 𝐴1, … , 𝐴𝑛 ∈ 𝐻 with ⊢𝐿 ¬(𝐴1 ∧ … ∧ 𝐴𝑛),
2. maximal: for every 𝔏∗-formula 𝐴, 𝐻 contains either 𝐴 or ¬𝐴, and

3. witnessed: whenever 𝐻 contains an existential formula ∃𝑥𝐴, then there
is a variable 𝑦 ∉ FV(𝐴) such that 𝐻 contains [𝑦/𝑥]𝐴 as well as 𝐸!𝑦.

I write ℌ𝐿 for the class of Henkin sets for 𝐿 in 𝔏∗.

Definition 4.2 (Variable classes).
For any Henkin set 𝐻, define ∼𝐻 to be the relation on Var∗ such that 𝑥 ∼𝐻 𝑦
iff 𝑥 =𝑦 ∈ 𝐻. For any variable 𝑥, let [𝑥]𝐻 be {𝑦 ∶ 𝑥 ∼𝐻 𝑦}.

This definition is justified by the following lemma.

Lemma 4.1 (∼-Lemma).
∼𝐻 is an equivalence relation on the set {𝑥 ∶ 𝑥 =𝑥 ∈ 𝐻}.

Proof. Immediate from lemma 3.13.

Definition 4.3 (Accessibility via transformations).
Let 𝑤, 𝑤′ be Henkin sets and 𝜎 a substitution. We say that 𝑤′ is accessible
from 𝑤 via 𝜏 (for short: 𝑤 𝜏−→ 𝑤′) iff {𝜎(𝑋) ∶ □𝑋 ∈ 𝑤} ⊆ 𝑤′.

Definition 4.4 (Canonical model).
The canonical model ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ for a logic 𝐿 is defined as follows.

1. The worlds 𝑊 are the Henkin sets ℌ𝐿.

2. For each 𝑤 ∈ 𝑊 , the outer domain 𝑈𝑤 comprises all non-empty sets
[𝑥]𝑤 for 𝑥 in Var∗.

3. For each 𝑤 ∈ 𝑊 , the inner domain 𝐷𝑤 comprises all sets [𝑥]𝑤 for which
𝐸!𝑥 ∈ 𝑤. That is, 𝐷𝑤 = {[𝑥]𝑤 ∶ 𝐸!𝑥 ∈ 𝑤}.
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4. The accessibility relation 𝑅 holds between world 𝑤 and world 𝑤′ iff
there is a substitution 𝜎 such that 𝑤 𝜎−→ 𝑤′.

5. 𝐶 is a counterpart relation in 𝐾𝑤,𝑤′ iff there is a substitution 𝜎 such
that (i) 𝑤 𝜎−→ 𝑤′ and (ii) for all 𝑑 ∈ 𝑈𝑤, 𝑑′ ∈ 𝑈𝑤′ , 𝑑𝐶𝑑′ iff there is an
𝑥 ∈ 𝑑 with 𝜎(𝑥) ∈ 𝑑′.

6. The interpretation 𝐼 assigns to every non-logical predicate 𝑃 and world
𝑤 the set 𝐼𝑤(𝑃) = {⟨[𝑥1]𝑤, … , [𝑥𝑛]𝑤 ⟩ ∶ 𝑃𝑥1 … 𝑥𝑛 ∈ 𝑤}.

The term ‘{⟨[𝑥1]𝑤, … , [𝑥𝑛]𝑤 ⟩ ∶ 𝑃𝑥1 … 𝑥𝑛 ∈ 𝑤}’ in clause 6 is meant to denote
the set of 𝑛-tuples ⟨𝑑1, … , 𝑑𝑛 ⟩ for which there are variables 𝑥1, … , 𝑥𝑛 such that 𝑑𝑖 =
[𝑥𝑖]𝑤 (for 1 ≤ 𝑖 ≤ 𝑛) and 𝑃𝑥1 … 𝑥𝑛 ∈ 𝑤. These 𝑑𝑖 are guaranteed to be non-empty
because 𝑥𝑖 =𝑥𝑖 ∈ 𝑤 whenever 𝑃𝑥1 … 𝑥𝑛 ∈ 𝑤: if 𝐿 is positive, then ⊢𝐿 𝑧𝑖 =𝑧𝑖 by (=R);
if 𝐿 is negative, then ⊢𝐿 𝑃𝑧1 … 𝑧𝑛 ⊃ 𝐸𝑧𝑖 by (Neg) and hence ⊢𝐿 𝑃𝑧1 … 𝑧𝑛 ⊃ 𝑧𝑖 =𝑧𝑖
by (∀=R) and (FUI).

Definition 4.5 (Canonical Assignment).
If 𝑤 is a world in a canonical model 𝔐 then the canonical assignment for 𝑤
is the function 𝑔𝑤 that maps every 𝑥 ∈ Var∗ for which [𝑥]𝑤 is non-empty to
[𝑥]𝑤.

If 𝐿 is a positive logic then [𝑥]𝑤 is never empty, since ⊢𝐿 𝑥 =𝑥.

Lemma 4.2 (Functionality of canonical models).
The canonical model of every positive or negative logic is functional.

Proof. We have to show (by definition 2.2) that any 𝐶 ∈ 𝐾𝑤,𝑤′ relates each
𝑑 ∈ 𝑈𝑤 to at most one 𝑑′ ∈ 𝑈𝑤′ . So let 𝑤, 𝑤′ be any Henkin sets and 𝐶 ∈
𝐾𝑤,𝑤′ . By definition 4.4, this means that there is a substitution 𝜎 such that (i)
𝑤 𝜎−→ 𝑤′ and (ii) for all 𝑑 ∈ 𝑈𝑤, 𝑑′ ∈ 𝑈𝑤′ , 𝑑𝐶𝑑′ iff there is a 𝑥 ∈ 𝑑′ with
𝜎(𝑥) ∈ 𝑑′. Assume 𝑑𝐶𝑑′ and 𝑑𝐶𝑑″. So there are 𝑥, 𝑦 ∈ 𝑑 with 𝜎(𝑥) ∈ 𝑑′

and 𝜎(𝑦) ∈ 𝑑″. From 𝑥, 𝑦 ∈ 𝑑 we have 𝑥 = 𝑦 ∈ 𝑤, by definitions 4.4 and 4.2.
From 𝜎(𝑥) ∈ 𝑑′ we likewise have 𝜎(𝑥) = 𝜎(𝑥) ∈ 𝑤′. By (NI), 𝑤 contains

49



4 Canonical models

𝑥 = 𝑦 ⊃ □(𝑥 = 𝑥 ⊃ 𝑥 = 𝑦). So 𝑤 contains □(𝑥 = 𝑥 ⊃ 𝑥 = 𝑦). Since 𝑤 𝜎−→ 𝑤′,
𝑤′ contains 𝜎(𝑥) = 𝜎(𝑥) ⊃ 𝜎(𝑥) = 𝜎(𝑦). So 𝑤′ contains 𝜎(𝑥) = 𝜎(𝑦). And so
𝑑′ = 𝑑″.

Lemma 4.3 (Charge of canonical models).
If 𝐿 is positive then the canonical model for 𝐿 is total. If 𝐿 is negative then
the canonical model for 𝐿 is single-domain.

Proof. If 𝐿 is positive then for all 𝔏∗-variables 𝑥, every Henkin set for 𝐿 contains
𝑥 = 𝑥 (by (=R)). So [𝑥]𝑤 is never empty, and nor is [𝑥𝜏]𝑤′ , for any world 𝑤′

with 𝑤 𝜎−→ 𝑤′. So any 𝐶 ∈ 𝐾𝑤,𝑤′ relates every member of 𝑈𝑤 to at least one
member of 𝑈𝑤′ .

If 𝐿 is negative then every Henkin set for 𝐿 contains 𝑥 = 𝑥 ⊃ 𝐸𝑥, for all 𝔏∗-
variables 𝑥 (by (Neg)). So [𝑥]𝑤 ≠ ∅ iff 𝐸!𝑥 ∈ 𝑤. So 𝐷𝑤 = 𝑈𝑤 for all worlds
𝑤.

Lemma 4.4 (Extensibility Lemma).
If Γ is an 𝐿-consistent set of 𝔏∗-sentences in which infinitely many 𝔏∗-
variables do not occur, then there is a Henkin set 𝐻 ∈ ℌ𝐿 such that Γ ⊆ 𝐻.

Proof. Let 𝑆1, 𝑆2, … be an enumeration of all 𝔏∗-sentences, and 𝑧1, 𝑧2, … an
enumeration of the unused 𝔏∗-variables in such a way that 𝑧𝑖 ∉ FV(𝑆1∧…∧𝑆𝑖).
Let Γ0 = Γ, and define Γ𝑛 for 𝑛 ≥ 1 as follows.

(i) If Γ𝑛−1 ∪ {𝑆𝑛} is not 𝐿-consistent, then Γ𝑛 = Γ𝑛−1;
(ii) else if 𝑆𝑛 is an existential formula ∃𝑥𝐴, then Γ𝑛 = Γ𝑛−1∪{∃𝑥𝐴, [𝑧𝑛/𝑥]𝐴, 𝐸𝑧𝑛};
(iii) else Γ𝑛 = Γ𝑛−1 ∪ {𝑆𝑛}.

Define 𝐻 as the union of all Γ𝑛. We show that 𝐻 is a Henkin set for 𝐿.
First, 𝐻 is 𝐿-consistent. We know that Γ0 is 𝐿-consistent. We show that

whenever Γ𝑛−1 is 𝐿-consistent then so is Γ𝑛. It follows that every finite subset
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of 𝐻 is 𝐿-consistent and hence that 𝐻 itself is 𝐿-consistent. So assume (for
𝑛 > 0) that Γ𝑛−1 is 𝐿-consistent. Then Γ𝑛 is constructed by applying one of
(i)–(iii).

If case (i) in the construction applies, then Γ𝑛 = Γ𝑛−1, and so Γ𝑛 is also
𝐿-consistent.

Assume case (ii) in the construction applies. So Γ𝑛 = Γ𝑛−1∪{∃𝑥𝐴, [𝑧𝑛/𝑥]𝐴, 𝐸𝑧}.
If Γ𝑛 is not 𝐿-consistent then there is a finite subset {𝐶1, … , 𝐶𝑚} ⊆ Γ𝑛−1 such
that

1. ⊢𝐿 ¬(𝐶1 ∧ … ∧ 𝐶𝑚 ∧ ∃𝑥𝐴 ∧ [𝑧𝑛/𝑥]𝐴 ∧ 𝐸𝑧𝑛).

Let 𝐶 abbreviate 𝐶1 ∧ … ∧ 𝐶𝑚. Then

2. ⊢𝐿 𝐶 ∧ ∃𝑥𝐴 ⊃ (𝐸𝑧𝑛 ⊃ ¬[𝑧𝑛/𝑥]𝐴). (1)
3. ⊢𝐿 ∀𝑧𝑛(𝐶 ∧ ∃𝑥𝐴) ⊃ ∀𝑧𝑛𝐸𝑧𝑛 ⊃ ∀𝑧𝑛¬[𝑧𝑛/𝑥]𝐴. (2, (UG), (UD))
4. ⊢𝐿 𝐶 ∧ ∃𝑥𝐴 ⊃ ∀𝑧𝑛(𝐶 ∧ ∃𝑥𝐴). ((VQ), 𝑧𝑛 not free in Γ𝑛−1)
5. ⊢𝐿 𝐶 ∧ ∃𝑥𝐴 ⊃ ∀𝑧𝑛𝐸𝑧𝑛 ⊃ ∀𝑧𝑛¬[𝑧𝑛/𝑥]𝐴. (3, 4)
6. ⊢𝐿 𝐶 ∧ ∃𝑥𝐴 ⊃ ∀𝑧𝑛¬[𝑧𝑛/𝑥]𝐴. (5, (∀E!))
7. ⊢𝐿 ∀𝑧𝑛¬[𝑧𝑛/𝑥]𝐴 ↔ ∀𝑥¬𝐴. ((AC), 𝑧𝑛 ∉ Var(𝐴))
8. ⊢𝐿 𝐶 ∧ ∃𝑥𝐴 ⊃ ¬∃𝑥𝐴. (6, 7)

So {𝐶1, … 𝐶𝑚, ∃𝑥𝐴} is not 𝐿-consistent, contradicting the assumption that clause
(ii) applies.

If case (iii) in the construction applies then Γ𝑛 = Γ𝑛−1 ∪{𝑆𝑛} is 𝐿-consistent,
as otherwise case (i) would have applied.

Next, we have to show that 𝐻 is maximal. Assume neither 𝑆𝑛 nor ¬𝑆𝑛 is
in 𝐻. Then case (i) applied for both, meaning that neither Γ𝑛−1 ∪ {𝑆𝑛} nor
Γ𝑛−1 ∪ {¬𝑆𝑛} is 𝐿-consistent. So there are 𝐶1, … , 𝐶𝑚, 𝐷1, … , 𝐷𝑘 ∈ Γ𝑛−1 such
that ⊢𝐿 𝐶1 ∧…∧𝐶𝑚 ⊃ ¬𝑆𝑛 and ⊢𝐿 𝐷1 ∧…∧𝐷𝑘 ⊃ ¬¬𝑆𝑛. By (PC), it follows
that

⊢𝐿 𝐶1 ∧ … ∧ 𝐶𝑚 ∧ 𝐷1 ∧ … ∧ 𝐷𝑘 ⊃ (¬𝑆𝑛 ∧ ¬¬𝑆𝑛).
But then 𝐻 is inconsistent, contradicting what was just shown.
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Finally, we have to show that 𝐻 is witnessed. This is guaranteed by clause
(ii) of the construction and the fact that 𝑧𝑛 ∉ FV(𝑆𝑛).

Now we want to show that a sentence is true at a world in a canonical model
relative to the canonical assignment iff it is an element of the world.

A minor complication arises from the fact that quantifiers and modal operators can
shift the assignment function away from the canonical assignment. For example, we
have 𝔐, 𝑤, 𝑔𝑤 |= □𝐴 iff 𝔐, 𝑤′, 𝑔′ |= 𝐴 for all 𝑤′, 𝑔′ with 𝑤, 𝑔𝑤 ▷ 𝑤′, 𝑔′, and 𝑔′ may
not be the canonical assignment for 𝑤′. So we can’t assume, by induction hypothesis,
that 𝐴 is an element of 𝑤′. The following lemma helps get around this problem.

Lemma 4.5.
If 𝔐 is the canonical model for some positive or negative logic, 𝑤 is a world
in 𝔐, and 𝐴 is any sentence, then

𝔐, 𝑤, 𝑔𝑤 ⊩ □𝐴 iff 𝔐, 𝑤′, 𝑔𝑤′ ∘ 𝜎 ⊩ 𝐴 for all 𝑤′, 𝜎 with 𝑤 𝜎−→ 𝑤′.

Proof. We know from lemma 4.2 that 𝔐 is functional. By lemma 2.1, 𝔐, 𝑤, 𝑔𝑤 ⊩
□𝐴 iff 𝔐, 𝑤′, 𝐶 ∘ 𝑔𝑤 ⊩ 𝐴 for all 𝑤′, 𝐶 with 𝑤𝑅𝑤′ and 𝐶 ∈ 𝐾𝑤,𝑤′ . By defini-
tion 4.4, 𝑤𝑅𝑤′ iff there is a substitution 𝜎 with 𝑤 𝜎−→ 𝑤′, and 𝐶 ∈ 𝐾𝑤,𝑤′ iff
there is some such substitution such that for all 𝑣, 𝑣′ ∈ Var∗, [𝑣]𝑤𝐶[𝑣′]𝑤′ iff
there is an 𝑥 ∈ [𝑣]𝑤 with 𝜎(𝑥) ∈ [𝑣′]𝑤′ .

Note that if 𝑥 ∈ [𝑣]𝑤 and 𝜎(𝑥) ∈ [𝑣′]𝑤′ then 𝜎(𝑥′) ∈ [𝑣′]𝑤′ for every
𝑥′ ∈ [𝑣]𝑤. For suppose 𝑥′ ∈ [𝑣]𝑤. Then 𝑥 = 𝑥′ ∈ 𝑤, and so □𝑥 = 𝑥′ ∈ 𝑤 by
(NI), and so 𝜎(𝑥) = 𝜎(𝑥′) ∈ 𝑤′ by the fact that 𝑤 𝜎−→ 𝑤′. Since 𝜎(𝑥) ∈ [𝑣′]𝑤′ ,
we therefore have 𝜎(𝑥′) ∈ [𝑣′]𝑤′ .

So 𝐶 ∈ 𝐾𝑤,𝑤′ iff there is a substitution 𝜎 such that 𝑤 𝜎−→ 𝑤′ and 𝐶 maps [𝑣]𝑤
to [𝜎(𝑣)]𝑤′ , for each 𝑣 ∈ Var∗ for which [𝑣]𝑤 is non-empty.

We then have

(𝐶 ∘ 𝑔𝑤)(𝑣) = 𝐶(𝑔𝑤(𝑣)) = 𝐶([𝑣]𝑤) = [𝜎(𝑣)]𝑤′ = 𝑔𝑤′(𝜎(𝑣)) = (𝑔𝑤′ ∘ 𝜎)(𝑣).

In sum, 𝑤′ and 𝐶 satisfy the requirement that 𝑤𝑅𝑤′ and 𝐶 ∈ 𝐾𝑤,𝑤′ iff there
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is a substitution 𝜎 such that 𝑤 𝜎−→ 𝑤′ and 𝐶 ∘ 𝑔𝑤 = 𝑔𝑤′ ∘ 𝜎, So 𝔐, 𝑤, 𝑔𝑤 ⊩ □𝐴
iff 𝔐, 𝑤′, 𝑔𝑤′ ∘ 𝜎 ⊩ 𝐴 for all 𝑤′, 𝜎 such that 𝑤 𝜎−→ 𝑤′.

Lemma 4.6 (Truth Lemma).
If 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ is the canonical model for a positive or negative
logic 𝐿, 𝑤 ∈ 𝑊 , and 𝑔𝑤 is the canonical assignment for 𝑤, then for any 𝔏-
sentence 𝐴,

𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐴 iff 𝐴 ∈ 𝑤.

Proof. by induction on 𝐴.

1. 𝐴 is 𝑃𝑥1 … 𝑥𝑛.

By definition 2.9, 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝑃𝑥1 … 𝑥𝑛 iff ⟨𝑔𝑤(𝑥1), … , 𝑔𝑤(𝑥𝑛)⟩ ∈ 𝐼𝑤(𝑃).
By definition 4.5, 𝑔𝑤(𝑥𝑖) is [𝑥𝑖]𝑤 or undefined if [𝑥𝑖]𝑤 = ∅. More-
over, 𝐼𝑤(𝑃) = {⟨[𝑧1]𝑤, … , [𝑧𝑛]𝑤 ⟩ ∶ 𝑃𝑧1 … 𝑧𝑛 ∈ 𝑤} by definition 4.4
and, for the identity predicate, by the fact 𝐼𝑤(=) is {⟨𝑑, 𝑑 ⟩ ∶ 𝑑 ∈ 𝑈𝑤} =
{⟨[𝑧]𝑤, [𝑧]𝑤 ⟩ ∶ 𝑧=𝑧 ∈ 𝑤} = {⟨[𝑧1]𝑤, [𝑧2]𝑤 ⟩ ∶ 𝑧1 =𝑧2 ∈ 𝑤}.
Now if ⟨𝑔𝑤(𝑥1), … , 𝑔𝑤(𝑥𝑛)⟩ ∈ 𝐼𝑤(𝑃), then ⟨[𝑥1]𝑤, … , [𝑥𝑛]𝑤 ⟩ ∈ {⟨[𝑧1]𝑤, … , [𝑧𝑛]𝑤 ⟩ ∶
𝑃𝑧1 … 𝑧𝑛 ∈ 𝑤}, where all the [𝑥𝑖]𝑤 are non-empty (for 𝑔𝑤(𝑥𝑖) is defined).
This means that there are variables 𝑧1, … , 𝑧𝑛 such that {𝑥1 = 𝑧1, … , 𝑥𝑛 =
𝑧𝑛, 𝑃𝑧1 … 𝑧𝑛} ⊆ 𝑤. Then 𝑃𝑥1 … 𝑥𝑛 ∈ 𝑤 by (LL∗).
In the other direction, if 𝑃𝑥1 … 𝑥𝑛 ∈ 𝑤 then 𝑥𝑖 = 𝑥𝑖 ∈ 𝑤 for all 𝑥𝑖 in
𝑥1 … 𝑥𝑛. Hence ⟨[𝑥1]𝑤, … , [𝑥𝑛]𝑤 ⟩ ∈ {⟨[𝑧1]𝑤, … , [𝑧𝑛]𝑤 ⟩ ∶ 𝑃𝑧1 … 𝑧𝑛 ∈
𝑤}, and ⟨𝑔𝑤(𝑥1), … , 𝑔𝑤(𝑥𝑛)⟩ ∈ 𝐼𝑤(𝑃).

2. 𝐴 is ¬𝐵.

𝔐, 𝑤, 𝑔𝑤 ⊩ ¬𝐵 iff 𝔐, 𝑤, 𝑔𝑤 ⊮ 𝐵 by definition 2.9, iff 𝐵 ∉ 𝑤 by induction
hypothesis, iff ¬𝐵 ∈ 𝑤 by definition 4.1.

3. 𝐴 is 𝐵 ⊃ 𝐶.
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𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐵 ⊃ 𝐶 iff 𝔐, 𝑤, 𝑔𝑤 ⊮ 𝐵 or 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐶 by definition 2.9,
iff 𝐵 ∉ 𝑤 or 𝐶 ∈ 𝑤 by induction hypothesis, iff 𝐵 ⊃ 𝐶 ∈ 𝑤 by defini-
tion 4.1 and the fact that 𝐵 ⊃ 𝐶 is 𝐿-entailed by ¬𝐵 and by 𝐶.

4. 𝐴 is ∀𝑥𝐵.

By definition 2.9, 𝔐, 𝑤, 𝑔𝑤 ⊩ ∀𝑥𝐵 iff 𝔐, 𝑤, 𝑔𝑤𝑥↦𝑑 ⊩ 𝐵 for all 𝑑 ∈
𝐷𝑤. By definition 4.4, 𝐷𝑤 = {[𝑥]𝑤 ∶ 𝑥 ∈ Var∗ and 𝐸!𝑥 ∈ 𝑤}. So
𝔐, 𝑤, 𝑔𝑤 ⊩ ∀𝑥𝐵 iff 𝔐, 𝑤, 𝑔𝑤

𝑥↦[𝑦]𝑤 ⊩ 𝐵 for all 𝑦 with 𝐸!𝑦 ∈ 𝑤, iff
𝔐, 𝑤, 𝑔𝑤 ∘ [𝑦/𝑥] ⊩ 𝐵 for all 𝑦 with 𝐸!𝑦 ∈ 𝑤, iff 𝔐, 𝑤, 𝑔𝑤 ⊩ [𝑦/𝑥]𝐵 for
all 𝑦 with 𝐸!𝑦 ∈ 𝑤 by lemma 3.1, iff [𝑦/𝑥]𝐵 ∈ 𝑤 for all 𝑦 with 𝐸!𝑦 ∈ 𝑤
by induction hypothesis.

It remains to show that ∀𝑥𝐵 ∈ 𝑤 iff [𝑦/𝑥]𝐵 ∈ 𝑤 for all 𝑦 with 𝐸!𝑦 ∈ 𝑤.

LTR. Assume ∀𝑥𝐵 ∈ 𝑤 and 𝐸!𝑦 ∈ 𝑤. By (FUI), then [𝑦/𝑥]𝐵 ∈ 𝑤.

RTL. Assume ∀𝑥𝐵 ∉ 𝑤. Then ∃𝑥¬𝐵 ∈ 𝑤. Since 𝑤 is witnessed, it
contains [𝑦/𝑥]¬𝐵 and 𝐸!𝑦 for some 𝑦 ∉ FV(𝐵), and so 𝑤 doesn’t contain
[𝑦/𝑥]𝐵.

5. 𝐴 is □𝐵. 𝔐, 𝑤, 𝑔𝑤 ⊩ □𝐵 iff 𝑤′, 𝑔𝑤′ ∘ 𝜎 ⊩ 𝐵 for all 𝑤′, 𝜎 with 𝑤 𝜎−→ 𝑤′

by lemma 4.5, iff 𝑤′, 𝑔𝑤′ ⊩ 𝜎(𝐵) for all such 𝑤′, 𝜎 by the substitution
lemma 3.1, iff 𝜎(𝐵) ∈ 𝑤′ for all 𝑤′, 𝜎 with 𝑤 𝜎−→ 𝑤′ by induction hypoth-
esis.

It remains to show that

□𝐵 ∈ 𝑤 iff 𝜎(𝐵) ∈ 𝑤′ for all 𝑤′, 𝜎 with 𝑤 𝜎−→ 𝑤′.

LTR. Assume□𝐵 ∈ 𝑤, and let 𝑤′ and 𝜎 satisfy the condition that {𝜎(𝑋) ∶
□𝑋 ∈ 𝑤} ⊆ 𝑤′. Then 𝜎(𝐵) ∈ 𝑤′.

RTL. Assume □𝐵 ∉ 𝑤. Let 𝜎 be any injective substitution whose range
excludes infinitely many variables. We show that {𝜎(𝑋) ∶ □𝑋 ∈ 𝑤} ∪
{¬𝜎(𝐴)} is L-consistent. Suppose not. Then there are 𝑋1..𝑋𝑛 such that
□𝑋𝑖 ∈ 𝑤 and ⊢𝐿 𝜎(𝑋1) ∧ … ∧ 𝜎(𝑋𝑛) ⊃ 𝜎(𝐴). Since the injective
substitutions leave every formula unchanged, this means that ⊢𝐿 𝑋1 ∧
…∧𝑋𝑛 ⊃ 𝐴. By (K) and (Nec), it follows that ⊢𝐿 □𝑋1 ∧…∧□𝑋𝑛 ⊃ □𝐴.
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Since all □𝑋𝑖 ∈ 𝑤 and 𝑤 is maximal consistent, it follows that □𝐵 ∈ 𝑤.
This contradicts our assumption that □𝐵 ∉ 𝑤.

So {𝜎(𝑋) ∶ □𝑋 ∈ 𝑤} ∪ {¬𝜎(𝐵)} is L-consistent, and infinitely many
variables don’t occur in it. By the extensibility lemma 4.4, there is a
Henkin set 𝑤′ that extends {𝜎(𝑋) ∶ □𝑋 ∈ 𝑤} ∪ {¬𝜎(𝐵)}. We have
𝑤 𝜎−→ 𝑤′, but 𝜎(𝐵) ∉ 𝑤′.

4.3 Completeness of the base logics

We know from theorem 3.5 that FK is sound with respect to the class of total func-
tional counterpart structures. In the previous section, we have essentially shown that
FK is (strongly) complete with respect to this class. What we’ve shown is this:

Lemma 4.7 (Completeness lemma).
Every positive or negative modal predicate logic is strongly complete with
respect to any class of counterpart structures that contains the structure of its
canonical model.

Proof. Let 𝐿 be a positive or negative modal predicate logic, and 𝔐 its canoni-
cal model. Assume some set Γ of 𝔏-formulas is 𝐿-consistent. By the extensibil-
ity lemma 4.4, Γ is contained in some Henkin set 𝑤 for 𝐿. (Note that Γ contains
no variables from Var∗.) By the truth lemma 4.6, 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐴 for each 𝐴 ∈ Γ.
So Γ is satisfiable any class of structures that contains the structure of 𝔐.

Lemma 4.8 (Canonicity of FK).
The structure of the canonical model for FK is total and functional.

Proof. Immediate from lemmas 4.3 and 4.2.
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Theorem 4.9 (Completeness of FK).
The system FK is strongly complete with respect to the class of total functional
counterpart structures.

Proof. Immediate from lemmas 4.7 and 4.8.

As for QK, we know from theorem 3.7 that QK is sound with respect to the class
of classical counterpart structures. To show completeness, we only need to show
that the structure of the canonical model for QK is classical.

Lemma 4.10 (Canonicity of QK).
The structure of the canonical model for QK is total, single-domain, and func-
tional.

Proof. Immediate from lemmas 4.3 and 4.2, given the fact that QK is both pos-
itive and negative. (For an alternative proof that the canonical model for QK is
single-domain, note that 𝐸!𝑡 is provable in classical logic from the (UI) instance
∀𝑥 𝑥 ≠ 𝑡 ⊃ 𝑡 ≠ 𝑡 and the (SI) instance 𝑡 = 𝑡. So every world 𝑤 in the canonical
model for QK contains 𝐸!𝑡, for every term 𝑡. And so 𝐷𝑤 = 𝑈𝑤, by definition
4.4.)

Theorem 4.11 (Completeness of QK).
The system QK is strongly complete with respect to the class of classical coun-
terpart structures.

Proof. Immediate from lemmas 4.7 and 4.10.

As for NK, we know from theorem 3.9 that NK is sound with respect to the class
of single-domain functional counterpart structures. To show completeness, we need
to show that the structure of the canonical model for NK is functional and single-
domain.
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Lemma 4.12 (Canonicity of NK).
The structure of the canonical model for NK is single-domain and functional.

Proof. Immediate from lemmas 4.3 and 4.2.

Theorem 4.13 (Completeness of NK).
The system NK is strongly complete with respect to the class of single-domain
functional counterpart structures.

Proof. Immediate from lemmas 4.7 and 4.12.

These simple results are noteworthy because they cannot be obtained with any
form of Kripke semantics. FK, QK, and NK are incomplete in Kripke semantics,
meaning that there is no class of Kripke structures with respect to which they are
sound and complete. An easy way to see this is to note that the “necessity of dis-
tinctness”

(ND) 𝑥 ≠ 𝑦 ⊃ □𝑥 ≠ 𝑦

is valid in Kripke semantics, but not provable in any of our three base logics.
In chapter 6, we are going to explore the completeness of systems that extend our

base logics by adding familiar axioms such as (T), (4), or (BF). In each case, we
know from lemma 4.7 that the extended system is strongly complete with respect to
any class of counterpart structures that contains the structure of its canonical model.
It remains to show that the system is sound with respect to this structure. To this end,
it will be useful to have a general idea of what a structure for the relevant system must
look like. This is the topic of the next chapter.
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5.1 Schemas, frames, and properties of the image

relation

A well-known feature of Kripke semantics for propositional modal logic is that var-
ious modal schemas correspond to conditions on the accessibility relation, in the
sense that the schema is valid on all and only those Kripke frames whose accessibil-
ity relation satisfies the condition: □𝐴 ⊃ 𝐴 corresponds to (or defines) reflexivity,
𝐴 ⊃ □♢𝐴 corresponds to symmetry, and so on.

In counterpart semantics, these same schemas constrain both the accessibility and
the counterpart relations. Consider □𝐹𝑥 ⊃ 𝐹𝑥. Loosely speaking, the antecedent
□𝐹𝑥 is true at 𝑤 iff all counterparts of 𝑥 are 𝐹 at all accessible worlds. This does
not entail that 𝑥 is 𝐹 at 𝑤 unless (i) 𝑤 can see itself and (ii) 𝑥 is its own counterpart
at 𝑤.

Before we generalize this observation, let’s first review some familiar definitions
from propositional modal logic.

Definition 5.1 (Languages of propositional modal logic).
A set of formulas 𝔏0 is a (unimodal) propositional language if there is a de-
numerable set of expressions Prop (the sentence letters of 𝔏0) distinct from
{¬, ⊃,□} such that 𝔏0 is generated by the rule

𝑃 | ¬𝐴 | (𝐴 ⊃ 𝐵) | □𝐴,

where 𝑃 ∈ Prop.

Note that the language 𝔏 of modal predicate logic is a unimodal propositional
language if we define a “sentence letter” as any 𝔏-formula that isn’t of the form
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¬𝐴, 𝐴 ⊃ 𝐵 or □𝐴. (On this usage, ∀𝑥□(𝐹𝑥 ⊃ 𝐺𝑥), for example, is a sentence letter.)
Let’s call such 𝔏-formulas quasi-atomic.

Definition 5.2 (Frames and valuations).
A frame is a pair consisting of a non-empty set 𝑊 and a relation 𝑅 ⊆ 𝑊2.

A valuation of a unimodal propositional language 𝔏0 on a frame 𝔉 =
⟨𝑊, 𝑅⟩ is a function 𝑉 that maps every sentence letter of 𝔏0 to a subset of
𝑊 .

Definition 5.3 (Propositional truth).
For any frame 𝔉 = ⟨𝑊, 𝑅⟩, point 𝑤 ∈ 𝑊 , valuation 𝑉 on 𝔉, sentence letter 𝑃
and 𝔏0-sentences 𝐴 and 𝐵,

𝔉, 𝑉, 𝑤 ⊩0 𝑃 iff 𝑤 ∈ 𝑉(𝑃),
𝔉, 𝑉, 𝑤 ⊩0 ¬𝐴 iff 𝔉, 𝑉, 𝑤 ⊮0 𝐴,

𝔉, 𝑉, 𝑤 ⊩0 𝐴 ⊃ 𝐵 iff 𝔉, 𝑉, 𝑤 ⊮0 𝐴 or 𝔉, 𝑉, 𝑤 ⊩0 𝐵,

𝔉, 𝑉, 𝑤 ⊩0 □𝐴 iff 𝔉, 𝑉, 𝑤′ ⊩0 𝐴 for all 𝑤′ with 𝑤𝑅𝑤′.

Definition 5.4 (Frame validity).
A formula 𝐴 of a unimodal propositional language is valid on a frame 𝔉 =
⟨𝑊, 𝑅⟩ if 𝔉, 𝑉, 𝑤 ⊩0 𝐴 for all 𝑤 ∈ 𝑊 and valuations 𝑉 of the language on 𝔉.

Definition 5.5 (Frame correspondence).
A sentence 𝐴 of a unimodal propositional language defines or corresponds to
a class of frames ℭ iff ℭ is the class of frames on which 𝐴 is valid.

In propositional modal logic, formulas are true or false relative to a world; the box
shifts the world of evaluation. In counterpart semantics, formulas are true or false
relative to a pair 𝑤, 𝑔 of a world and an assignment function, and the box shifts these
points of evaluation: □𝐴 is true at 𝑤, 𝑔 iff 𝐴 is true at all 𝑤′, 𝑔′ such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′.
This suggests the following conjecture: if a schema of propositional modal logic
corresponds to a certain property of the accessibility relation 𝑅 of Kripke frames,
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then it corresponds to the same property of the relation ▷ in counterpart structures.
That is, if a schema 𝐴 is valid on all and only the Kripke frames whose accessibility
relation satisfies a certain condition, then the schema is valid on all and only the
counterpart structures whose image relation (on 𝑤, 𝑔 pairs) satisfies this condition.

It is, in fact, easy to show that the schema will be valid on all those counterpart
structures. But I am not able to show that it is valid on only those structures. The
problem is that any 𝔏-instance of a propositional schema 𝐴 only contains finitely
many free variables. A formula of 𝔏 is true or false only relative to a world 𝑤 and
a finite fragment of an assignment 𝑔 on 𝑈𝑤 – a fragment that interprets the free
variables in the formula.

Open question: Give an example of a schema that is valid on all and only
the propositional frames in which 𝑅 has a certain property, but that is not
valid on all and only the counterpart structures in which ▷ has that property.
Alternatively, prove that there is no such schema.

5.2 Finitary satisfaction

In definition 2.9, the “image” relation ▷ between world-assignment pairs plays the
role of the accessibility relation in standard Kripke semantics. We could have taken
▷ as primitive, instead of deriving it from 𝐾 and 𝑅. Conceptually, this would have
the downside of blurring the distinction between the structures on which our lan-
guage is interpreted and the interpretation. Assignments belong to the interpreta-
tion; they don’t represent an independent aspect of a scenario in which 𝔏-formulas
are interpreted. From a technical point of view, taking ▷ as primitive would also
require formulating some constraints to ensure, for example, that if 𝑤, 𝑔 ▷ 𝑤′, 𝑔′ then
𝑤, 𝑔𝑥↦𝑔(𝑦) ▷ 𝑤′, 𝑔′𝑥↦𝑔′(𝑦).

That said, it can be useful to think of the ▷ relation as an extended counterpart
relation or accessibility relation that relates finite sequences of individuals at worlds.

Let’s recast definition 2.9 in terms of this relation. To keep things simple, I will
assume that assignments and structures are total, so that we can ignore gappy se-
quences that would arise in a negative semantics.
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Definition 5.6 (𝑛-sequential accessibility).
Given a counterpart structure 𝔖 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩ and a number 𝑛 ∈ ℕ, the
𝑛-sequential accessibility relation of 𝔖 is the (smallest) relation 𝑅𝑛 that holds
between an 𝑛+1-tuple ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ and an 𝑛+1-tuple ⟨𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⟩ iff there
is a 𝐶 ∈ 𝐾𝑤,𝑤′ for which 𝑑1𝐶𝑑′

1, … , 𝑑𝑛𝐶𝑑′𝑛.

(Note that 𝑅0 = 𝑅.)
We are going to evaluate formulas relative to sequences ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ consisting

of a world and some individuals: the alphabetically first term will pick out 𝑑1, the
second 𝑑2, and so on. A formula can only be evaluated if the sequence provides a
value for each of its term.

Definition 5.7 (Rank).
Let 𝜌 be some fixed “alphabetical” order on the terms 𝑇 in a language, i.e. a
bijection from 𝑇 into ℕ+. I will use ‘𝑣’ for the inverse of 𝜌, so that 𝑣1 is the
alphabetically first term, 𝑣2 the second, and so on. The rank of an 𝔏-formula 𝐴
is the smallest number 𝑟 ∈ ℕ such that all members of Var(𝐴) have a 𝜌-value
less than or equal to 𝑟.

Definition 5.8 (Finitary satisfaction).
Let 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ be a counterpart model, 𝑤 a member of 𝑊 , and
𝑑1, … , 𝑑𝑟 (not necessarily distinct) elements of 𝑈𝑤. For any number 𝑛 ∈ ℕ
and 𝔏-formulas 𝑃𝑡1 … 𝑡𝑚, 𝐴, and 𝐵 whose rank is less than or equal to 𝑛, define

𝔐, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ 𝑃𝑡1 … 𝑡𝑚 iff ⟨𝑑𝜌(𝑡1), … , 𝑑𝜌(𝑡𝑚) ⟩ ∈ 𝐼𝑤(𝑃).
𝔐, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ ¬𝐴 iff 𝔐, 𝑤, 𝑑1, … , 𝑑𝑛 ⊮ 𝐴.

𝔐, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ 𝐴 ⊃ 𝐵 iff 𝔐, 𝑤, 𝑑1, … , 𝑑𝑛 ⊮ 𝐴 or 𝔐, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩
𝐵.

𝔐, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ ∀𝑥𝐴 iff 𝔐, 𝑤, 𝑑1
′, … , 𝑑𝑛

′ ⊩ 𝐴 for all 𝑑1
′, … , 𝑑𝑛

′

such that 𝑑𝜌(𝑥)
′ ∈ 𝐷𝑤 and 𝑑𝑖

′ = 𝑑𝑖 for all 𝑖 ≠
𝜌(𝑥).
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𝔐, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ □𝐴 iff 𝑤′, 𝑑1
′, … , 𝑑𝑛

′ ⊩ 𝐴 for all 𝑤, 𝑑1
′, … , 𝑑𝑛

′

such that ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩𝑅𝑛⟨𝑤′, 𝑑1
′, … , 𝑑𝑛

′ ⟩,

where 𝑅𝑛 is the 𝑛-sequential counterpart relation of 𝔖.

Lemma 5.1.
For any total counterpart model 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩, world 𝑤 ∈ 𝑊 , (to-
tal) assignment 𝑔 on 𝑈𝑤, formula 𝐴, and number 𝑛 ≥ 𝜌(𝐴),

𝔐, 𝑤, 𝑔 ⊩ 𝐴 iff 𝔐, 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛) ⊩ 𝐴.

Proof. by induction on 𝐴.

• 𝐴 is 𝑃𝑡1 … 𝑡𝑚. 𝔐, 𝑤, 𝑔 ⊩ 𝑃𝑡1 … 𝑡𝑚 iff ⟨𝑔(𝑡1), … , 𝑔(𝑡𝑚)⟩ ∈ 𝐼𝑤(𝑃) by defini-
tion 2.9, iff 𝔐, 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛) ⊩ 𝑃𝑥1 … 𝑥𝑚 by definition 5.8. For the last
step, note that the 𝑖th element of ⟨𝑔(𝑣1), … , 𝑔(𝑣𝑛)⟩ is 𝑔(𝑣𝑖); so if 𝑡𝑖 is 𝑣𝑗 then
the 𝜌(𝑡𝑖)-th element of ⟨𝑔(𝑣1), … , 𝑔(𝑣𝑛)⟩ is 𝑔(𝑣𝑗), which is 𝑔(𝑡𝑖).

• 𝐴 is ¬𝐵. 𝔐, 𝑤, 𝑔 ⊩ ¬𝐵 iff 𝔐, 𝑤, 𝑔 ⊮ 𝐵 by definition 2.9, iff 𝔐, 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛) ⊮
𝐵 by induction hypothesis, iff 𝔐, 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛) ⊩ ¬𝐵 by definition 5.8.

• 𝐴 is 𝐵 ⊃ 𝐶. 𝔐, 𝑤, 𝑔 ⊩ 𝐵 ⊃ 𝐶 iff 𝔐, 𝑤, 𝑔 ⊮ 𝐵 or 𝔐, 𝑤, 𝑔 ⊩ 𝐶 by defi-
nition 2.9, iff 𝔐, 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛) ⊮ 𝐵 or 𝔐, 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛) ⊩ 𝐶 by
induction hypothesis, iff 𝔐, 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛) ⊩ 𝐵 ⊃ 𝐶 by definition 5.8.

• 𝐴 is ∀𝑥𝐵. 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐵 iff 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐵 for all 𝑑 ∈ 𝐷𝑤 by defini-
tion 2.9, iff 𝔐, 𝑤, 𝑔𝑥↦𝑑(𝑣1), … , 𝑔𝑥↦𝑑(𝑣𝑛) ⊩ 𝐵 for all 𝑑 ∈ 𝐷𝑤 by induction
hypothesis, iff 𝔐, 𝑤, 𝑔(𝑣1)′, … , 𝑔(𝑣𝑛)′ ⊩ 𝐵 for all 𝑔(𝑣1)′, … , 𝑔(𝑣𝑛)′ such that
𝑔(𝑣𝜌(𝑥))′ ∈ 𝐷𝑤 and 𝑔(𝑣𝑖)′ = 𝑔(𝑣𝑖) for all 𝑖 ≠ 𝜌(𝑥), iff 𝔐, 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛) ⊩
∀𝑥𝐵 by definition 5.8.

• 𝐴 is □𝐵. By definition 2.9, 𝔐, 𝑤, 𝑔 ⊩ □𝐵 iff 𝔐, 𝑤′, 𝑔′ ⊩ 𝐵 for all 𝑤′, 𝑔′ such
that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. By induction hypothesis, it follows that 𝔐, 𝑤, 𝑔 ⊩ □𝐵 iff

𝔐, 𝑤′, 𝑔′(𝑣1), … , 𝑔′(𝑣𝑛) ⊩ 𝐵 for all 𝑤′, 𝑔′ such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. (1)
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From the other direction, 𝔐, 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛) ⊩ □𝐵 iff

𝔐, 𝑤′, 𝑑′
1, … , 𝑑′𝑛 ⊩ 𝐵 for all 𝑤′, 𝑑′

1, … , 𝑑′𝑛
s.t. 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛)𝑅𝑛𝑤′, 𝑑′

1, … , 𝑑′𝑛. (2)

It remains to show that (1) and (2) are equivalent.

For the forward direction, let 𝑤′, 𝑑′
1, … , 𝑑′𝑛 be such that 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛)𝑅𝑛

𝑤′, 𝑑′
1, … , 𝑑′𝑛. By definition 5.6, this means that there is a 𝐶 ∈ 𝐾𝑤,𝑤′ such

that 𝑔(𝑣𝑖)𝐶𝑑′
𝑖 for all 𝑖 ∈ {1..𝑛}. Let 𝑔′ be any assignment with

𝑔′(𝑣𝑖) =
⎧{
⎨{⎩
𝑑′

𝑖 if 𝑖 ∈ {1..𝑛}
an arbitrary 𝑑′ with 𝑔(𝑣𝑖)𝐶𝑑′ otherwise.

There must be some such 𝑔′ because 𝐶 it total. So 𝔐, 𝑤′, 𝑔′(𝑣1), … , 𝑔′(𝑣𝑛) ⊩
𝐵 by (1). And so 𝔐, 𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⊩ 𝐵 by construction of 𝑔′. So we can
derive (2) from (1).

For the backward direction, let 𝑤′, 𝑔′ be such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. By defini-
tion 2.8, this means that there is a 𝐶 ∈ 𝐾𝑤,𝑤′ such that 𝑔(𝑣𝑖)𝐶𝑔′(𝑣𝑖) for all
variables 𝑣𝑖. So 𝑤, 𝑔(𝑣1), … , 𝑔(𝑣𝑛)𝑅𝑛𝑤′, 𝑔′(𝑣1), … , 𝑔′(𝑣𝑛), by definition 5.6.
By (2), it follows that 𝔐, 𝑤′, 𝑔′(𝑣1), … , 𝑔′(𝑣𝑛) ⊩ 𝐵.

5.3 Propositional guises

We’ve seen that the semantics from section 2.5 can be expressed in terms of a rela-
tion between formulas on the one hand and sequences of a world and finitely many
individuals on the other. If we re-interpret these sequences as “worlds”, and treat
quasi-atomic sentences as atomic, the semantics reduces to standard Kripke seman-
tics for propositional modal logic.

Definition 5.9 (N-ary Opaque Propositional Guise).
The 𝑛-ary opaque propositional guise of a counterpart structure 𝔖 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩
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is the Kripke frame ⟨𝑊𝑛, 𝑅𝑛 ⟩ where 𝑊𝑛 is the set of points ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ such
that 𝑤 ∈ 𝑊, 𝑑1 ∈ 𝑈𝑤, … , 𝑑𝑛 ∈ 𝑈𝑤, and 𝑅𝑛 is the 𝑛-ary accessibility relation
for 𝔖.

The 𝑛-ary opaque propositional guise of a predicate interpretation 𝐼 on
𝔖 is the valuation function 𝑉𝑛 on ⟨𝑊𝑛, 𝑅𝑛 ⟩ such that for every quasi-atomic
formula 𝐴 ∈ 𝔏, 𝑉𝑛(𝐴) = {⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ∶ 𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ 𝐴}.

Lemma 5.2 (Truth-preservation under opaque guises).
For any total counterpart structure 𝔖 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩, interpretation 𝐼 on
𝔖, world 𝑤 ∈ 𝑊 , individuals 𝑑1, … , 𝑑𝑛 ∈ 𝑈𝑤, and 𝔏-formula 𝐴 with rank
≤ 𝑛,

𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ 𝐴 iff 𝔖𝑛, 𝑉𝑛, ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊩0 𝐴,
where 𝔖𝑛 and 𝑉𝑛 are the 𝑛-ary opaque propositional guises of 𝔖 and 𝐼 re-
spectively.

Proof. We argue by induction on 𝐴, where quasi-atomic formulas all have com-
plexity zero.

• 𝐴 is quasi-atomic. By definition 5.9, 𝑉𝑛(𝐴) = {⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ∶ 𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩
𝐴}. So 𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ 𝐴 iff ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ∈ 𝑉𝑛(𝐴), iff 𝔖𝑛, 𝑉𝑛, ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊩0
𝐴 by definition 5.3.

• 𝐴 is ¬𝐵. 𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ ¬𝐵 iff 𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊮ 𝐵 by definition 5.8,
iff 𝔖𝑛, 𝑉𝑛, ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊮0 𝐵 by induction hypothesis, iff 𝔖𝑛, 𝑉𝑛, ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊩0
¬𝐵 by definition 5.3.

• 𝐴 is 𝐵 ⊃ 𝐶. 𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ 𝐵 ⊃ 𝐶 iff 𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊮ 𝐵 or
𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ 𝐶 by definition 5.8, iff 𝔖𝑛, 𝑉𝑛, ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊮0 𝐵 or
𝔖𝑛, 𝑉𝑛, ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊩0 𝐶 by induction hypothesis, iff 𝔖𝑛, 𝑉𝑛, ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊩0
𝐵 ⊃ 𝐶 by definition 5.3.

• 𝐴 is□𝐵. 𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊩ □𝐵 iff 𝔖, 𝐼, 𝑤′, 𝑑′
1, … , 𝑑′𝑛 ⊩ 𝐵 for all 𝑤, 𝑑′

1, … , 𝑑′𝑟
such that ⟨𝑤, 𝑑1, … , 𝑑𝑟 ⟩𝑅𝑛⟨𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⟩ by definition 5.8, iff 𝔖𝑛, 𝑉𝑛, ⟨𝑤′, 𝑑′
1, … , 𝑑′𝑛 ⟩ ⊩0
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𝐵 for all such 𝑤, 𝑑′
1, … , 𝑑′𝑟 by induction hypothesis, iff 𝔖𝑛, 𝑉𝑛, ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊩0

□𝐵 by definition 5.3.

Lemma 5.3 (Finite correspondence transfer).
If 𝐴 is a formula of (unimodal) propositional modal logic that is valid on
all and only the Kripke frames in some class ℭ, and 𝑛 ∈ ℕ, then the 𝔏-
formulas that result from 𝐴 by uniformly substituting sentence letters by 𝔏-
formulas of rank ≤ 𝑛 are (jointly) valid on a total counterpart structure 𝔖 =
⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩ iff the 𝑛-ary opaque propositional guise of 𝔖 is in ℭ.

Proof. Assume 𝐴 is valid on all and only the Kripke frames in ℭ, and let
𝑝1, … , 𝑝𝑘 be the sentence letters in 𝐴. Let 𝔖 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩ be a total
counterpart structure whose 𝑛-ary opaque propositional guise ⟨𝑊𝑛, 𝑅𝑛 ⟩ is in
ℭ.

Suppose for reductio that some formula 𝐴′ is not valid on 𝔖, and 𝐴′ results
from 𝐴 by uniformly substituting the sentence letters 𝑝𝑖 in 𝐴 by 𝔏-formulas 𝑝𝔏

𝑖
of rank ≤ 𝑛. Then there is an interpretation 𝐼 on 𝔖, a world 𝑤 ∈ 𝑊 , and an
assignment 𝑔 on 𝑈𝑤 such that 𝔖, 𝐼, 𝑤, 𝑔 ⊮ 𝐴′. By lemma 5.1, this means that
𝑤, 𝑑1, … , 𝑑𝑟 ⊮ 𝐴′, where 𝑑1 = 𝑔(𝑣1), … , 𝑑𝑟 = 𝑔(𝑣𝑟). By lemma 5.2, it follows
that 𝔖𝑛, 𝑉𝑛, ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊮0 𝐴′. But then 𝔖𝑛, 𝑉𝑛′, ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊮0 𝐴,
where 𝑉𝑛′ is such that for all sentence letters 𝑝𝑖 in 𝐴, 𝑉𝑛′(𝑝𝑖) = 𝑉𝑛(𝑝𝔏

𝑖 ). This
contradicts the assumption that 𝐴 is valid on ⟨𝑊𝑛, 𝑅𝑛 ⟩.

We also have to show that the relevant 𝔏-formulas are valid only on structures
𝔖 whose 𝑛-ary opaque propositional guise is in ℭ. So let 𝔖 be a structure whose
guise ⟨𝑊𝑛, 𝑅𝑛 ⟩ is not in ℭ. Since 𝐴 is valid only on frames in ℭ, we know that
there is some valuation 𝑉 on ⟨𝑊𝑛, 𝑅𝑛 ⟩ and some ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ∈ 𝑊𝑛 such that
𝑊𝑛, 𝑅𝑛, 𝑉 , ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊮0 𝐴. Let 𝐴′ result from 𝐴 by uniformly substituting
each sentence letter 𝑝𝑖 in 𝐴 by an 𝑛-ary predicate 𝑃𝑖 followed by the variables
𝑣1 … 𝑣𝑛, with distinct predicates for distinct sentence letters. Let 𝐼 be a predi-
cate interpretation such that for all 𝑃𝑖 and 𝑤′ ∈ 𝑊 , 𝐼𝑤′(𝑃𝑖) = {⟨𝑑′

1, … , 𝑑′𝑛 ⟩ ∶
⟨𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⟩ ∈ 𝑉(𝑝𝑖)}. A simple induction on subformulas 𝐵 of 𝐴 shows
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that for all ⟨𝑤′, 𝑑′
1, … , 𝑑′𝑛 ⟩ ∈ 𝑊𝑛, we have 𝑊𝑛, 𝑅𝑛, 𝑉 , ⟨𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⟩ ⊩0 𝐵 iff
𝔖, 𝐼, 𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⊩ 𝐵′, where 𝐵′ is 𝐵 with all 𝑝𝑖 replaced by 𝑃𝑖𝑣1 … 𝑣𝑛. Given
that 𝑊𝑛, 𝑅𝑛, 𝑉 , ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩ ⊮0 𝐴, it follows that 𝔖, 𝐼, 𝑤, 𝑑1, … , 𝑑𝑛 ⊮ 𝐴′.

Here is the simple induction.

1. 𝐵 is a sentence letter 𝑝𝑖. Then 𝐵′ is 𝑃𝑖𝑣1 … 𝑣𝑛. We have 𝑊𝑛, 𝑅𝑛, 𝑉 ,
⟨𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⟩ ⊩0 𝑝𝑖 iff ⟨𝑤′, 𝑑′
1, … , 𝑑′𝑛 ⟩ ∈ 𝑉(𝑝𝑖) by definition 5.3, iff

⟨𝑑′
1, … , 𝑑′𝑛 ⟩ ∈ 𝐼𝑤(𝑃𝑖) by construction of 𝐼 , iff 𝔖, 𝐼, 𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⊩ 𝑃𝑖𝑣1 … 𝑣𝑛
by definition 5.8.

2. 𝐵 is ¬𝐶. Then 𝐵′ is ¬𝐶′, where 𝐶′ is 𝐶 with all 𝑝𝑖 replaced by 𝑃𝑖𝑣1 … 𝑣𝑛.
We have 𝑊𝑛, 𝑅𝑛, 𝑉 , ⟨𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⟩ ⊩0 ¬𝐶 iff 𝑊𝑛, 𝑅𝑛, 𝑉 , ⟨𝑤′, 𝑑′
1, … , 𝑑′𝑛 ⟩ ⊮0

𝐶 by definition 5.3, iff 𝔖, 𝐼, 𝑤′, 𝑑′
1, … , 𝑑′𝑛 ⊮ 𝐶′ by induction hypothesis,

iff 𝔖, 𝐼, 𝑤′, 𝑑′
1, … , 𝑑′𝑛 ⊩ ¬𝐶′ by definition 5.8.

3. 𝐵 is 𝐶 ⊃ 𝐷. Then 𝐵′ is 𝐶′ ⊃ 𝐷′, where 𝐶′ and 𝐷′ are 𝐶 and 𝐷 respec-
tively with all 𝑝𝑖 replaced by 𝑃𝑖𝑣1 … 𝑣𝑛. We have 𝑊𝑛, 𝑅𝑛, 𝑉 , ⟨𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⟩ ⊩0
𝐶 ⊃ 𝐷 iff 𝑊𝑛, 𝑅𝑛, 𝑉 , ⟨𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⟩ ⊮0 𝐶 or 𝑊𝑛, 𝑅𝑛, 𝑉 , ⟨𝑤′, 𝑑′
1, … , 𝑑′𝑛 ⟩ ⊩0

𝐷 by definition 5.3, iff 𝔖, 𝐼, 𝑤′, 𝑑′
1, … , 𝑑′𝑛 ⊮ 𝐶′ or 𝔖, 𝐼, 𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⊩
𝐷′ by induction hypothesis, iff 𝔖, 𝐼, 𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⊩ 𝐶′ ⊃ 𝐷′ by defini-
tion 5.8.

4. 𝐵 is□𝐶. Then 𝐵′ is□𝐶′, where 𝐶′ is 𝐶 with all 𝑝𝑖 replaced by 𝑃𝑖𝑣1 … 𝑣𝑛.
We have 𝑊𝑛, 𝑅𝑛, 𝑉 , ⟨𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⟩ ⊩0 □𝐶 iff 𝑊𝑛, 𝑅𝑛, 𝑉 , ⟨𝑤″, 𝑑″
1 , … , 𝑑″𝑛 ⟩ ⊩0

𝐶 for all ⟨𝑤″, 𝑑″
1 , … , 𝑑″𝑛 ⟩ with ⟨𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⟩𝑅𝑛⟨𝑤″, 𝑑″
1 , … , 𝑑″𝑛 ⟩ by def-

inition 5.3, iff 𝔖, 𝐼, 𝑤″, 𝑑″
1 , … , 𝑑″𝑛 ⊮ 𝐶′ for all such ⟨𝑤″, 𝑑″

1 , … , 𝑑″𝑛 ⟩ by
induction hypothesis, iff 𝔖, 𝐼, 𝑤′, 𝑑′

1, … , 𝑑′𝑛 ⊩ □𝐶′ by definition 5.8.

Given that a modal schema restricted to the variables 𝑣1, … , 𝑣𝑛 defines a con-
straint on the 𝑛-sequential accessibility relation of a counterpart structure 𝔖, the un-
restricted schema defines a constraint on all sequential accessibility relations. Let’s
fold these into a single entity.
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Definition 5.10 (Sequential accessibility relation).
The sequential accessibility relation 𝑅∗ of a total counterpart structure 𝔖 is
the union of the 𝑛-sequential accessibility relations 𝑅𝑛 of 𝔖. That is, 𝑅∗ =
⋃𝑛∈ℕ 𝑅𝑛.

Definition 5.11 (Opaque Propositional Guise).
The opaque propositional guise of a counterpart structure 𝔖 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾 ⟩
is the disjoint union of the 𝑛-ary opaque propositional guises of 𝔖, i.e. the
Kripke frame ⟨𝑊∗, 𝑅∗ ⟩ such that 𝑅∗ is the sequential accessibility relation of
𝔖 and 𝑊∗ is the set of points 𝑤∗ such that for some 𝑛 ∈ ℕ, world 𝑤 ∈ 𝑊 and
individuals 𝑑1, … , 𝑑𝑛 ∈ 𝑈𝑤, 𝑤∗ = ⟨𝑤, 𝑑1, … , 𝑑𝑛 ⟩.

Theorem 5.4 ((Positive) correspondence transfer).
If 𝐴 is a formula of (unimodal) propositional modal logic that is valid on all
and only the Kripke frames in some class ℭ, then the 𝔏-formulas that result
from 𝐴 by uniformly substituting sentence letters by 𝔏-formulas are (jointly)
valid on a total counterpart structure 𝔖 iff the opaque propositional guise of
𝔖 is in ℭ.

Proof. Since validity in propositional modal logic is preserved under disjoint
unions, 𝐴 is valid on the opaque propositional guise of a structure 𝔖 iff 𝐴 is
valid on each 𝑛-ary opaque propositional guise of 𝔖, with 𝑛 ∈ ℕ. (See, e.g.,
[Blackburn et al. 2001], p.140, Theorem 3.14.(i).) So the opaque propositional
guise of 𝔖 is in ℭ iff all 𝑛-ary opaque propositional guises of 𝔖 are in ℭ.

Assume 𝐴 is valid on all and only the Kripke frames in ℭ. Let 𝐴′ be an
𝔏-formula that results from 𝐴 by uniformly substituting sentence letters by 𝔏-
formulas. By lemma 5.3, 𝐴′ is valid on all total counterpart structures 𝔖 whose
𝑛-ary propositional guise is in ℭ, where 𝑛 is the rank of 𝐴′. Any total structure
whose propositional guise is in ℭ satisfies this condition.

To show that the 𝐴 schema is valid only on structures 𝔖 whose guise is in ℭ,
let 𝔖 be a structure whose guise is not in ℭ. Then there is some 𝑛 such that the
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𝑛-ary guise of 𝔖 is not in ℭ. By lemma 5.3, there is an 𝔏-substitution instance
𝐴′ of 𝐴 with rank 𝑛 that is not valid on 𝔖.

As a union of relations of different arity, 𝑅∗ is a somewhat gerrymandered en-
tity. It may help to understand statements about 𝑅∗ as universal statements about
its members 𝑅𝑛. For example, the schema □𝐴 ⊃ 𝐴 is valid iff (0) every world can
see itself, and (1) every individual at every world is its own counterpart (relative to
some counterpart relation), and (2) every pair of individuals at every world is its
own counterpart (relative to some counterpart relation), and so on.

(Why “relative to some counterpart relation”? Because definition 5.6 says that
𝑤, 𝑑𝑅1𝑤′, 𝑑′ iff there is a 𝐶 ∈ 𝐾𝑤,𝑤′ such that 𝑑𝐶𝑑′. So 𝑤, 𝑑𝑅1𝑤, 𝑑 iff there is a
𝐶 ∈ 𝐾𝑤,𝑤 such that 𝑑𝐶𝑑.)

5.4 Interaction principles

So far, we have focussed on propositional schemas. We may also ask what kinds of
structures are defined by axioms or schemas that make use of the first-order machin-
ery in 𝔏, like these:

(BF) ∀𝑥□𝐴 ⊃ □∀𝑥𝐴
(CBF) □∀𝑥𝐴 ⊃ ∀𝑥□𝐴
(NE) 𝐸!𝑥 ⊃ □𝐸!𝑥
(NF) ¬𝐸!𝑥 ⊃ □¬𝐸!𝑥
(ND) 𝑥 ≠𝑦 ⊃ □𝑥 ≠𝑦

Most of the following facts are (in essence) shown in [Kutz 2000: 79ff.].

Theorem 5.5.
• (BF) is valid on a counterpart structure iff the structure is 𝐷-surjective,

meaning that if 𝐶 ∈ 𝐾𝑤,𝑤′ then every 𝑑′ ∈ 𝐷𝑤′ is such that 𝑑𝐶𝑑′ for
some 𝑑 ∈ 𝐷𝑤.

• (CBF) and (NE) are valid on a counterpart structure iff the structure
is existence-preserving, meaning that if 𝑑 ∈ 𝐷𝑤 and 𝑑𝐶𝑑′ for some
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𝐶 ∈ 𝐾𝑤,𝑤′ then 𝑑′ ∈ 𝐷𝑤′ .
• (NF) is valid on a counterpart structure iff the structure is nonexistence-

preserving, meaning that if 𝑑 ∉ 𝐷𝑤 and 𝑑𝐶𝑑′ for some 𝐶 ∈ 𝐾𝑤,𝑤′ then
𝑑′ ∉ 𝐷𝑤′ .

• (ND) is valid on a counterpart structure iff the structure is injective,
meaning that no two individuals have the same counterpart at any
world, relative to a single counterpart relation.

I should give proof of these, and possibly other relevant facts.
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6.1 Beginnings

In section 4.3, we showed completeness for the base logics FK, NK, and QK. In this
chapter, we look at stronger systems that extend these base logics by further axioms.

We’ll see that the simple approach from chapter 4 doesn’t work for many
stronger systems. I have not yet found a general approach that works for, say,
QS4M, QS4.4, and QS4.2 + BF. These are incomplete in Kripke semantics. I
do not know whether they are complete in counterpart semantics (as presented
in chapter 2).

Suppose, for example, that we extend FK by the (T) schema

(T) □𝐴 ⊃ 𝐴.

In standard Kripke semantics for propositional modal logic, the (T) schema is valid
on all and only the reflexive frames. By lemma 5.4, it follows that the schema is
valid on all and only the “locally reflexive” counterpart structures in which

𝑤, 𝑑1, … , 𝑑𝑛𝑅𝑛𝑤, 𝑑1, … , 𝑑𝑛

for every 𝑤 ∈ 𝑊 , 𝑛 ∈ ℕ, and 𝑑1, … , 𝑑𝑛 ∈ 𝑈𝑤. By definition 5.6, this means that
𝑤𝑅𝑤 and there is a 𝐶 ∈ 𝐾𝑤,𝑤 such that 𝑑1𝐶𝑑1, … , 𝑑𝑛𝐶𝑑𝑛.

Since the rules (closure conditions) of FK preserve validity on any frame (by
lemma 3.4), we know that FK+(T) is sound with respect to the class of locally reflex-
ive structures. We can establish completeness by showing that the canonical model
for FK+(T) is locally reflexive.
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Lemma 6.1.
If a logic 𝐿 contains all instances of (T) then the canonical model for 𝐿 is
locally reflexive.

Proof. Let 𝑤 be a world in the canonical model for 𝐿. Since 𝑤 contains all
instances of (T), we have {𝐴 ∶ □𝐴 ∈ 𝑤} ⊆ 𝑤. So 𝑤 id−→ 𝑤, where id is
the identity substitution that maps every variable to itself. (The 𝜎−→ relation is
defined in definition 4.3.) By definition 4.4, it follows that there is a 𝐶 ∈ 𝐾𝑤,𝑤
that maps every variable class [𝑥]𝑤 to itself.

Proposition 6.2.
FK+(T) is strongly complete with respect to the class of total functional struc-
tures that are locally reflexive.

Proof. Immediate from lemmas 4.7, 4.8, and 6.1.

The same reasoning shows that QK+(T) is complete with respect to the class of
locally reflexive classical structures.

Next, let’s add the (4) schema

(4) □𝐴 ⊃ □□𝐴.

This is valid on all and only the “locally transitive” counterpart structures, in which

𝑤, 𝑑1, … , 𝑑𝑛𝑅𝑛𝑤′, 𝑑′
1, … , 𝑑′𝑛 and 𝑤′, 𝑑′

1, … , 𝑑′𝑛𝑅𝑛𝑤″, 𝑑″
1 , … , 𝑑″𝑛

implies 𝑤, 𝑑1, … , 𝑑𝑛𝑅𝑛𝑤″, 𝑑″
1 , … , 𝑑″𝑛 .

We can establish completeness of (positive) systems containing (4) by showing that
their canonical model is locally transitive.

Lemma 6.3.
If a logic contains all instances of (=R) and (4) then its canonical model is
locally transitive.
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Proof. Let 𝑤, 𝑤′, 𝑤″ be worlds in the canonical model for a system 𝐿 that con-
tains all instances of schema (4), and suppose that

𝑤, 𝑑1, … , 𝑑𝑛𝑅𝑛𝑤′, 𝑑′
1, … , 𝑑′𝑛 and (1)

𝑤′, 𝑑′
1, … , 𝑑′𝑛𝑅𝑛𝑤″, 𝑑″

1 , … , 𝑑″𝑛 , (2)

where the 𝑑𝑖 are in 𝑈𝑤, the 𝑑′
𝑖 are in 𝑈𝑤′ , and the 𝑑″

𝑖 are in 𝑈𝑤″ . By definitions
5.6 and 4.4, (1) means that there is a substitution 𝜎 such that

(a) if □𝐴 ∈ 𝑤 then 𝜎(𝐴) ∈ 𝑤′, and

(b) for each 𝑖 there is an 𝑥 ∈ 𝑑𝑖 with 𝜎(𝑥) ∈ 𝑑′
𝑖 .

Similarly, (2) means that there is a substitution 𝜎′ such that

(c) if □𝐴 ∈ 𝑤′ then 𝜎′(𝐴) ∈ 𝑤″, and

(d) for each 𝑖 there is a 𝑦 ∈ 𝑑′
𝑖 with 𝜎′(𝑦) ∈ 𝑑″

𝑖 .

Let 𝜎″ = 𝜎′ ∘ 𝜎. We show that

(e) if □𝐴 ∈ 𝑤 then 𝜎″(𝐴) ∈ 𝑤″, and

(f) for each 𝑖 there is an 𝑥 ∈ 𝑑𝑖 with 𝜎″(𝑥) ∈ 𝑑″
𝑖 .

For (e), suppose □𝐴 ∈ 𝑤. Then □□𝐴 ∈ 𝑤 by (4), and so 𝜎″(𝐴) ∈ 𝑤″ by (a)
and (c).

Now for (f). We know from (b) that there is an 𝑥 ∈ 𝑑𝑖 with 𝜎(𝑥) ∈ 𝑑′
𝑖 . We

also know from (d) that there is a 𝑦 ∈ 𝑑′
𝑖 with 𝜎′(𝑦) ∈ 𝑑″

𝑖 . By construction of
𝑑′

𝑖 and 𝑤′, it follows that 𝜎(𝑥) = 𝑦 ∈ 𝑤′. So □𝜎(𝑥) = 𝑦 ∈ 𝑤′ by lemma 3.14,
and so 𝜎′(𝜎(𝑥)) = 𝜎′(𝑦) ∈ 𝑤‴ by (c).

Proposition 6.4.
• FK+(4) is complete with respect to the class of total functional struc-

tures that are locally transitive.
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6 Completeness of stronger systems

• QK+(4) is complete with respect to the class of classical structures that
are locally transitive.

• FK+(T)+(4) is complete with respect to the class of total functional
structures that are locally reflexive and locally transitive.

• QK+(T)+(4) is complete with respect to the class of classical struc-
tures that are locally reflexive and locally transitive.

Proof. Immediate from lemmas 4.7, 4.8, 4.10, 6.1, and 6.3.

So far, so good. Unfortunately, the approach we have taken breaks down for other
prominent axioms, such as

(B) 𝐴 ⊃ □♢𝐴,
(5) ♢𝐴 ⊃ □♢𝐴,
(M) □♢𝐴 ⊃ ♢□𝐴,
(Triv) 𝐴 ↔ □𝐴, or
(BF) ∀𝑥□𝐴 ⊃ □∀𝑥𝐴.

6.2 Restricted substitution models

Consider FK+(B). We’d like to show that the canonical model for FK+(B) is locally
symmetric, so that

if 𝑤, 𝑑1, … , 𝑑𝑛𝑅𝑛𝑤′, 𝑑′
1, … , 𝑑′𝑛 then 𝑤′, 𝑑′

1, … , 𝑑′𝑛𝑅𝑛𝑤, 𝑑1, … , 𝑑𝑛.

Suppose 𝑤, 𝑑1, … , 𝑑𝑛𝑅𝑛𝑤′, 𝑑′
1, … , 𝑑′𝑛. This means that there is a substitution 𝜎 such

that

(a) if □𝐴 ∈ 𝑤 then 𝜎(𝐴) ∈ 𝑤′, and

(b) for each 𝑖 there is an 𝑥 ∈ 𝑑𝑖 with 𝜎(𝑥) ∈ 𝑑′
𝑖 .

We’d like to infer that there is a substitution 𝜎′ such that

(c) if □𝐴 ∈ 𝑤′ then 𝜎′(𝐴) ∈ 𝑤, and

74



6 Completeness of stronger systems

(d) for each 𝑖 there is a 𝑦 ∈ 𝑑′
𝑖 with 𝜎′(𝑦) ∈ 𝑑𝑖.

There is no guarantee that this is the case, since 𝜎 may not be invertible.
It turns out that we can restrict the eligible substitutions in definition 4.4 to bijec-

tive (and hence invertible) substitutions. We will make use of this in chapter 9. But
this kind of move doesn’t generalize.

For a simple illustration, consider (Triv). It is easy to see that (Triv) s not valid
on any structure in which some world can see another: we can then falsify the simple
(Triv) instance 𝑃 ↔ □𝑃, where 𝑃 is a zero-ary predicates. However, in the canon-
ical model for, say, FK+(Triv), we may well have 𝑤 𝜎−→ 𝑤′ for some substitution
𝜎 and 𝑤′ ≠ 𝑤. It doesn’t help to stipulate that 𝜎 must be bijective. For example,
suppose 𝑤 contains 𝐹𝑣1, {¬𝐹𝑣𝑖 ∶ 𝑖 ≠ 1}, while 𝑤′ contains 𝐹𝑣2, {¬𝐹𝑣𝑖 ∶ 𝑖 ≠ 2}, and
𝜎 swaps 𝑣1 and 𝑣2. Then we may well have 𝑤 𝜎−→ 𝑤′.

In this case, it would help to restrict the eligible substitutions to {id}. Obviously,
however, we don’t want to do this in general.

What we could do, perhaps, is use different types of canonical models for different
systems. Canonical models for (B) systems would employ only bijective substitu-
tions, while canonical models for (Triv) systems would employ only the identity
substitution.

Unfortunately, this approach also doesn’t work in general.

6.3 S4M

An interesting case study for the differences between propositional modal logics and
their quantified extension is S4M (a.k.a. S4.1), which add the McKinsey axiom

(M) □♢𝐴 ⊃ ♢□𝐴

to S4 (= K+(T)+(4)).
Among transitive and reflexive Kripke frames, (M) defines the condition of fi-

nality: every world can see a world that can only see itself. But while propositional
S4M is sound and complete with respect to the class of transitive, reflexive, and final
frames (as shown in [Hughes and Cresswell 1996: pp.131–134]), quantified S4M is
incomplete in Kripke semantics: it is not sound and complete with respect to any
class of frames (as shown in [Hughes and Cresswell 1996: pp.265–270,283]).
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6 Completeness of stronger systems

The incompleteness proof (due to Fine) involves the following formula:

□∃𝑥𝐹𝑥 ⊃ ♢∃𝑥□𝐹𝑥. (⋆)

This, it turns out, is not provable in QS4M (= QK+(T)+(4)+(M)), yet it is valid on
every final Kripke frame. Since every frame for QS4M is final, it follows that QS4M
is not complete with respect to any class of frames with respect to which it is sound.

Here, in outline, is the proof that (⋆) is valid on every final Kripke frame. Let 𝔉
be some such frame. Assume that

𝔉, 𝐼, 𝑤, 𝑔 ⊩ □∃𝑥𝐹𝑥

for some 𝐼, 𝑤, 𝑔. We know that 𝑤 can see a world 𝑤′ that can only see itself. Thus

𝔉, 𝐼, 𝑤′, 𝑔 ⊩ ∃𝑥𝐹𝑥.
⇒ exists 𝑑 s.t. 𝔉, 𝐼, 𝑤′, 𝑔𝑥↦𝑑 ⊩ 𝐹𝑥

⇒ exists 𝑑 s.t. 𝔉, 𝐼, 𝑤′, 𝑔𝑥↦𝑑 ⊩ □𝐹𝑥
⇒ 𝔉, 𝐼, 𝑤′, 𝑔 ⊩ ∃𝑥□𝐹𝑥

⇒ 𝔉, 𝐼, 𝑤, 𝑔 ⊩ ♢∃𝑥□𝐹𝑥.

In counterpart semantics, finality turns into “local finality”: for each 𝑤, 𝑑1, … , 𝑑𝑛
there is a sequence 𝑤′, 𝑑′

1, … , 𝑑′𝑛 such that 𝑤, 𝑑1, … , 𝑑𝑛𝑅𝑛𝑤′, 𝑑′
1, … , 𝑑′𝑛 and 𝑤′, 𝑑′

1, … , 𝑑′𝑛
is only 𝑅𝑛-related to itself. The above proof no longer goes through. Indeed, (⋆) is
not valid on every locally final counterpart structure. For a counterexample, let 𝔖
be as follows.

w

a b

𝑊 = {𝑤},
𝑅 = {(𝑤, 𝑤)},

𝑈𝑤 = 𝐷𝑤 = {𝑎, 𝑏},
𝐾𝑤,𝑤 = {{(𝑎, 𝑎), (𝑏, 𝑏)}, {(𝑎, 𝑏), (𝑏, 𝑏)}}.

This structure is locally final, as the sequence 𝑤, 𝑏, 𝑏, … is an “end point” for any
sequence 𝑤, 𝑑1, 𝑑2, … with 𝑑𝑖 ∈ 𝑈𝑤. (There is a counterpart relation relative to
which 𝑏 is a counterpart of every individual, so we have 𝑤, 𝑑1, 𝑑2, … ▷ 𝑤, 𝑏, 𝑏, ….
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And since 𝑏 is its only counterpart relative to both relations, 𝑤, 𝑏, 𝑏, … is ▷ -related
only to itself.) The structure is also locally reflexive and transitive. But (⋆) is invalid
on 𝔖. To see this, let 𝐼(𝐹, 𝑤) = {𝑎} and let 𝑔 be any assignment. Then 𝔖, 𝐼, 𝑤, 𝑔 ⊩
□∃𝑥𝐹𝑥 because there are 𝑔′ for which 𝑤, 𝑔 ▷ 𝑤, 𝑔′, and 𝔖, 𝐼, 𝑤, 𝑔′ ⊩ ∃𝑥𝐹𝑥 for all
such 𝑔′. But 𝔖, 𝐼, 𝑤, 𝑔 ⊮ ♢∃𝑥□𝐹𝑥. For ♢∃𝑥□𝐹𝑥 is true at 𝑤, 𝑔 iff some ∃𝑥□𝐹𝑥 is
true at 𝑤, 𝑔′ for some 𝑔′ with 𝑤, 𝑔 ▷ 𝑤, 𝑔′. And ∃𝑥□𝐹𝑥 is true at 𝑤, 𝑔′ iff there is
a 𝑑 such that 𝔖, 𝐼, 𝑤, 𝑔′𝑥↦𝑑 ⊩ □𝐹𝑥, i.e., such that 𝔖, 𝐼, 𝑤, 𝑔∗ ⊩ 𝐹𝑥 for all g∗ with
𝑤, 𝑔′𝑥↦𝑑 ▷ 𝑤, 𝑔∗. 𝑑 can be either 𝑎 or 𝑏. Both have 𝑏 as a counterpart, relative to
the second counterpart relation. So one eligible 𝑔∗ always maps 𝑥 to 𝑏. And then
𝔖, 𝐼, 𝑤, 𝑔∗ ⊮ 𝐹𝑥.

So perhaps QS4M is complete in counterpart semantics. But we can’t establish
completeness by the method from the previous section. Here is why.

Since (⋆) is not in QS4M, some world 𝑤 in the canonical model must contain its
negation. So 𝑤 contains □∃𝑥𝐹𝑥 and □¬∃𝑥□𝐹𝑥. Let 𝑔 be an arbitrary assignment
for 𝑤. If the structure of the canonical model is final, any 𝑤, 𝑔 (for an initial segment
𝑔 of 𝑔) can access a final point 𝑤′, 𝑔′, via some substitution 𝜎. What does 𝑤′, 𝑔′ look
like?

We must have ∃𝑥𝐹𝑥 ∈ 𝑤′, from □∃𝑥𝐹𝑥 ∈ 𝑤. So there must be a witnessing
𝐹𝑦 ∈ 𝑤′. But we can’t have □𝐹𝑦 ∈ 𝑤′: otherwise ∃𝑥□𝐹𝑥 ∈ 𝑤′ by existential gen-
eralisation, (recall that we’re using a classical base in QS4M), which is incompatible
with □¬∃𝑥□𝐹𝑥 ∈ 𝑤 and 𝑤, 𝑔 ▷ 𝑤′, 𝑔′.

From 𝐹𝑦 and ¬□𝐹𝑦 in 𝑤′, we can infer that there is an eligible substitution 𝜎 that
leads from 𝑤′, [𝑦]𝑤′ to some 𝑤″, [𝜎(𝑦)]𝑤″ such that ¬𝐹𝜎(𝑦) ∈ 𝑤″. Since 𝑤′, 𝑔′

is final, 𝑤″ must be 𝑤′ itself. So there must be an eligible substitution 𝜎 such that
𝑤′ 𝜎−→ 𝑤′ and ¬𝐹𝜎(𝑦) ∈ 𝑤′.

Since 𝑤′, 𝑔′ can only see itself, it follows that [𝑦]𝑤′ is not in 𝑔′. (If it were then
following the 𝜎 arrows would lead from 𝑤′, 𝑔′ to a different 𝑤′, 𝑔″.)

Since the structure is reflexive, there must be an arrow from [𝑦]𝑤′ to itself. So
there must be two arrows from [𝑦]𝑤′ , one to [𝑦]𝑤′ and one to [𝑦′]𝑤′ . 𝑤′, 𝑔′ is final,
but 𝑤′, 𝑔′𝑥↦[𝑦]𝑤′ is not. (In this respect, the structure looks like the simple example
above.)

Now here’s the problem. Why can’t 𝑤′ see another world 𝑤″ via the same substi-
tution 𝜎, which would make 𝑤′, 𝑔′ non-final?

I haven’t yet said much about what 𝑤′, 𝑔′ looks like. Recall that we only need to
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show that for 𝑤, 𝑔 can access some final 𝑤′, 𝑔′. We can construct these however we
want. Presumably we’ll use the fact that QS4M can prove ♢(𝐴 →□𝐴), for any finite
conjunction of 𝐴 →□𝐴 formulas. It follows that

Γ = {𝜏(𝐵) ∶ □𝐵 ∈ 𝑤} ∪ {𝜏(𝐴 ⊃ □𝐴) ∶ 𝐴 a sentence}

is QS4M-consistent, as long as 𝜏 is injective (so that it has an inverse). Now we’d
try to construct 𝑤′ out of Γ and 𝑔′ out of 𝜏 and 𝑔. 𝑤′ would then contain all 𝐴 ⊃ □𝐴
with Var(𝐴) ∈ Ran(𝜏). Since 𝑤′ contains 𝐹𝑥 for all 𝑥 ∈ 𝑔′, it would presumably
contain □𝐹𝑥 for all these 𝑥. (We can’t require that 𝑤′ contain 𝐴 ⊃ □𝐴 for all 𝐴:
we know that it contains 𝐹𝑦 but not □𝐹𝑦.) But this isn’t enough to ensure that 𝑤′

can’t see another world 𝑤″ via 𝜎. It only tells us that this other world matches 𝑤′

with respect to sentences whose variables are in 𝑔′. For example, 𝑤″ must also have
¬𝐹𝑥. But why can’t we swap two of the other individuals – say, the witness [𝑦]𝑤′

with 𝐹𝑦 ∈ 𝑤′ and a non-witness [𝑦′]𝑤′ with ¬𝐹𝑦′ ∈ 𝑤′, so that in 𝑤″ we have 𝐹𝑦′

and ¬𝐹𝑦?
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7.1 Multiple counterparts and contingent identity

The logics we have studied so far have been well-behaved, displaying none of the
deviant features of Lewis’s logic. This docility had two sources. One was our strong
reading of the box. The other was our assumption of functionality: we have assumed
that every individual has at most one counterpart at every accessible world, relative
to any counterpart relation. We are now going to relax this assumption.

Why should we do this? One possible motivation is that we may want to allow not
only for contingent distinctness, but also for contingent identity. Functional counter-
part semantics validates (NI) but not (ND).

(NI) 𝑥 =𝑦 ⊃ □(𝑥 =𝑥 ⊃ 𝑥 =𝑦).
(ND) 𝑥 ≠𝑦 ⊃ □𝑥 ≠𝑦.

One might want to treat these on a par and allow both to fail.
Remember, however, that we treat singular terms as purely referential: the com-

positional semantic value of a name or variable is exhausted by its referent. Putative
examples of contingent identity, as in [Gibbard 1975], often involve terms (‘Lumpl’,
‘Goliath’) that are associated with different ways of tracking an individual across
worlds. We could add such an association to our semantics, but we have not done
so.

That said, there are possible examples of (metaphysically) contingent identity and
distinctness that do not involve different ways of tracking individuals. Consider a
group of small islands, formed as the result of volcanic activity. We might want to
say that two of these islands could have been a single island, if a little more lava had
flowed in between them. (Compare [Karmo 1983].) Conversely, we might want to
say that a single island could have been two islands, if a little less lava had flowed
into its central valley. (Compare Lewis’s [1973: 40f.] intuition that he “might have
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been twins”. [Schwarz 2014] considers analogous temporal cases. Epistemic cases
are easy to construct.)

Unlike (ND), (NI) is provable by standard formulations of Leibniz’s Law. This
is sometimes said to show that (NI) is a logical truth. But you can’t just look at the
shape of a formula to see whether it is a proper instance of Leibniz’s Law. If we
give the box the semantics of ∀𝑦, then (NI) is equivalent to the following, evidently
invalid, statement:

𝑥 =𝑦 ⊃ (∀𝑦 𝑥 =𝑥 ⊃ ∀𝑦 𝑥 =𝑦).
This is not a proper instance of Leibniz’s Law because the variable 𝑦 gets captured
when the second occurrence of 𝑥 in ∀𝑦 𝑥 = 𝑥 is replaced by 𝑦. As Lewis [1983]
observed, in counterpart semantics, modal operators effectively function as unselec-
tive binders of all variables in their scope. Informally, if 𝑥 and 𝑦 denote the same
individual, then □𝑥 =𝑥 says that all counterparts of this individual are self-identical,
but □𝑥 =𝑦 says that all counterparts of the individual are identical to one another.

An adequate logic for non-functional counterpart structures must restrict the ap-
plication of substitution principles. But how? Since terms as purely referential,
modal contexts are not generally resistant to substitution. The following principle,
for example, is valid:

𝑥 =𝑦 ⊃ (♢𝐹𝑥 ⊃ ♢𝐹𝑦).
In the next section, I am going to explain the restrictions we’ll need.

7.2 Substitution revisited

In section 3.2, I reviewed three strategies to prevent unwanted capturing of variables
in substitution. Let’s go over them again.

One strategy is to restrict substitution principles so that the substituted term must
be an individual constant. This wouldn’t help in the present context because modal
operators are unselective binders of singular terms, not just of variables: (NI) is
invalid in non-functional structures even if 𝑥 and 𝑦 are names.

A second strategy is to redefine the substitution operation so that bound occur-
rences of variables get renamed before substitution. We are going to see that this
route is also blocked: there is no way to redefine the substitution operation [𝑦/𝑥]
that satisfies the substitution lemma in non-functional structures.
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This leaves us with the third option: we have to explicitly restrict substitution
principles. Leibniz’ Law, for example, will become the schema

(LL∗) 𝑥 =𝑦 ⊃ (𝐴 ⊃ [𝑦/𝑥]𝐴), provided 𝑦 is free for 𝑥 in 𝐴.

In classical first-order logic, a variable 𝑦 is free (to be substituted) for 𝑥 in 𝐴 iff
no free occurrence of 𝑥 in 𝐴 lies in the scope of a quantifier that binds 𝑦. The same
restriction works for functional counterpart structures. For non-functional structures,
we need a stronger concept of freedom for substitution. The following (somewhat
non-obvious) definition turns out to work.

Definition 7.1 (Modal separation and freedom for substitution).
Two variables 𝑥 and 𝑦 are modally separated in a formula 𝐴 if no free occur-
rences of 𝑥 and 𝑦 in 𝐴 lie in the scope of the same modal operator.

𝑦 is really free (to be substituted) for 𝑥 in 𝐴 if either (i) 𝑥 and 𝑦 are the same
variable, or (ii) 𝑥 and 𝑦 are modally separated in 𝐴, or (iii) 𝐴 has the form □𝐵
and 𝑦 is really free for 𝑥 in 𝐵.

Clause (iii) makes the definition recursive.
I say ‘really free’, rather than ‘free’, as a reminder that this is not the usual notion

of freedom for substitution that you may be familiar with from first-order logic.
To illustrate definition 7.1, 𝑥 and 𝑦 are modally separated in ♢𝐹𝑥 and □𝐹𝑥 ⊃ ♢𝐹𝑦

and ∀𝑥□𝐺𝑥𝑦; 𝑦 is really free for 𝑥 in □𝑥 =𝑦 and □□¬𝐺𝑥𝑦 and □♢¬∃𝑥𝐺𝑥𝑦, but not
in □♢¬𝐺𝑥𝑦. Accordingly,

𝑥 =𝑦 ⊃ (♢𝐹𝑥 ⊃ ♢𝐹𝑦) and
𝑥 =𝑦 ⊃ (□𝑥 =𝑦 ⊃ □𝑦=𝑦) and
𝑥 =𝑦 ⊃ (♢𝑥 =𝑦 ⊃ □𝑦=𝑦) and

𝑥 =𝑦 ⊃ (□□¬𝐺𝑥𝑦 ⊃ □□¬𝐺𝑦𝑦) and
𝑥 =𝑦 ⊃ (□□¬∃𝑥𝐺𝑥𝑦 ⊃ □□¬∃𝑧𝐺𝑦𝑧)

are valid, but
𝑥 =𝑦 ⊃ (□♢¬𝐺𝑥𝑦 ⊃ □♢¬𝐺𝑦𝑦)

is invalid.
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Definition 7.1 does not incorporate the traditional restriction, that no free occur-
rence of 𝑥 in 𝐴 lies in the scope of a quantifier that binds 𝑦. That’s because I assume
that [𝑦/𝑥] still renames overtly bound variables, as per definition 3.1. We could,
of course, have used a naive definition of substitution in substitution principles like
(LL∗) and added the traditional restriction to the conditions under which 𝑦 is (really)
free for 𝑥 in 𝐴.

I’m now going to prove two key facts about modal separation and real freedom
for substitution. First, modal separation ensures that the substitution lemma holds:

Lemma 7.1 (Substitution lemma with modal separation).
For any counterpart model 𝔐, world 𝑤 in 𝔐, assignment 𝑔 on 𝑈𝑤, sentence
𝐴, and variables 𝑥 and 𝑦,

𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ 𝐴 iff 𝔐, 𝑤, 𝑔 ⊩ [𝑦/𝑥]𝐴,

provided 𝑥 and 𝑦 are modally separated in 𝐴.

Recall that 𝑔[𝑦/𝑥] (a.k.a. 𝑔 ∘ [𝑦/𝑥]) is the 𝑥-variant of 𝑔 that assigns 𝑔(𝑦) to 𝑥.

Proof. The proof is by induction on 𝐴. All cases is except the one for 𝐴 =
□𝐵 are covered in the proof of lemma 3.1, with 𝜎 = [𝑦/𝑥]. In each case, we
assume that 𝑥 and 𝑦 are modally separated in 𝐴. It follows that 𝑥 and 𝑦 are
also modally separated in the immediate subformulas 𝐵 and 𝐶 or 𝐴, that the
induction hypotheses in the proof of lemma 3.1 apply. The only exception is
the case for 𝐴 = □𝐵, which we now consider. We can assume that 𝑥 and 𝑦 are
different variables: the target claim trivially holds otherwise.

By definition 2.9, 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ □𝐵 iff 𝔐, 𝑤′, 𝑔[𝑦/𝑥]′ ⊩ 𝐵 for all 𝑤′, 𝑔[𝑦/𝑥]′

with 𝑤, 𝑔[𝑦/𝑥]𝑅𝑤′, 𝑔[𝑦/𝑥]′. We also have 𝔐, 𝑤, 𝑔 ⊩ [𝑦/𝑥]□𝐵 iff 𝔐, 𝑤, 𝑔 ⊩
□[𝑦/𝑥]𝐵 by definition 3.1, iff 𝔐, 𝑤′, 𝑔′ ⊩ [𝑦/𝑥]𝐵 for all 𝑤′, 𝑔′ with 𝑤, 𝑔 ▷ 𝑤′, 𝑔′,
by definition 2.9, iff 𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊩ 𝐵 for all such 𝑤′, 𝑔′ by induction hypoth-
esis. So we have to show that

𝔐, 𝑤′, 𝑔[𝑦/𝑥]′ ⊩ 𝐵 for all 𝑤′, 𝑔[𝑦/𝑥]′ with 𝑤, 𝑔[𝑦/𝑥] ▷ 𝑤′, 𝑔[𝑦/𝑥]′ (1)
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iff
𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊩ 𝐵 for all 𝑤′, 𝑔′ with 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. (2)

(1) entails (2). For assume 𝑤′, 𝑔′ are such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. By definition
2.8, this means that there is a 𝐶 ∈ 𝐾𝑤,𝑤′ such that 𝑔(𝑥)𝐶𝑔′(𝑥) for all vari-
ables 𝑥. So we have, for all variables 𝑥, 𝑔([𝑦/𝑥]𝑥)𝐶𝑔′([𝑦/𝑥]𝑥); in other words:
𝑔[𝑦/𝑥](𝑥)𝐶𝑔′[𝑦/𝑥](𝑥). So 𝑤, 𝑔[𝑦/𝑥] ▷ 𝑤′, 𝑔′[𝑦/𝑥]. Using 𝑔′[𝑦/𝑥] as 𝑔[𝑦/𝑥]′ it fol-
lows by (1) that 𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊩ 𝐵.

Without further assumptions, however, the converse direction may fail. 𝑔′[𝑦/𝑥]

and 𝑔[𝑦/𝑥]′ assign to 𝑥 and 𝑦 some counterpart of 𝑔(𝑦) (if there is any). But while
𝑔′[𝑦/𝑥] assigns the same counterpart to 𝑥 and 𝑦, 𝑔[𝑦/𝑥]′ may choose different
counterparts for 𝑥 and 𝑦, relative to the same counterpart relation.

But we know that either 𝑥 or 𝑦 does not occur freely in 𝐵. To show that (2)
entails (1), assume that 𝑤′, 𝑔[𝑦/𝑥]′ are such that 𝑤, 𝑔[𝑦/𝑥] ▷ 𝑤′, 𝑔[𝑦/𝑥]′. By defi-
nition 2.8, this means that there is a 𝐶 ∈ 𝐾𝑤,𝑤′ such that 𝑔[𝑦/𝑥](𝑧)𝐶𝑔[𝑦/𝑥]′(𝑧),
for all variables 𝑧.

Now assume that 𝑥 is not free in 𝐵. Define 𝑔′ so that 𝑔′(𝑧) = 𝑔[𝑦/𝑥]′(𝑧)
for every variable 𝑧 other than 𝑥, and 𝑔′(𝑥) is an arbitrary 𝑑 with 𝑔(𝑥)𝐶𝑑, or
undefined if there is no such 𝑑. Then 𝑔(𝑧)𝐶𝑔′(𝑧) for all variables 𝑧, and so
𝑤, 𝑔 ▷ 𝑤′, 𝑔′. By (2), we have 𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊩ 𝐵. But 𝑔′[𝑦/𝑥] and 𝑔[𝑦/𝑥]′ differ
only in the value of 𝑥, which is not free in 𝐵. By lemma 2.2, it follows that
𝔐, 𝑤′, 𝑔[𝑦/𝑥]′ ⊩ 𝐵.

Next, assume that 𝑦 is not free in 𝐵. In this case, define 𝑔′ so that 𝑔′(𝑥) is
an arbitrary 𝐶-counterpart of 𝑔(𝑥), as before, 𝑔′(𝑦) = 𝑔[𝑦/𝑥]′(𝑥), and 𝑔′(𝑧) =
𝑔[𝑦/𝑥]′(𝑧) for every variable 𝑧 other than 𝑥 and 𝑦. Again, we have 𝑔(𝑧)𝐶𝑔′(𝑧) for
all variables 𝑧, and thus 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. (Note that 𝑔[𝑦/𝑥]′(𝑥) is a 𝐶-counterpart of
𝑔(𝑦).) By (2), 𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊩ 𝐵. But 𝑔′[𝑦/𝑥] and 𝑔[𝑦/𝑥]′ differ only in the value
of 𝑦, which is not free in 𝐵. By lemma 2.2, it follows that 𝔐, 𝑤′, 𝑔[𝑦/𝑥]′ ⊩ 𝐵.

If we weaken the restriction of modal separation to real freedom of 𝑦 for 𝑥, the
substitution lemma holds only in one direction:

Lemma 7.2 (Semi-substitution lemma).
For any counterpart model 𝔐, world 𝑤 in 𝔐, assignment 𝑔 on 𝑈𝑤, and sen-
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tence 𝐴,
if 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ 𝐴 then 𝔐, 𝑤, 𝑔 ⊩ [𝑦/𝑥]𝐴,

provided 𝑦 is really free for 𝑥 in 𝐴.

Proof. The target claim obviously holds if 𝑥 and 𝑦 are the same variable. As-
sume they are not. We proceed by induction on 𝐴, but we only need two cases.

First, 𝐴 is not of the form □𝐵. In that case, 𝑦 is really free for 𝑥 in 𝐴 iff 𝑥 and
𝑦 are modally separated in 𝐴, by definition 7.1. The target claim then follows
from lemma 7.1.

Assume then that 𝐴 is □𝐵. We assume that 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ □𝐵, and try to
derive 𝔐, 𝑤, 𝑔 ⊩ [𝑦/𝑥]□𝐵, provided 𝑦 is really free for 𝑥 in □𝐵.

By definition 2.9, 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ □𝐵 implies that 𝔐, 𝑤′, 𝑔[𝑦/𝑥]′ ⊩ 𝐵 for all
𝑤′, 𝑔[𝑦/𝑥]′ with 𝑤, 𝑔[𝑦/𝑥]𝑅𝑤′, 𝑔[𝑦/𝑥]′.

Let 𝑤′, 𝑔′ be such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. By definition 2.8, this means that there
is a 𝐶 ∈ 𝐾𝑤,𝑤′ such that 𝑔(𝑧)𝐶𝑔′(𝑧) for all variables 𝑧. So we also have
𝑔([𝑦/𝑥]𝑧)𝐶𝑔′([𝑦/𝑥]𝑧); in other words: 𝑔[𝑦/𝑥](𝑧)𝐶𝑔′[𝑦/𝑥](𝑧), for all 𝑧. So 𝑤, 𝑔[𝑦/𝑥] ▷ 𝑤′, 𝑔′[𝑦/𝑥].
Since 𝔐, 𝑤′, 𝑔[𝑦/𝑥]′ ⊩ 𝐵 for all 𝑤′, 𝑔[𝑦/𝑥]′ with 𝑤, 𝑔[𝑦/𝑥]𝑅𝑤′, 𝑔[𝑦/𝑥]′, we can in-
fer that 𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊩ 𝐵.

Assume that 𝑦 is really free for 𝑥 in □𝐵. By definition 7.1, it follow that 𝑦
is really free for 𝑥 in 𝐵. So by induction hypothesis, if 𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊩ 𝐵 then
𝔐, 𝑤′, 𝑔′ ⊩ [𝑦/𝑥]𝐵. We have shown that 𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊩ 𝐵. So 𝔐, 𝑤′, 𝑔′ ⊩
[𝑦/𝑥]𝐵.

Since 𝑤′, 𝑔′ were arbitrary points with 𝑤, 𝑔 ▷ 𝑤′, 𝑔′, we have 𝔐, 𝑤, 𝑔 ⊩
□[𝑦/𝑥]𝐵 by definition 2.9, and thus 𝔐, 𝑤, 𝑔 ⊩ [𝑦/𝑥]□𝐵 by definition 3.1.

The converse does not hold. For example, 𝔐, 𝑤, 𝑔 ⊩ [𝑦/𝑥]□𝑥 =𝑦 does not imply
𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ □𝑥 = 𝑦. The operation [𝑦/𝑥], as defined in definition 3.1, does not
always satisfy the substitution lemma, not even when 𝑦 is really free for 𝑥. The
following proposition shows that this problem is unavoidable.

Proposition 7.3 (Undefinability of substitution).
There is no operation Φ on formulas 𝐴 in the standard language of modal
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predicate logic such that 𝔐, 𝑤, 𝑔 ⊩ Φ(𝐴) iff 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ 𝐴 for all models
𝔐, worlds 𝑤 in 𝔐, assignments 𝑔 on 𝑈𝑤, and variables 𝑥, 𝑦.

Proof. We are going to show that the standard language of modal predicate
logic cannot express that an individual has multiple counterparts at some acces-
sible world (relative to the same counterpart relation).

Let 𝔐1 be a counterpart model with 𝑊 = {𝑤}, 𝑅 = {⟨𝑤, 𝑤⟩}, 𝑈𝑤 = {𝑥, 𝑦, 𝑦∗},
𝐷𝑤 = {𝑥}, 𝐾𝑤,𝑤 = {{⟨𝑑, 𝑑 ⟩ ∶ 𝑑 ∈ 𝑈𝑤}}, and 𝐼𝑤(𝑃) = ∅ for all non-logical
predicates 𝑃. Let 𝑔(𝑦) = 𝑦 and 𝑔(𝑧) = 𝑥 for every variable 𝑧 ≠ 𝑦. Let
𝔐2 be like 𝔐1 except that 𝑦∗ is also a counterpart of 𝑦. That is, 𝐾𝑤,𝑤′ =
{{⟨𝑥, 𝑥 ⟩, ⟨𝑦, 𝑦⟩, ⟨𝑦∗, 𝑦∗ ⟩, ⟨𝑦, 𝑦∗ ⟩}}.

We have 𝔐2, 𝑤, 𝑔[𝑦/𝑥] ⊩ ♢𝑦≠𝑥, but 𝔐1, 𝑤, 𝑔[𝑦/𝑥] ⊮ ♢𝑦≠𝑥. However, every
𝔏-sentence has the same truth-value at 𝑤 under 𝑔 in both models.

We prove this by showing that for every 𝔏-sentence 𝐴, the following three
statements are equivalent: (1) 𝔐1, 𝑤, 𝑔 ⊩ 𝐴, (2) 𝔐2, 𝑤, 𝑔 ⊩ 𝐴, (3) 𝔐2, 𝑤, 𝑔∗ ⊩
𝐴, where 𝑔∗ is the 𝑦-variant of 𝑔 on 𝑈𝑤 with 𝑔∗(𝑦) = 𝑔(𝑦∗).

1. 𝐴 is 𝑃𝑥1 … 𝑥𝑛. It is clear that 𝔐1, 𝑤, 𝑔 ⊩ 𝑃𝑥1 … 𝑥𝑛 iff 𝔐2, 𝑤, 𝑔 ⊩
𝑃𝑥1 … 𝑥𝑛 because counterpart relations do not figure in the evaluation
of atomic formulas. Moreover, for non-logical 𝑃, 𝔐2, 𝑤, 𝑔 ⊮ 𝑃𝑥1 … 𝑥𝑛
and 𝔐2, 𝑤, 𝑔∗ ⊮ 𝑃𝑥1 … 𝑥𝑛, because 𝐼(𝑃) = ∅. For the identity predicate,
observe that 𝔐2, 𝑤, 𝑔 ⊮ 𝑢 = 𝑣 iff exactly one of 𝑢, 𝑣 is 𝑦, since 𝑔(𝑧) = 𝑥
for all terms 𝑧 ≠ 𝑦. For the same reason, 𝔐2, 𝑤, 𝑔∗ ⊮ 𝑢 = 𝑣 iff exactly
one of 𝑢, 𝑣 is 𝑦. So 𝔐2, 𝑤, 𝑔 ⊩ 𝑢=𝑣 iff 𝔐2, 𝑤, 𝑔∗ ⊩ 𝑢=𝑣.

2. 𝐴 is ¬𝐵. 𝔐1, 𝑤, 𝑔 ⊩ ¬𝐵 iff 𝔐1, 𝑤, 𝑔 ⊮ 𝐵 by definition 2.9, iff 𝔐2, 𝑤, 𝑔 ⊮
𝐵 by induction hypothesis, iff 𝔐2, 𝑤, 𝑔 ⊩ ¬𝐵 by definition 2.9. More-
over, 𝔐2, 𝑤, 𝑔 ⊮ 𝐵 iff 𝔐2, 𝑤, 𝑔∗ ⊮ 𝐵 by induction hypothesis, iff 𝔐2, 𝑤, 𝑔∗ ⊩
¬𝐵 by definition 2.9.

3. 𝐴 is 𝐵 ⊃ 𝐶. Analogous.

4. 𝐴 is ∀𝑧𝐵. Let 𝑣 be a variable not in Var(𝐵)∪{𝑦}. By lemma 7.1, 𝔐1, 𝑤, 𝑔 ⊩
∀𝑧𝐵 iff 𝔐1, 𝑤, 𝑔 ⊩ ∀𝑣[𝑣/𝑧]𝐵. By definition 2.9, 𝔐1, 𝑤, 𝑔 ⊩ ∀𝑣[𝑣/𝑧]𝐵
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iff 𝔐1, 𝑤, 𝑔𝑣↦𝑑 ⊩ [𝑣/𝑧]𝐵 for all 𝑑 ∈ 𝐷𝑤. As 𝐷𝑤 = {𝑥} and 𝑔(𝑣) = 𝑥,
the only such 𝑔𝑣↦𝑑 is 𝑔 itself. So 𝔐1, 𝑤, 𝑔 ⊩ ∀𝑧𝐵 iff 𝔐1, 𝑤, 𝑔 ⊩ [𝑣/𝑧]𝐵.
By the same reasoning, 𝔐2, 𝑤, 𝑔 ⊩ ∀𝑧𝐵 iff 𝔐2, 𝑤, 𝑔 ⊩ [𝑣/𝑧]𝐵. But
by induction hypothesis, 𝔐1, 𝑤, 𝑔 ⊩ [𝑣/𝑧]𝐵 iff 𝔐2, 𝑤, 𝑔 ⊩ [𝑣/𝑧]𝐵. So
𝔐1, 𝑤, 𝑔 ⊩ ∀𝑧𝐵 iff 𝔐2, 𝑤, 𝑔 ⊩ ∀𝑧𝐵. Moreover, by induction hypothesis,
𝔐2, 𝑤, 𝑔 ⊩ [𝑣/𝑧]𝐵 iff 𝔐2, 𝑤, 𝑔∗ ⊩ [𝑣/𝑧]𝐵, iff 𝔐2, 𝑤, 𝑔∗ ⊩ ∀𝑣[𝑣/𝑧]𝐵
because 𝑔∗ is the only 𝑔𝑣↦𝑑 with 𝑑 ∈ 𝐷𝑤, iff 𝔐2, 𝑤, 𝑔∗ ⊩ ∀𝑧𝐵 by lemma
7.1.

5. 𝐴 is □𝐵. In both 𝔐1 and 𝔐2, the only world accessible from 𝑤 is 𝑤
itself. In 𝔐1, 𝑔 at 𝑤 is also the only image of 𝑔 at 𝑤. So by definition 2.9,
𝔐1, 𝑤, 𝑔 ⊩ □𝐵 iff 𝔐1, 𝑤, 𝑔 ⊩ 𝐵.

In 𝔐2, there are two 𝑤-images of 𝑔 at 𝑤: 𝑔 and 𝑔∗. So 𝔐2, 𝑤, 𝑔 ⊩
□𝐵 iff both 𝔐2, 𝑤, 𝑔 ⊩ 𝐵 and 𝔐2, 𝑤, 𝑔∗ ⊩ 𝐵. By induction hypoth-
esis, 𝔐1, 𝑤, 𝑔 ⊩ 𝐵 iff both 𝔐2, 𝑤, 𝑔 ⊩ 𝐵 and 𝔐2, 𝑤, 𝑔∗ ⊩ 𝐵. So
𝔐1, 𝑤, 𝑔 ⊩ □𝐵 iff 𝔐2, 𝑤, 𝑔 ⊩ □𝐵. Moreover, in 𝔐2, 𝑔∗ is the only
𝑤-image of 𝑔∗ at 𝑤. So 𝔐2, 𝑤, 𝑔∗ ⊩ □𝐵 iff 𝔐2, 𝑤, 𝑔∗ ⊩ 𝐵. By induction
hypothesis, 𝔐2, 𝑤, 𝑔∗ ⊩ 𝐵 iff 𝔐2, 𝑤, 𝑔 ⊩ 𝐵. So 𝔐2, 𝑤, 𝑔∗ ⊩ □𝐵 iff
both 𝔐2, 𝑤, 𝑔∗ ⊩ 𝐵 and 𝔐2, 𝑤, 𝑔 ⊩ 𝐵, which as we just saw holds iff
𝔐2, 𝑤, 𝑔 ⊩ □𝐵.

7.3 The new base logics

We know that among functional counterpart structures, FK is the logic of total struc-
tures, NK is the logic of single-domain structures, and QK is the logic of structures
that are both total and single-domain. This picture remains essentially intact for
nonfunctional structures, except that all substitution principles of (free or classical)
first-order logic must be restricted by the condition that the substituted term be “re-
ally free” for the term it replaces. Here are the revised principles.

(UI∗) ∀𝑥𝐴 ⊃ [𝑦/𝑥]𝐴, provided 𝑦 is really free for 𝑥 in 𝐴,

(FUI∗) ∀𝑥𝐴 ⊃ (𝐸𝑦 ⊃ [𝑦/𝑥]𝐴), provided 𝑦 is really free for 𝑥 in 𝐴,
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(LL∗) 𝑥 =𝑦 ⊃ 𝐴 ⊃ [𝑦/𝑥]𝐴, provided 𝑦 is really free for 𝑥 in 𝐴,

(Sub∗) if ⊢𝐿 𝐴, then ⊢𝐿 [𝑦/𝑥]𝐴, provided 𝑦 is really free for 𝑥 in 𝐴.

Let FK∗ be the smallest system that contains all 𝔏-instances of (Taut), (UD),
(VQ), (FUI∗), (∀Ex), (=R), (LL∗), (K), and that is closed under (MP), (UG),
(Nec) and (Sub∗).

Let QK∗ be the smallest system that contains all 𝔏-instances of (Taut), (UD),
(UI∗), (∀Ex), (=R), (LL∗), (K), and that is closed under (MP), (UG), (Nec) and
(Sub∗).

Let NK∗ be the smallest system that contains all 𝔏-instances of (Taut), (UD),
(VQ), (FUI∗), (Neg), (LL∗), (∀=R), (K), (NA), (TE), and that is closed under
(MP), (UG), (Nec) and (Sub∗).

Lemma 7.4 (Soundness of the FK∗ axioms).
Every instance of (Taut), (VQ), (UD), (FUI∗), (∀E!), (=R), (LL∗), and (K)
is valid on every total counterpart structure.

Proof. Let 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ be any total counterpart model, 𝑤 a world
in 𝑊 , and 𝑔 a (total) assignment on 𝑈𝑤. We show that 𝔐, 𝑤, 𝑔 ⊩ 𝐴 for every
instance 𝐴 of every axiom.

The proof for (Taut), (VQ), (UD), (∀E!), (=R), (K) is exactly as in the
proof of lemma 3.3. We only have to adjust the proofs for (FUI∗) and (LL∗),
where we’ll invoke lemma 7.2 instead of lemma 3.1.

1. (FUI∗). Assume 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐴 and 𝔐, 𝑤, 𝑔 ⊩ 𝐸!𝑡. By lemma 3.2, the
latter means that 𝑔(𝑡) ∈ 𝐷𝑤. By definition 2.9, the former means that
𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐴 for every 𝑑 ∈ 𝐷𝑤. So in particular, 𝔐, 𝑤, 𝑔𝑥↦𝑔(𝑡) ⊩ 𝐴.
Since 𝑔𝑥↦𝑔(𝑡) = 𝑔[𝑡/𝑥], it follows by lemma 7.2 that 𝔐, 𝑤, 𝑔 ⊩ [𝑡/𝑥]𝐴.

2. (LL∗). Assume 𝔐, 𝑤, 𝑔 ⊩ 𝑠=𝑡 and 𝔐, 𝑤, 𝑔 ⊩ 𝐴. By definitions 2.9 and 2.4,
the former implies that 𝑔(𝑠) = 𝑔(𝑡). So 𝑔[𝑠/𝑡] = 𝑔. Since 𝔐, 𝑤, 𝑔 ⊩ 𝐴, we
have 𝔐, 𝑤, 𝑔[𝑠/𝑡] ⊩ 𝐴. It follows by lemma 7.2 that 𝔐, 𝑤, 𝑔 ⊩ [𝑠/𝑡]𝐴.
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Lemma 7.5 (Soundness of the FK∗ rules).
If all elements of a set of formulas Γ are valid on a counterpart structure 𝔖,
and Γ is extended by (MP), (UG) or (Nec), or (Sub∗), then the new sentences
are still valid on 𝔖.

Proof. The case of (MP), (UG), and (Nec) is covered in the proof of lemma
3.4. We only need to adjust the proof for (Sub∗).

Assume for contraposition that 𝔐, 𝑤, 𝑔 ⊮ [𝑦/𝑥]𝐴 for some 𝔐, 𝑤, 𝑔. By
lemma 7.2, it follows that 𝔐, 𝑤, 𝑔 ∘ [𝑦/𝑥] ⊮ 𝐴. Since 𝑔 ∘ [𝑦/𝑥] is an assignment
on 𝑈𝑤, this means that 𝐴 is not valid on the structure of 𝔐.

Theorem 7.6 (Soundness of FK∗).
All members of FK∗ are valid on all total counterpart structures.

Proof. Immediate from lemmas 7.4 and 7.5.

Lemma 7.7 (Soundness of (UI∗)).
All instances of (UI∗) are valid on every total single-domain counterpart
structure.

Proof. Assume 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐴. By definition 2.9, 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐴 for every
𝑑 ∈ 𝐷𝑤. Since 𝑔 is total, 𝑔(𝑡) ∈ 𝑈𝑤. So 𝑔(𝑡) ∈ 𝐷𝑤. And so 𝔐, 𝑤, 𝑔𝑥↦𝑔(𝑡) ⊩ 𝐴.
Since 𝑔𝑥↦𝑔(𝑡) = 𝑔[𝑡/𝑥], it follows by lemma 7.2 that 𝔐, 𝑤, 𝑔 ⊩ [𝑡/𝑥]𝐴.

Theorem 7.8 (Soundness of QK∗).
All members of QK∗ are valid on all classical counterpart structures.

Proof. Immediate from lemmas 7.4, 7.5 and 7.7.

For negative logics, we use the concept of n-validity from section 3.3, as we allow
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for terms that go genuinely empty.

Lemma 7.9 (Soundness of the NK∗ axioms).
Every instance of (Taut), (VQ), (UD), (FUI∗), (Neg), (∀=R), (LL∗), (NA),
(TE), and (K) is n-valid on every single-domain counterpart structure.

Proof. The proof for all the axioms proceeds just as in the proofs of lemma 3.3,
3.8, and 7.4.

Theorem 7.10 (Soundness of NK∗).
Every member of NK∗ is n-valid on every single-domain counterpart struc-
ture.

Proof. Immediate from lemmas 7.9 and 7.5.

The completeness of these logics will be established in chapter 9.

7.4 Some consequences

Let’s prove a few properties derivable from the above axiomatisations. We redefine
the concept of positive and negative logics: from now on, a positive or negative logic
only requires the weakened substitution principles.

Definition 7.2 (Positive logics).
A set of 𝔏-sentences is a positive logic if it includes FK∗ and is closed under
(MP), (UG), (Nec) and (Sub∗).

Definition 7.3 (Negative logics).
A set of 𝔏-sentences is a negative logic if it includes NK∗ and is closed under
(MP), (UG), (Nec) and (Sub∗).
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Now let 𝐿 be an arbitrary positive or negative logic. Lemmas 3.10 and 3.11 can be
established just as in section 3.4. The same is true for lemmas 3.12, 3.13, and 3.15,
except that we need to use the starred substitution principles. Here are the adjusted
proofs of lemmas 3.12 and 3.13, for future reference.

Lemma 7.11 (Existence and self-identity).
If 𝐿 is negative, then for any 𝔏-variable 𝑥,

(EI) ⊢𝐿 𝐸!𝑥 ↔ 𝑥 =𝑥;

Proof. By (FUI∗), ⊢𝐿 ∀𝑥(𝑥 = 𝑥) ⊃ (𝐸!𝑥 ⊃ 𝑥 = 𝑥). By (∀=R), ⊢𝐿 ∀𝑥(𝑥 = 𝑥).
So ⊢𝐿 𝐸!𝑥 ⊃ 𝑥 =𝑥. Conversely, 𝑥 =𝑥 ⊃ 𝐸!𝑥 by (Neg).

Lemma 7.12 (Symmetry and transitivity of identity).
For any 𝔏-variables 𝑥, 𝑦, 𝑧,

(=S) ⊢𝐿 𝑥 =𝑦 ⊃ 𝑦=𝑥;

(=T) ⊢𝐿 𝑥 =𝑦 ⊃ 𝑦=𝑧 ⊃ 𝑥 =𝑧.

Proof. For (= S), let 𝑣 be some variable ∉ {𝑥, 𝑦}. Then

1. ⊢𝐿 𝑣=𝑦 ⊃ (𝑣=𝑥 ⊃ 𝑦=𝑥). (LL∗)
2. ⊢𝐿 𝑥 =𝑦 ⊃ (𝑥 =𝑥 ⊃ 𝑦=𝑥). (1, (Sub∗))
3. ⊢𝐿 𝑥 =𝑦 ⊃ 𝑥 =𝑥. ((=R), or (Neg) and (∀=R))
4. ⊢𝐿 𝑥 =𝑦 ⊃ 𝑦=𝑥. (2, 3)

For (= T),

1. ⊢𝐿 𝑥 =𝑦 ⊃ 𝑦=𝑥. (=S)
2. ⊢𝐿 𝑦=𝑥 ⊃ (𝑦=𝑧 ⊃ 𝑥 =𝑧). (LL∗)
3. ⊢𝐿 𝑥 =𝑦 ⊃ (𝑦=𝑧 ⊃ 𝑥 =𝑧). (1, 2)
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Lemma 7.13 (Closure under injective substitutions).
For any 𝔏-formula 𝐴 and injective substitution 𝜏 on 𝔏,

(Subt) ⊢𝐿 𝐴 iff ⊢𝐿 𝐴𝜏.

Proof. Assume ⊢𝐿 𝐴. Let 𝑥1, … , 𝑥𝑛 be the variables in 𝐴. If 𝑛 = 0, then 𝐴 = 𝐴𝜏

and the result is trivial. If 𝑛 = 1, then 𝐴𝜏 is [𝑥𝜏
1 /𝑥1]𝐴, and 𝑥𝜏

1 is either 𝑥1 itself
or does not occur in 𝐴. In the first case, [𝑥𝜏

1 /𝑥1]𝐴 = 𝐴 and the result is again
trivial. In the second case, 𝑥𝜏

1 is really free for 𝑥1 in 𝐴, and thus ⊢𝐿 [𝑥𝜏
1 /𝑥1]𝐴

by (Sub∗).
Assume then that 𝑛 > 1. Note first that 𝐴𝜏 = [𝑥𝜏𝑛 /𝑣𝑛] … [𝑥𝜏

2 /𝑣2][𝑥𝜏
1 /𝑥1]

[𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴, where 𝑣2, … , 𝑣𝑛 are distinct variables not in 𝐴 or 𝐴𝜏. This
is easily shown by induction on the subformulas 𝐵 of 𝐴 (ordered by complexity).
To keep lines short, let Σ abbreviate [𝑥𝜏𝑛 /𝑣𝑛] … [𝑥𝜏

2 /𝑣2][𝑥𝜏
1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛].

1. If 𝐵 is 𝑃𝑥𝑗 … 𝑥𝑘, then 𝑥𝑗, … , 𝑥𝑘 are variables from 𝑥1, … , 𝑥𝑛, and Σ𝐵 =
𝑃𝑥𝜏

𝑗 … 𝑥𝜏
𝑘 = 𝐵𝜏, by definition 3.1.

2. If 𝐵 is ¬𝐶, then by induction hypothesis, Σ𝐶 = 𝐶𝜏, and hence ¬Σ𝐶 =
¬𝐶𝜏. But Σ¬𝐶 is ¬Σ𝐶 by definition 3.1, and (¬𝐶)𝜏 is ¬𝐶𝜏 by defini-
tion 3.1.

3. The case for 𝐶 ⊃ 𝐷 is analogous.

4. If 𝐵 is ∀𝑧𝐶, then by induction hypothesis, Σ𝐶 = 𝐶𝜏. Since 𝜏 is injective,
Σ∀𝑧𝐶 is ∀Σ𝑧Σ𝐶 by definition 3.1, and (∀𝑧𝐶)𝜏 is ∀𝑧𝜏𝐶𝜏 by definition
3.1. Moreover, since 𝑧 is one of 𝑥1, … , 𝑥𝑛, Σ𝑧 = 𝑧𝜏.

5. If 𝐵 is □𝐶, then by induction hypothesis, Σ𝐶 is 𝐶𝜏, and hence □Σ𝐶
is □𝐶𝜏. But Σ□𝐶 is □Σ𝐶 by definition 3.1, and (□𝐶)𝜏 is □𝐶𝜏 by
definition 3.1.

Now we show that 𝐿 contains all “segments” of [𝑥𝜏𝑛 /𝑣𝑛] … [𝑥𝜏
2 /𝑣2][𝑥𝜏

1 /𝑥1]
[𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴, beginning with the rightmost substitution, [𝑣𝑛/𝑥𝑛]𝐴. Since
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𝑣𝑛 is really free for 𝑥𝑛 in 𝐴, by (Sub∗), ⊢𝐿 [𝑣𝑛/𝑥𝑛]𝐴. Likewise, for each 1 < 𝑖 <
𝑛, 𝑣𝑖 is really free for 𝑥𝑖 in [𝑣𝑖+1/𝑥𝑖+1] … [𝑣𝑛/𝑥𝑛]𝐴. So ⊢𝐿 [𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴.

With respect to [𝑥𝜏
1 /𝑥1], we distinguish three cases. First, if 𝑥1 = 𝑥𝜏

1 , then ⊢𝐿
[𝑥𝜏

1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴, because [𝑥𝜏
1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴 is [𝑣2/𝑥2] …

[𝑣𝑛/𝑥𝑛]𝐴. Second, if 𝑥1 ≠ 𝑥𝜏
1 and 𝑥𝜏

1 ∉ Var(𝐴), then 𝑥𝜏
1 ∉ Var([𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴),

since the 𝑣1, … , 𝑣𝑛 are not in Var(𝐴) or Var(𝐴𝜏) So 𝑥𝜏
1 is really free for 𝑥1 in

[𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴, and by (Sub∗), ⊢𝐿 [𝑥𝜏
1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴. Third, if

𝑥1 ≠ 𝑥𝜏
1 and 𝑥𝜏

1 ∈ Var(𝐴), then 𝑥𝜏
1 must be one of 𝑥2, … , 𝑥𝑛. Then again

𝑥𝜏
1 ∉ Var([𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴), and so ⊢𝐿 [𝑥𝜏

1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴 by
(Sub∗).

Next, 𝑥𝜏
2 is really free for 𝑣2 in [𝑥𝜏

1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴, because 𝜏 is in-
jective and hence 𝑥𝜏

2 ≠ 𝑥𝜏
1 , so 𝑥𝜏

2 does not occur in [𝑥𝜏
1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴.

Hence ⊢𝐿 [𝑥𝜏
2 /𝑣2][𝑥𝜏

1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴. By the same reasoning, for
each 2 < 𝑖 ≤ 𝑛, 𝑥𝜏

𝑖 is really free for 𝑣𝑖 in [𝑥𝜏
𝑖−1/𝑣𝑖−1] … [𝑥𝜏

2 /𝑣2][𝑥𝜏
1 /𝑥1][𝑣2/𝑥2]

… [𝑣𝑛/𝑥𝑛]𝐴. So ⊢𝐿 [𝑥𝜏𝑛 /𝑣𝑛] … [𝑥𝜏
2 /𝑣2][𝑥𝜏

1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴, i.e. ⊢𝐿
𝐴𝜏.

This proves the left-to-right direction of (Subt). The other direction imme-
diately follows. Let 𝑥𝜏

1 , … , 𝑥𝜏𝑛 be the variables in 𝐴𝜏, and let 𝜎 be an arbitrary
transformation that maps each 𝑥𝜏

𝑖 back to 𝑥𝑖 (i.e., to (𝑥𝜏
𝑖 )𝜏−1). By the left-to-

right direction of (Subt), ⊢𝐿 𝐴𝜏 entails ⊢𝐿 (𝐴𝜏)𝜎, and (𝐴𝜏)𝜎 is simply 𝐴.

Lemma 7.14 (Leibniz’ Law with partial substitution).
Let 𝐴 be a formula of 𝔏, and 𝑥, 𝑦 variables of 𝔏. Let [𝑦//𝑥]𝐴 be 𝐴 with one or
more occurrences of 𝑥 replaced by 𝑦.

(LL∗
p) ⊢𝐿 𝑥 = 𝑦 ⊃ 𝐴 ⊃ [𝑦//𝑥]𝐴, provided the following conditions are all

satisfied.
(i) [𝑦//𝑥]𝐴 does not replace any occurrence of 𝑥 in the scope of a

quantifier binding 𝑥 or 𝑦.
(ii) Either 𝑦 is really free for 𝑥 in 𝐴, or [𝑦//𝑥]𝐴 does not replace

any occurrence of 𝑥 in the scope of a modal operator in 𝐴 that
also contains 𝑦.

(iii) In the scope of any modal operator in 𝐴, [𝑦//𝑥]𝐴 either replaces
all or no occurrences of 𝑥 by 𝑦.
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Proof. Let 𝑣 ≠ 𝑦 be a variable not in Var(𝐴), and let [𝑣//𝑥]𝐴 be like [𝑦//𝑥]𝐴 ex-
cept that all new occurrences of 𝑦 are replaced by 𝑣: if [𝑦//𝑥]𝐴 satisfies (i)–(iii),
then so does [𝑦//𝑥]𝐴 with all new occurrences of 𝑦 replaced by 𝑣. Moreover,
in the resulting formula [𝑣//𝑥]𝐴 all occurrences of 𝑣 are free and free for 𝑦, by
clause (i); so [𝑦/𝑣][𝑣//𝑥]𝐴 = [𝑦//𝑥]𝐴 by definition 3.1. By (LL∗),

⊢𝐿 𝑣=𝑦 ⊃ [𝑣//𝑥]𝐴 ⊃ [𝑦/𝑣][𝑣//𝑥]𝐴, (1)

provided that 𝑦 is really free for 𝑣 in [𝑣//𝑥]𝐴, i.e. provided that either 𝑦 is really
free for 𝑥 in 𝐴, or [𝑣//𝑥]𝐴 (and thus [𝑦//𝑥]𝐴) does not replace any occurrence
of 𝑥 in the scope of a modal operator in 𝐴 that also contains 𝑦. This is guaranteed
by condition (ii). Since [𝑦/𝑣][𝑣//𝑥]𝐴 is [𝑦//𝑥]𝐴, (1) can be shortened to

⊢𝐿 𝑣=𝑦 ⊃ [𝑣//𝑥]𝐴 ⊃ [𝑦//𝑥]𝐴. (2)

By (Sub∗), it follows that

⊢𝐿 [𝑥/𝑣](𝑣=𝑦 ⊃ [𝑣//𝑥]𝐴 ⊃ [𝑦//𝑥]𝐴), (3)

provided that 𝑥 is really free for 𝑣 in 𝑣 = 𝑦 ⊃ [𝑣//𝑥]𝐴 ⊃ [𝑦//𝑥]𝐴. Since this
isn’t a formula of the form □𝐵, 𝑥 is really free for 𝑣 here iff no free occurrences
of 𝑥 and 𝑣 lie in the scope of the same modal operator in [𝑣//𝑥]𝐴. So whenever
[𝑣//𝑥]𝐴 (and thus [𝑦//𝑥]𝐴) replaces some occurrences of 𝑥 in the scope of a
modal operator in 𝐴, then it must replace all occurrences of 𝑥 in the scope of
that operator. This is guaranteed by condition (iii). By definition 3.1, (3) can
be simplified to

⊢𝐿 𝑥 =𝑦 ⊃ 𝐴 ⊃ [𝑦//𝑥]𝐴. (4)

I will never actually use (LL∗
p). I mention it only because Leibniz’ Law is often

stated for partial substitutions, and you may have wondered what that would look like
in our systems. Now you know. We could indeed have used (LL∗

p) as basic axiom
instead of (LL∗); (LL∗) would then be derivable, because (a) every formula 𝐴 has
an alphabetic variant 𝐴′ such that [𝑦/𝑥]𝐴 is an instance of [𝑦//𝑥]𝐴′ that satisfies
(i)–(iii) iff 𝑦 is really free for 𝑥 in 𝐴, and (b) (LL∗) is not used in the proof of lemma
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3.15. I have chosen (LL∗) as basic due to its much greater simplicity.
(The axiomatization in [Kutz 2000: 43] uses the following version of (LL∗

p):
(LLK

p ) ⊢ 𝑥 =𝑦 ⊃ 𝐴 ⊃ [𝑦//𝑥]𝐴, provided that
(i) 𝑥 is free in 𝐴 and 𝑦 is free for 𝑥 in 𝐴,
(ii) 𝑦 is not free in the scope of a modal operator in 𝐴, and
(iii) in the scope of any modal operator in 𝐴, [𝑦//𝑥]𝐴 either replaces all

or no occurrences of 𝑥 by 𝑦.
Evidently, this is a lot more restrictive than (LL∗

p). For example, (LL∗
p) allows

⊢ 𝑥 =𝑦 ⊃ □𝐺𝑥𝑦 ⊃ □𝐺𝑦𝑦 and
⊢ 𝑥 =𝑦 ⊃ (𝐹𝑥 ∨ ♢𝐺𝑥𝑦) ⊃ (𝐹𝑦 ∨ ♢𝐺𝑥𝑦),

which can’t be derived in Kutz’s system (which is therefore incomplete).)

Lemma 7.15 (Leibniz’ Law with sequences).
For any 𝔏-formula 𝐴 and variables 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 such that the 𝑥1, … , 𝑥𝑛
are pairwise distinct,

(LL∗
n) ⊢𝐿 𝑥1 = 𝑦1 ∧ … ∧ 𝑥𝑛 = 𝑦𝑛 ⊃ 𝐴 ⊃ [𝑦1, … , 𝑦𝑛/𝑥1, … , 𝑥𝑛]𝐴, provided

each 𝑦𝑖 is really free for 𝑥𝑖 in [𝑦1, … , 𝑦𝑖−1/𝑥1, … , 𝑥𝑛−1]𝐴.

For 𝑖 = 1, the proviso is meant to say that 𝑦1 is really free for 𝑥1 in 𝐴.

Proof. By induction on 𝑛. For 𝑛 = 1, (LL∗
n) is (LL∗). Assume then that 𝑛 > 1

and that each 𝑦𝑖 in 𝑦1, … , 𝑦𝑛 is really free for 𝑥𝑖 in [𝑦1, … , 𝑦𝑖−1/𝑥1, … , 𝑥𝑛−1]𝐴.
Let 𝑧 be some variable not in 𝐴, 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛. So 𝑧 is really free for 𝑥𝑛
in 𝐴. By (LL∗),

⊢𝐿 𝑥𝑛 =𝑧 ⊃ 𝐴 ⊃ [𝑧/𝑥𝑛]𝐴. (1)

By induction hypothesis,

⊢𝐿 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛−1 =𝑦𝑛−1 ⊃
[𝑧/𝑥𝑛]𝐴 ⊃ [𝑦1, … , 𝑦𝑛−1/𝑥1, … , 𝑥𝑛−1][𝑧/𝑥𝑛]𝐴. (2)

By assumption, 𝑦𝑛 is really free for 𝑥𝑛 in [𝑦1, … , 𝑦𝑛−1/𝑥1, … , 𝑥𝑛−1]𝐴. Then 𝑦𝑛
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is also really free for 𝑧 in [𝑦1, … , 𝑦𝑛−1/𝑥1, … , 𝑥𝑛−1][𝑧/𝑥𝑛]𝐴. So by (LL∗),

⊢𝐿 𝑧=𝑦𝑛 ⊃ [𝑦1, … , 𝑦𝑛−1/𝑥1, … , 𝑥𝑛−1][𝑧/𝑥𝑛]𝐴 ⊃
[𝑦𝑛/𝑧][𝑦1, … , 𝑦𝑛−1/𝑥1, … , 𝑥𝑛−1][𝑧/𝑥𝑛]𝐴. (3)

But [𝑦𝑛/𝑧][𝑦1, … , 𝑦𝑛−1/𝑥1, … , 𝑥𝑛−1][𝑧/𝑥𝑛]𝐴 is [𝑦1, … , 𝑦𝑛/𝑥1, … , 𝑥𝑛]𝐴. Com-
bining (1)–(3), we therefore have

⊢𝐿 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛−1 =𝑦𝑛−1 ⊃
𝑥𝑛 =𝑧 ∧ 𝑧=𝑦𝑛 ⊃ 𝐴 ⊃ [𝑦1, … , 𝑦𝑛/𝑥1, … , 𝑥𝑛]𝐴. (4)

So by (Sub∗),

⊢𝐿 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛−1 =𝑦𝑛−1 ⊃
𝑥𝑛 =𝑥𝑛 ∧ 𝑥𝑛 =𝑦𝑛 ⊃ 𝐴 ⊃ [𝑦1, … , 𝑦𝑛/𝑥1, … , 𝑥𝑛]𝐴. (5)

Since ⊢𝐿 𝑥𝑛 = 𝑦𝑛 ⊃ 𝑥𝑛 = 𝑥𝑛 (by either (=R) or (Neg) and (∀=R)), it follows
that

⊢𝐿 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛 =𝑦𝑛 ⊃ 𝐴 ⊃ [𝑦1, … , 𝑦𝑛/𝑥1, … , 𝑥𝑛]𝐴. (6)

Lemma 7.16 (Cross-substitution).
For any 𝔏-formula 𝐴 and variables 𝑥, 𝑦,

(CS) ⊢𝐿 𝑥 =𝑦 ⊃ □𝐴 ⊃ □(𝑦=𝑧 ⊃ [𝑧/𝑥]𝐴), provided 𝑧 is not free in 𝐴.

More generally, for any variables 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 such that the 𝑥1, … , 𝑥𝑛
are pairwise distinct,

(CSn) ⊢𝐿 𝑥1 = 𝑦1 ∧ … ∧ 𝑥𝑛 = 𝑦𝑛 ⊃ □𝐴 ⊃ □(𝑦1 = 𝑧1 ∧ … ∧ 𝑦𝑛 = 𝑧𝑛 ⊃
[𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴), provided none of 𝑧1, … , 𝑧𝑛 is free in 𝐴.
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Proof. For (CS), assume 𝑧 is not free in 𝐴. Then

1. ⊢𝐿 𝑥 =𝑧 ⊃ 𝐴 ⊃ [𝑧/𝑥]𝐴. (LL∗)
2. ⊢𝐿 𝐴 ⊃ (𝑥 =𝑧 ⊃ [𝑧/𝑥]𝐴). (1)
3. ⊢𝐿 □𝐴 ⊃ □(𝑥 =𝑧 ⊃ [𝑧/𝑥]𝐴). (2, (Nec), (K))
4. ⊢𝐿 𝑥 =𝑦 ⊃ □(𝑥 =𝑧 ⊃ [𝑧/𝑥]𝐴) ⊃ □(𝑦=𝑧 ⊃ [𝑧/𝑥]𝐴). (LL∗)
5. ⊢𝐿 𝑥 =𝑦 ⊃ □𝐴 ⊃ □(𝑦=𝑧 ⊃ [𝑧/𝑥]𝐴). (3, 4)

Step 4 is justified by the fact that 𝑥 is not free in [𝑧/𝑥]𝐴 and so 𝑥 and 𝑦 are
modally separated in 𝑥 =𝑧 ⊃ [𝑧/𝑥]𝐴.

The proof for (CSn) is analogous. Assume none of 𝑧1, … , 𝑧𝑛 is free in 𝐴.
Then

1. ⊢𝐿 𝑥1 =𝑧1 ∧ … ∧ 𝑥𝑛 =𝑧𝑛 ⊃ 𝐴 ⊃ [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴. (LL∗
n)

2. ⊢𝐿 𝐴 ⊃ (𝑥1 =𝑧1 ∧ … ∧ 𝑥𝑛 =𝑧𝑛 ⊃ [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴). (1)
3. ⊢𝐿 □𝐴 ⊃ □(𝑥1 =𝑧1 ∧ … ∧ 𝑥𝑛 =𝑧𝑛 ⊃ [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴). (2, (Nec), (K))
4. ⊢𝐿 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛 =𝑦𝑛 ⊃

□(𝑥1 =𝑧1 ∧ … ∧ 𝑥𝑛 =𝑧𝑛 ⊃ [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴) ⊃
□(𝑦1 =𝑧1 ∧ … ∧ 𝑦𝑛 =𝑧𝑛 ⊃ [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴). (LL∗

n)
5. ⊢𝐿 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛 =𝑦𝑛 ⊃ □𝐴 ⊃

□(𝑥1 =𝑧1 ∧ … ∧ 𝑥𝑛 =𝑧𝑛 ⊃ [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴). (3, 4)

Step 4 is justified by the fact that none of 𝑥1, … , 𝑥𝑛 is free in [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴,
and each 𝑦𝑖 is really free for 𝑥𝑖 in [𝑦1, … , 𝑦𝑖−1/𝑥1, … , 𝑥𝑖−1]□(𝑥1 =𝑧1 ∧…∧𝑥𝑛 =
𝑧𝑛 ⊃ [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴), i.e. in □(𝑦1 =𝑧1 ∧ … ∧ 𝑦𝑖−1 =𝑧𝑖−1 ∧ 𝑥𝑖 =𝑧𝑖 ∧ … ∧
𝑥𝑛 = 𝑧𝑛 ⊃ [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴), because 𝑥𝑖 and 𝑦𝑖 are modally separated in
𝑦1 =𝑧1 ∧ … ∧ 𝑦𝑖−1 =𝑧𝑖−1 ∧ 𝑥𝑖 =𝑧𝑖 ∧ … ∧ 𝑥𝑛 =𝑧𝑛 ⊃ [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴.

Lemma 7.17 (Substitution-free Universal Instantiation).
For any 𝔏-formula 𝐴 and variables 𝑥, 𝑦,

(FUI∗∗) ⊢𝐿 ∀𝑥𝐴 ⊃ (𝐸!𝑦 ⊃ ∃𝑥(𝑥 =𝑦 ∧ 𝐴)).
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Proof. Let 𝑧 be a variable not in Var(𝐴), 𝑥, 𝑦.

1. ⊢𝐿 𝑧=𝑦 ⊃ 𝐸!𝑦 ⊃ 𝐸!𝑧 (LL∗)
2. ⊢𝐿 ∀𝑥𝐴 ⊃ 𝐸!𝑧 ⊃ [𝑧/𝑥]𝐴 ((FUI∗), 𝑧 ∉ Var(𝐴))
3. ⊢𝐿 ∀𝑥𝐴 ∧ 𝐸!𝑦 ⊃ 𝑧=𝑦 ⊃ [𝑧/𝑥]𝐴 (1, 2)
4. ⊢𝐿 ∀𝑥(𝑥 =𝑧 ⊃ ¬𝐴) ⊃ 𝐸!𝑧 ⊃ (𝑧=𝑧 ⊃ [𝑧/𝑥]¬𝐴) ((FUI∗), 𝑧 ∉ Var(𝐴))
5. ⊢𝐿 𝐸!𝑧 ⊃ 𝑧=𝑧 ((=R), or (∀=R), (FUI∗))
6. ⊢𝐿 ∀𝑥(𝑥 =𝑧 ⊃ ¬𝐴) ⊃ 𝐸!𝑧 ⊃ [𝑧/𝑥]¬𝐴 (4, 5)
7. ⊢𝐿 𝐸!𝑧 ⊃ [𝑧/𝑥]𝐴 ⊃ ∃𝑥(𝑥 =𝑧 ∧ 𝐴) (6)
8. ⊢𝐿 ∀𝑥𝐴 ∧ 𝐸!𝑦 ⊃ 𝑧=𝑦 ⊃ ∃𝑥(𝑥 =𝑧 ∧ 𝐴) (1, 3, 7)
9. ⊢𝐿 𝑧=𝑦 ⊃ ∃𝑥(𝑥 =𝑧 ∧ 𝐴) ⊃ ∃𝑥(𝑥 =𝑦 ∧ 𝐴) ((LL∗), 𝑧 ∉ Var(𝐴))

10. ⊢𝐿 ∀𝑥𝐴 ∧ 𝐸!𝑦 ⊃ 𝑧=𝑦 ⊃ ∃𝑥(𝑥 =𝑦 ∧ 𝐴) (8, 9)
11. ⊢𝐿 ∀𝑧(∀𝑥𝐴 ∧ 𝐸!𝑦) ⊃ ∀𝑧(𝑧=𝑦 ⊃ ∃𝑥(𝑥 =𝑦 ∧ 𝐴)) (10, (UG), (UD))
12. ⊢𝐿 ∀𝑥𝐴 ∧ 𝐸!𝑦 ⊃ ∀𝑧(𝑧=𝑦 ⊃ ∃𝑥(𝑥 =𝑦 ∧ 𝐴)) (11, (VQ))
13. ⊢𝐿 ∀𝑧(𝑧=𝑦 ⊃ ∃𝑥(𝑥 =𝑦 ∧ 𝐴)) ⊃ 𝑦=𝑦 ⊃ ∃𝑥(𝑥 =𝑦 ∧ 𝐴) ((FUI∗), 𝑧 ∉ Var(𝐴))
14. ⊢𝐿 𝐸!𝑦 ⊃ 𝑦=𝑦 ((=R), or (∀=R), (FUI∗))
15. ⊢𝐿 ∀𝑧(𝑧=𝑦 ⊃ ∃𝑥(𝑥 =𝑦 ∧ 𝐴)) ⊃ 𝐸!𝑦 ⊃ ∃𝑥(𝑥 =𝑦 ∧ 𝐴) (13, 14)
16. ⊢𝐿 ∀𝑥𝐴 ⊃ 𝐸!𝑦 ⊃ ∃𝑥(𝑥 =𝑦 ∧ 𝐴) (12, 15)

(FUI∗) can also be derived from (FUI∗∗), so we could just as well have used
(FUI∗∗) as axiom instead of (FUI∗).
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8.1 The substitution operator

The failure of the substitution lemma in non-functional counterpart semantics indi-
cates an expressive defect of the language interpreted by that semantics. Return to
Leibniz’ Law. If 𝑥 = 𝑦 then whatever is true of 𝑥 is true of 𝑦. Yet

𝑥 =𝑦 ⊃ ♢𝐺𝑥𝑦 ⊃ ♢𝐺𝑦𝑦

is invalid in the class of non-functional counterpart structures. The problem is that
♢𝐺𝑦𝑦 does not “say about 𝑦” what ♢𝐺𝑥𝑦 “says about 𝑥”. Roughly speaking, ♢𝐺𝑥𝑦
says that at some accessible world, some counterpart of 𝑥 (and therefore 𝑦) is 𝐺-
related to some (possibly different) counterpart of 𝑦 (and therefore 𝑥), but ♢𝐺𝑦𝑦
says that some counterpart of 𝑦 (and therefore 𝑥) is 𝐺-related to itself. Let’s briefly
look at how this problem arises, and how it can be solved.

Modal operators, we assume, shift the point of evaluation. In counterpart seman-
tics, when the point of evaluation is shifted from 𝑤 to 𝑤′, the semantic value of every
individual constant and variable shifts to the counterpart of the previous value, fol-
lowing some counterpart relation 𝐶. If an individual at 𝑤 has no counterpart at 𝑤′,
the relevant terms become empty. If an individual has multiple 𝐶-counterparts, we
may think of the corresponding terms as becoming “ambiguous”, denoting all the
counterparts at the same time. To verify □𝐹𝑥, we require that 𝐹𝑥 is true at all acces-
sible worlds under all “disambiguations”.

An important question now is whether these disambiguations are uniform or mixed:
should □𝐺𝑥𝑥 be true iff at all accessible worlds (relative to all counterpart relations),
all 𝑥 counterparts are 𝐺-related to themselves (uniform) or to one another (mixed)?
On the mixed account, □𝑥 = 𝑥 becomes invalid, as does □(𝐹𝑥 ∨ ¬𝐹𝑥), even if (the
individual denoted by) 𝑥 exists at all worlds. The semantics also becomes more
complicated because a mixed disambiguation cannot be represented by a standard
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assignment function. If we say that □𝐴 is true under an assignment 𝑔 iff 𝐴 is true at
all accessible worlds under all assignments 𝑔′ suitably related to 𝑔, and assignments
are functions (rather than relations), we automatically get uniform disambiguations.
In definition 2.9, we therefore have opted for a uniform disambiguation. This may
not be the best choice for every application, but it is the only one we’re going to
explore.

The present issue might remind you of the old observation that a sentence like
‘Brutus killed himself’ can be understood either as an application of a monadic
predicate ‘killing himself’ to the subject Brutus, or as an application of the binary
‘killing’ to Brutus and Brutus. Peter Geach once suggested a syntactic mechanism for
distinguishing these readings, introducing an operator ⟨𝑧 ∶ 𝑥, 𝑦⟩ that turns a binary
expression into a unary expression: while 𝐺𝑥𝑦 is satisfied by pairs of individuals,
⟨𝑧 ∶ 𝑥, 𝑦⟩𝐺𝑥𝑦 is satisfied by a single individual. The operator ⟨𝑧 ∶ 𝑥, 𝑦⟩, which might
be read ‘𝑧 is an 𝑥 and a 𝑦 such that’, acts as a quantifier that binds both 𝑥 and 𝑦.

A similar trick can be used in our modal context. On our uniform reading, □𝑥 =𝑥
says (roughly) that all counterparts of 𝑥 are self-identical at all accessible worlds. To
say that at all accessible worlds (and under all counterpart relations), all 𝑥 counter-
parts are identical to all 𝑥 counterparts, we could instead say ⟨𝑥 ∶ 𝑦, 𝑧 ⟩□𝑦 = 𝑧. The
effect of ⟨𝑥 ∶ 𝑦, 𝑧 ⟩ is to introduce two variables 𝑦 and 𝑧 that co-refer with 𝑥. By us-
ing distinct but co-refering variables in a modal context, we can express relations
between possibly distinct counterparts; by using the same variable, we make sure
that the same counterpart must be assigned to every occurrence.

With ⟨𝑥 ∶ 𝑦, 𝑧 ⟩□𝑦=𝑧, we actually end up with three co-referring variables: 𝑦 and
𝑧 are made to co-refer with 𝑥, but we also have 𝑥 itself. The job can also be done
with ⟨𝑥 ∶ 𝑦⟩□𝑥 =𝑦 – read: ‘𝑥 is a 𝑦 such that …’.

To see the use of this operator, consider the following two sentences, which look
at first glance like simple applications of universal instantiation.

∀𝑥□𝐺𝑥𝑦 ⊃ □𝐺𝑦𝑦; (1)
∀𝑥♢𝐺𝑥𝑦 ⊃ ♢𝐺𝑦𝑦. (2)

Suppose for a moment that we have at most one counterpart relation from any world
to another, so that we can ignore the quantification over counterpart relations. The
first formula then says that if all things 𝑥 are such that all 𝑥 counterparts are 𝐺-
related to all 𝑦 counterparts, then all 𝑦 counterparts are 𝐺-related to themselves. In
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a total counterpart model, this must be true. (2), however, is not valid in the class
of total structures. If all things 𝑥 are such that some 𝑥 counterpart is 𝐺-related to
some 𝑦 counterpart, it only follows that some 𝑦 counterpart is 𝐺-related to some 𝑦
counterpart; it does not follow that some 𝑦 counterpart is 𝐺-related to itself.

With the two distinct variables 𝑥 and 𝑦, the formula ♢𝐺𝑥𝑦 looks at arbitrary com-
binations of 𝑥 counterparts and 𝑦 counterparts, even if the variables co-refer. By
contrast, ♢𝐺𝑦𝑦 only looks at single 𝑦 counterparts and checks whether one of them
is 𝐺-related to itself. To prevent this “capturing” of 𝑦 in the consequent of (2), we
can use the Geach quantifier:

∀𝑥♢𝐺𝑥𝑦 ⊃ ⟨𝑦 ∶ 𝑥 ⟩♢𝐺𝑥𝑦 (2′)

Having multiple counterpart relations makes no essential difference to these con-
siderations. ♢𝐺𝑦𝑦 is true at 𝑤 iff 𝐺𝑦𝑦 is true at some accessible world under some
assignment of a 𝑦-counterpart to ‘𝑦’. On the other hand, given 𝑥 = 𝑦, ♢𝐺𝑥𝑦 is true
at 𝑤 iff there is an accessible world at which some counterpart of the pair ⟨𝑥, 𝑦⟩
(= ⟨𝑥, 𝑥 ⟩ = ⟨𝑦, 𝑦⟩) satisfies 𝐺𝑥𝑦.

The situation is analogous for Leibniz’ Law. As noted above, (4) is invalid, while
(3) is valid.

𝑥 =𝑦 ⊃ □𝐺𝑥𝑦 ⊃ □𝐺𝑦𝑦; (3)
𝑥 =𝑦 ⊃ ♢𝐺𝑥𝑦 ⊃ ♢𝐺𝑦𝑦. (4)

In (4), the substituted variable 𝑦 again gets captured by the other occurrence of 𝑦 in
the scope of the diamond. ♢𝐺𝑦𝑦 does not say of 𝑦 what 𝐺𝑥𝑦 says of 𝑥. We know
from proposition 7.3 that the standard language of modal predicate logic does not
provide a general way to say of 𝑦 what some formula 𝐴 says of 𝑥.

The Geach quantifier provides the missing resource. In place of (4), we could
write

𝑥 =𝑦 ⊃ ♢𝐺𝑥𝑦 ⊃ ⟨𝑦 ∶ 𝑥 ⟩♢𝐺𝑥𝑦 (4′)

Here, as above, the Geach quantifier ⟨𝑦 ∶ 𝑥 ⟩ functions as an object-language substi-
tution operator.

Some of the mysterious features of non-functional counterpart logics become
more readily intelligible when we have a substitution operator. A perhaps more
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familiar tool that would also do the job is lambda abstraction, introduced to modal
logic in [Carnap 1947] and [Stalnaker and Thomason 1968]. With lambda abstrac-
tion, we would write (𝜆𝑥.𝐴)𝑦 instead of ⟨𝑦 ∶ 𝑥 ⟩𝐴 to express that 𝑦 is an 𝑥 such that 𝐴.
For our purposes, the substitution operator will prove more perspicuous.

Definition 8.1 (The language of modal predicate logic with substitution).
The language of modal predicate logic with substitution is the standard lan-
guage of modal predicate logic from definition 2.3 with an added construct
⟨ ∶ ⟩ and the rule that whenever 𝑥, 𝑦 are variables and 𝐴 is a formula, then
⟨𝑦 ∶ 𝑥 ⟩𝐴 is a formula.

As for the semantics: just as ∀𝑥𝐴 is true relative to an assignment 𝑔 iff 𝐴 is true
relative to all 𝑥-variants of 𝑔 (on the relevant domain), ⟨𝑦 ∶ 𝑥 ⟩𝐴 is true relative to 𝑔 iff
𝐴 is true relative to the 𝑥-variant of 𝑔 that maps 𝑥 to 𝑔(𝑦). In our modal framework:

Definition 8.2 (Semantics for the substitution operator).
For any counterpart model 𝔐, any world 𝑤 in 𝔐, assignment 𝑔 on 𝑈𝑤, for-
mula 𝐴, and variables 𝑥, 𝑦,

𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩𝐴 iff 𝔐, 𝑤, 𝑔 ∘ [𝑦/𝑥] ⊩ 𝐴.

Substitution operators have great expressive power. As [Kuhn 1980] shows (in
effect), if a language has substitution operators, it no longer needs variables or indi-
vidual constants in its atomic formulas: instead of 𝐹𝑥, we can simply say 𝐹, with
the convention that the implicit variable is always 𝑥 (for binary predicates, the first
variable is 𝑥, the second 𝑦, etc.); 𝐹𝑦 turns into ⟨𝑦 ∶ 𝑥 ⟩𝐹, 𝐺𝑦𝑧 into ⟨𝑦 ∶ 𝑥 ⟩⟨𝑧 ∶ 𝑦⟩𝐺.
Similarly, ∀𝑥𝐹𝑥 can be replaced by ∀𝐹, and ∀𝑦𝐺𝑥𝑦 by ∀⟨𝑦 ∶ 𝑧⟩⟨𝑥 ∶ 𝑦⟩⟨𝑧 ∶ 𝑥 ⟩𝐺. So
we also don’t need different quantifiers for different variables. I will not exploit the
full power of substitution operators – mainly for the sake of familiarity. Our lan-
guages with substitution operators still have ordinary formulas 𝑃𝑥1 … 𝑥𝑛 and quanti-
fiers ∀𝑥, ∀𝑦, etc.

It can sometimes be useful to have polyadic quantifiers like ⟨𝑦1, 𝑦2 ∶ 𝑥1, 𝑥2 ⟩, which
says ‘𝑦1 is an 𝑥1 and 𝑦2 an 𝑥2 such that’, where

𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦1, 𝑦2 ∶ 𝑥1, 𝑥2 ⟩𝐴 iff 𝔐, 𝑤, 𝑔 ∘ [𝑦1, 𝑦2/𝑥1, 𝑥2] ⊩ 𝐴.
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Geach’s ⟨𝑥 ∶ 𝑦, 𝑧 ⟩ is then equivalent to ⟨𝑥, 𝑥 ∶ 𝑦, 𝑧 ⟩.
We don’t need to introduce polyadic substitution operators as primitive, however.

We can instead treat them as abbreviations for iterated monadic substitution.
We can’t simply define ⟨𝑦1, 𝑦2 ∶ 𝑥1, 𝑥2 ⟩𝐴 as ⟨𝑦1 ∶ 𝑥1 ⟩⟨𝑦2 ∶ 𝑥2 ⟩𝐴, since the bound

variable 𝑥1 might capture 𝑦2, as in the swapping operator ⟨𝑥, 𝑦 ∶ 𝑦, 𝑥 ⟩. We have to
store the original value of 𝑦2 in a temporary variable 𝑧: ⟨𝑦2 ∶ 𝑧 ⟩⟨𝑦1 ∶ 𝑥1 ⟩⟨𝑧 ∶ 𝑥2 ⟩.

Definition 8.3 (Substitution sequences).
For any 𝑛 > 1, formula 𝐴 and variables 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 in which the
𝑥1, … , 𝑥𝑛 are all distinct, let

⟨𝑦1, … , 𝑦𝑛 ∶ 𝑥1, … , 𝑥𝑛 ⟩𝐴

abbreviate
⟨𝑦𝑛 ∶ 𝑧 ⟩⟨𝑦1, … , 𝑦𝑛−1 ∶ 𝑥1, … , 𝑥𝑛−1 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴,

where 𝑧 is the alphabetically first variable not in 𝐴 or 𝑥1, … , 𝑥𝑛.

Lemma 8.1 (Substitution sequence semantics).
For any counterpart model 𝔐, any world 𝑤 in 𝔐, assignment 𝑔 on 𝑈𝑤, for-
mula 𝐴, and variables 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛, where the 𝑥1, … , 𝑥𝑛 are all dis-
tinct,

𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦1, … , 𝑦𝑛 ∶ 𝑥1, … , 𝑥𝑛 ⟩𝐴 iff 𝔐, 𝑤, 𝑔 ∘ [𝑦1, … , 𝑦𝑛/𝑥1, … , 𝑥𝑛] ⊩ 𝐴.

Proof. The proof is by induction on 𝑛.
By definition 8.3, 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦1, … , 𝑦𝑛 ∶ 𝑥1, … , 𝑥𝑛 ⟩𝐴 iff 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦𝑛 ∶ 𝑧 ⟩

⟨𝑦1, … , 𝑦𝑛−1 ∶ 𝑥1, … , 𝑥𝑛−1 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴, for some 𝑧 not in 𝐴 or 𝑥1, … , 𝑥𝑛−1. By def-
inition 8.2, 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦𝑛 ∶ 𝑧 ⟩⟨𝑦1, … , 𝑦𝑛−1 ∶ 𝑥1, … , 𝑥𝑛−1 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴 iff 𝔐, 𝑤, 𝑔 ∘
[𝑦𝑛/𝑧] ⊩ ⟨𝑦1, … , 𝑦𝑛−1 ∶ 𝑥1, … , 𝑥𝑛−1 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. By induction hypothesis, the
latter holds iff 𝔐, 𝑤, 𝑔 ∘ [𝑦𝑛/𝑧] ∘ [𝑦1, … , 𝑦𝑛−1/𝑥1, … , 𝑥𝑛−1] ⊩ ⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴, that is,
iff 𝔐, 𝑤, 𝑔 ∘ [𝑦𝑛/𝑧] ∘ [𝑦1, … , 𝑦𝑛−1/𝑥1, … , 𝑥𝑛−1] ∘ [𝑧/𝑥𝑛] ⊩ 𝐴 by definition 8.2.
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Now [𝑦𝑛/𝑧] ∘ [𝑦1, … , 𝑦𝑛−1/𝑥1, … , 𝑥𝑛−1] ∘ [𝑧/𝑥𝑛] is the substitution 𝜎 such that

𝜎(𝑥) = [𝑦𝑛/𝑧]([𝑦1, … , 𝑦𝑛−1/𝑥1, … , 𝑥𝑛−1]([𝑧/𝑥𝑛](𝑥))).

Since 𝑧 ∉ 𝑥1, … , 𝑥𝑛−1, this means that

𝜎(𝑥𝑛) = 𝑦𝑛,
𝜎(𝑥𝑖) = 𝑦𝑖 for 𝑥𝑖 ∈ {𝑥1, … , 𝑥𝑛−1},
𝜎(𝑧) = 𝑦𝑛,

and 𝜎(𝑥) = 𝑥 for every other variable 𝑥. Since 𝑧 ∉ Var(𝐴), it follows by
the locality lemma (which is easily extended to languages with object-language
substitution) that 𝔐, 𝑤, 𝑔 ∘ 𝜎 ⊩ 𝐴 iff 𝔐, 𝑤, 𝑔 ∘ [𝑦1, … , 𝑦𝑛/𝑥1, … , 𝑥𝑛] ⊩ 𝐴.

8.2 Substitution logics

With an object-language substitution operator, we can express the substitution prin-
ciples (FUI), (LL), and (Sub) without any restrictions on the relevant terms:

(FUIs) ∀𝑥𝐴 ⊃ (𝐸𝑦 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐴),
(LLs) 𝑥 =𝑦 ⊃ (𝐴 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐴),
(Subs) if ⊢𝐿 𝐴, then ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴.

To get a complete logic, we also need some rules for the substitution operator. An
obvious suggestion would be the lambda-conversion principle

⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ [𝑦/𝑥]𝐴.

This would allow us to move back and forth between, for example, ⟨𝑦 ∶ 𝑥 ⟩𝐹𝑥 and 𝐹𝑦.
But we’ve seen that these transitions are not always sound: the move from ⟨𝑦 ∶ 𝑥 ⟩𝐴
to [𝑦/𝑥]𝐴 requires that 𝑦 is really free for 𝑥 in 𝐴; the other direction requires that 𝑦
and 𝑥 are modally separated in 𝐴. (See lemmas 7.1 and 7.2.) We are going to have
the following, more restricted principles:

(SC1) ⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ [𝑦/𝑥]𝐴, provided 𝑦 and 𝑥 are modally separated in 𝐴.
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(SC2) ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ [𝑦/𝑥]𝐴, provided 𝑦 is really free for 𝑥 in 𝐴.

I haven’t yet explained what [𝑦/𝑥]𝐴 is. We could use a naive definition. Then we
would have to add the restriction that no free occurrence of 𝑥 in 𝐴 lies in the scope
of a quantifier that binds 𝑦. For continuity with the earlier chapters, I will instead
extend definition 3.1 so that it can be applied to formulas that involve the substitution
operator.

Definition 8.4 (Substitution).
A substitution (on a set of variables Var) is a total function 𝜎 ∶ Var → Var.
Application of a substitution 𝜎 to a formula 𝐴 is defined as follows.

𝜎(𝑃𝑥1 … 𝑥𝑛) = 𝑃𝜎(𝑥1) … 𝜎(𝑥𝑛)
𝜎(¬𝐴) = ¬𝜎(𝐴)
𝜎(𝐴 ⊃ 𝐵) = 𝜎(𝐴) ⊃ 𝜎(𝐵)

𝜎(∀𝑧𝐴) =
⎧{
⎨{⎩
∀𝑣𝜎𝑣↦𝑣([𝑣/𝑧]𝐴) if there is an 𝑥 ∈ FV(∀𝑧𝐴) with 𝜎(𝑥) = 𝜎(𝑧)
∀𝜎(𝑧)𝜎(𝐴) otherwise,

where 𝑣 is the alphabetically first variable not in FV(𝜎(𝐴)) ∪
FV(𝐴) and 𝜎𝑣↦𝑣 is the substitution that maps 𝑣 to 𝑣 and other-
wise coincides with 𝜎.

𝜎(⟨𝑦 ∶ 𝑧 ⟩𝐴) =
⎧{
⎨{⎩
⟨𝜎(𝑦) ∶ 𝑧⟩𝜎𝑣↦𝑣([𝑣/𝑧]𝐴) if there is an 𝑥 ∈ FV(⟨𝑦 ∶ 𝑧 ⟩𝐴) with 𝜎(𝑥) = 𝜎(𝑧)
⟨𝜎(𝑦) ∶ 𝜎(𝑧)⟩𝜎(𝐴) otherwise,

where 𝑣 is the alphabetically first variable not in FV(𝜎(𝐴)) ∪
FV(𝐴) and 𝜎𝑣↦𝑣 is the substitution that maps 𝑣 to 𝑣 and other-
wise coincides with 𝜎.

𝜎(□𝐴) = □𝜎(𝐴).

As before, [𝑦1 … 𝑦𝑛/𝑥1 … 𝑥𝑛] is the substitution 𝜎 that maps 𝑥𝑖 to 𝑦𝑖 (for 1 ≤ 𝑖 ≤ 𝑛)
and every other variable to itself.

The clause for the substitution operator is exactly parallel to the one for the univer-
sal quantifier, and the underlying motivation is the same. For example, [𝑦/𝑥]⟨𝑦2 ∶ 𝑦⟩𝑥 ≠
𝑦 is ⟨𝑦2 ∶ 𝑧 ⟩𝑦≠𝑧, rather than ⟨𝑦2 ∶ 𝑦⟩𝑦≠𝑦.

(SC1) and (SC2) are not enough. We need further principles telling us how ⟨𝑦 ∶ 𝑥 ⟩
behaves when 𝑦 is not really free for 𝑥 in 𝐴. For example, ⟨𝑦 ∶ 𝑥 ⟩¬𝐴 should always

105



8 Object-language substitution

entail ¬⟨𝑦 ∶ 𝑥 ⟩𝐴, even if 𝑦 is not really free for 𝑥 in 𝐴. More generally, the substitution
operator commutes with every non-modal operator as long as there is no clash of
bound variables:

(S¬) ⟨𝑦 ∶ 𝑥 ⟩¬𝐴 ↔ ¬⟨𝑦 ∶ 𝑥 ⟩𝐴,
(S⊃) ⟨𝑦 ∶ 𝑥 ⟩(𝐴 ⊃ 𝐵) ↔ (⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐵),
(S∀) ⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐴 ↔ ∀𝑧⟨𝑦 ∶ 𝑥 ⟩𝐴, provided 𝑧 ∉ {𝑥, 𝑦},
(SS1) ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐴 ↔ ⟨𝑦2 ∶ 𝑧 ⟩⟨𝑦 ∶ 𝑥 ⟩𝐴, provided 𝑧 ∉ {𝑥, 𝑦} and 𝑦2 ≠ 𝑥.

Substitution does not commute with the box. Roughly speaking, this is because
⟨𝑦 ∶ 𝑥 ⟩□𝐴(𝑥, 𝑦) says that at all accessible worlds, all counterparts 𝑥′ and 𝑦′ of 𝑦 are
𝐴(𝑥′, 𝑦′), while □⟨𝑦 ∶ 𝑥 ⟩𝐴(𝑥, 𝑦) says that at all accessible worlds, every counterpart
𝑥′ = 𝑦′ of 𝑦 is such that 𝐴(𝑥′, 𝑦′). In the first case, 𝑥′ and 𝑦′ may be different
counterparts of 𝑦, while in the second case, they must be the same. Thus ⟨𝑦 ∶ 𝑥 ⟩□𝐴
entails □⟨𝑦 ∶ 𝑥 ⟩𝐴, but the other direction holds only if either 𝑦 does not have multiple
counterparts at accessible worlds (relative to the same counterpart relation), or at
most one of 𝑥 and 𝑦 occurs freely in 𝐴 (including the special case where 𝑥 and 𝑦 are
the same variable). We have:

(S□) ⟨𝑦 ∶ 𝑥 ⟩□𝐴 ⊃ □⟨𝑦 ∶ 𝑥 ⟩𝐴,
(S♢) ⟨𝑦 ∶ 𝑥 ⟩♢𝐴 ⊃ ♢⟨𝑦 ∶ 𝑥 ⟩𝐴, provided at most one of 𝑥, 𝑦 is free in 𝐴.

These principles largely make (SC1) and (SC2) redundant. We only need to add
the special case for substituting free variables in atomic formulas and in substitution
operators, as well as a principle for vacuous substitutions:

(SAt) ⟨𝑦 ∶ 𝑥 ⟩𝑃𝑥1 … 𝑥𝑛 ↔ 𝑃[𝑦/𝑥]𝑥1 … [𝑦/𝑥]𝑥𝑛.
(SS2) ⟨𝑦 ∶ 𝑥 ⟩⟨𝑥 ∶ 𝑧 ⟩𝐴 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑦 ∶ 𝑥 ⟩𝐴.
(VS) 𝐴 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐴, provided 𝑥 is not free in 𝐴.

Let FKs be the smallest system that contains all 𝔏𝑠-instances of the substitution ax-
ioms (S¬), (S⊃), (S∀), (SS1), (S□), (S♢), as well as (Taut), (UD), (VQ), (FUIs),
(∀Ex), (=R), (LLs), (K), and that is closed under (MP), (UG), (Nec) and (Subs).

Let NKs be the smallest system that contains all 𝔏𝑠-instances of the substitution
axioms (S¬), (S⊃), (S∀), (SS1), (S□), (S♢), as well as (Taut), (UD), (VQ), (Neg),
(NA), (∀=R), (K), (FUIs), (LLs), and that is closed under (MP), (UG), (Nec) and
(Subs).
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Lemma 8.2 (Soundness of the substitution axioms).
Every instance of (S¬), (S⊃), (S∀), (SS1), (S□), (S♢), (SAt), (SS2), and
(VS) is valid on every counterpart structure.

Proof.

1. (S¬). 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩¬𝐴 iff 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ ¬𝐴 by definition 8.2, iff
𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊮ 𝐴 by definition 2.9, iff 𝔐, 𝑤, 𝑔 ⊮ ⟨𝑦 ∶ 𝑥 ⟩𝐴 by definition
8.2, iff 𝔐, 𝑤, 𝑔 ⊩ ¬⟨𝑦 ∶ 𝑥 ⟩𝐴 by definition 2.9.

2. (S⊃). 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩(𝐴 ⊃ 𝐵) iff 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ 𝐴 ⊃ 𝐵 by defini-
tion 8.2, iff 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊮ 𝐴 or 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ 𝐵 by definition 2.9, iff
𝔐, 𝑤, 𝑔 ⊮ ⟨𝑦 ∶ 𝑥 ⟩𝐴 or 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩𝐵 by definition 8.2, iff 𝔐, 𝑤, 𝑔 ⊩
⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐵 by definition 2.9.

3. (S∀). Assume 𝑧 ∉ {𝑥, 𝑦}. 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐴 iff 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ ∀𝑧𝐴
by definition 8.2, iff 𝔐, 𝑤, 𝑔[𝑦/𝑥]𝑧↦𝑑

for all 𝑑 ∈ 𝐷𝑤 by definition 2.9, iff
𝔐, 𝑤, 𝑔𝑧↦𝑑 ∘ [𝑦/𝑥] for all 𝑑 ∈ 𝐷𝑤 because 𝑧 ∉ {𝑥, 𝑦}, iff 𝔐, 𝑤, 𝑔𝑧↦𝑑 ⊩
⟨𝑦 ∶ 𝑥 ⟩𝐴 for all 𝑑 ∈ 𝐷𝑤 by definition 8.2, iff 𝔐, 𝑤, 𝑔 ⊩ ∀𝑧⟨𝑦 ∶ 𝑥 ⟩𝐴 by
definition 2.9.

4. (SS1). Assume 𝑧 ∉ {𝑥, 𝑦} and 𝑦2 ≠ 𝑥. Then the function [𝑦/𝑥] ∘ [𝑦2/𝑧]
is identical to the function [𝑦2/𝑧] ∘ [𝑦/𝑥]. So 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐴
iff 𝔐, 𝑤, 𝑔[𝑦/𝑥] ∘ [𝑦2/𝑧] ⊩ 𝐴 by definition 8.2, iff 𝔐, 𝑤, 𝑔[𝑦2/𝑧] ∘ [𝑦/𝑥] ⊩ 𝐴,
iff 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦2 ∶ 𝑧 ⟩⟨𝑦 ∶ 𝑥 ⟩𝐴 by definition 8.2.

5. (S□). Assume 𝔐, 𝑤, 𝑔 ⊮ □⟨𝑦 ∶ 𝑥 ⟩𝐴. By definitions 2.9 and 8.2, this
means that 𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊮ 𝐴 for some 𝑤′, 𝑔′ such that 𝑤, 𝑔 ▷ 𝑤′, 𝑔′;
that is, for some 𝑤′, 𝑔′ such that 𝑤𝑅𝑤′ and there is a 𝐶 ∈ 𝐾𝑤,𝑤′ so that
𝑔′ assigns to every variable 𝑧 a 𝐶-counterpart of its 𝑔 value (or nothing if
there is no such counterpart). This means that for all 𝑧, 𝑔′[𝑦/𝑥](𝑧) is a 𝐶-
counterpart of 𝑔[𝑦/𝑥](𝑧) (or undefined if there is none), since 𝑔′[𝑦/𝑥](𝑥) =
𝑔′(𝑦) is a 𝐶-counterpart of 𝑔(𝑦) = 𝑔[𝑦/𝑥](𝑥) (or undefined if there is none).
So 𝑤, 𝑔[𝑦/𝑥] ▷ 𝑤′, 𝑔′[𝑦/𝑥]. And so 𝑤′, 𝑔∗ ⊮ 𝐴 for some 𝑤′, 𝑔∗ such that
𝑤, 𝑔[𝑦/𝑥] ▷ 𝑤, 𝑔∗. So 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩□𝐴 by definitions 2.9 and 8.2.
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6. (S♢). Assume 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩♢𝐴 and at most one of 𝑥, 𝑦 is free in 𝐴.
By definitions 2.9 and 8.2, 𝑤′, 𝑔∗ ⊩ 𝐴 for some 𝑤′, 𝑔∗ such that 𝑤𝑅𝑤′

and there is a 𝐶 ∈ 𝐾𝑤,𝑤′ for which 𝑔∗ assigns to every variable 𝑧 a 𝐶-
counterpart of its 𝑔 value (or nothing if there is none). We have to show
that there is a 𝑤′-image 𝑔′ of 𝑔 at 𝑤 such that 𝔐, 𝑤, 𝑔′[𝑦/𝑥] ⊩ 𝐴, since
then 𝔐, 𝑤, 𝑔 ⊩ ♢⟨𝑦 ∶ 𝑥 ⟩𝐴.

If 𝑥 is the same variable as 𝑦, then 𝑔∗(𝑥) = 𝑔∗(𝑦) is a 𝐶-counterpart at
𝑤′ of 𝑔[𝑦/𝑥](𝑥) = 𝑔[𝑦/𝑥](𝑦) = 𝑔(𝑥) = 𝑉(𝑦) at 𝑤 (or undefined if there is
none), so we can choose 𝑔∗ itself as 𝑔′. We then have 𝔐, 𝑤, 𝑔′[𝑦/𝑥] ⊩ 𝐴
because 𝑔′[𝑦/𝑥] = 𝑔′.

Else if 𝑥 is not free in 𝐴, let 𝑔′ be some 𝑥-variant of 𝑔∗ at 𝑤′ such that
𝑔∗(𝑥) is some 𝐶-counterpart at 𝑤′ of 𝑔(𝑥) at 𝑤 (or undefined if there is
none). Since 𝑔∗(𝑦) is a 𝐶-counterpart at 𝑤′ of 𝑔[𝑦/𝑥](𝑦) = 𝑉(𝑦) at 𝑤 (or
undefined if there is none), 𝑔′ is a 𝑤′-image of 𝑔 at 𝑤. Moreover, 𝑔′[𝑦/𝑥]

and 𝑔∗ differ at most in the value of 𝑥; by the locality lemma, it follows
that 𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊩ 𝐴.

Else if 𝑦 is not free in 𝐴, let 𝑔′ be like 𝑔∗ except that 𝑔′(𝑦) = 𝑔∗(𝑥) and
𝑔′(𝑥) is some 𝐶-counterpart at 𝑤′ of 𝑔(𝑥) at 𝑤 (or undefined if there is
none). Since 𝑔′(𝑦) = 𝑔∗(𝑥) is a 𝐶-counterpart at 𝑤′ of 𝑔[𝑦/𝑥](𝑥) = 𝑔(𝑦)
at 𝑤 (or undefined if there is none), 𝑔′ is a 𝑤′-image of 𝑔 at 𝑤. Moreover,
𝑔′[𝑦/𝑥] and 𝑔∗ differ at most in the value of 𝑦; in particular, 𝑔′[𝑦/𝑥](𝑥) =
𝑔′(𝑦) = 𝑔∗(𝑥). By the locality lemma, it follows that 𝔐, 𝑤′, 𝑔′[𝑦/𝑥] ⊩ 𝐴.

7. (SAt). 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩𝑃𝑥1 … 𝑥𝑛 iff 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ 𝑃𝑥1 … 𝑥𝑛 by defini-
tion 8.2, iff 𝔐, 𝑤, 𝑔 ⊩ [𝑦/𝑥]𝑃𝑥1 … 𝑥𝑛 by lemma 7.2.

8. (SS2). 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑥 ∶ 𝑧 ⟩𝐴 iff 𝔐, 𝑤, 𝑔[𝑦/𝑥] ∘ [𝑥/𝑧] ⊩ 𝐴 by definition
8.2, iff 𝔐, 𝑤, 𝑔[𝑦/𝑧] ∘ [𝑦/𝑥] ⊩ 𝐴 because [𝑦/𝑥] ∘ [𝑥/𝑧] = [𝑦/𝑧] ∘ [𝑦/𝑥], iff
𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑧⟩⟨𝑦 ∶ 𝑥 ⟩𝐴 by definition 8.2.

9. (VS). By definition 8.2, 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩𝐴 iff 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ 𝐴. If 𝑥 is
not free in 𝐴 then 𝑔[𝑦/𝑥] coincides with 𝑔 at 𝑤 for all free variables in 𝐴.
By the locality lemma, it follows that 𝔐, 𝑤, 𝑔[𝑦/𝑥] ⊩ 𝐴 iff 𝔐, 𝑤, 𝑔 ⊩ 𝐴.
So 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩𝐴 iff 𝔐, 𝑤, 𝑔 ⊩ 𝐴.
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Lemma 8.3 (Soundness of (FUIs), (LLs), and (Subs)).
Every instance of (FUIs) and (LLs) is valid in every counterpart structure. If
all elements of a set of formulas Γ are valid on a counterpart structure 𝔖, and
Γ is extended by (Subs), then the new sentences are still valid on 𝔖.

Proof.

1. (FUIs). Assume 𝔐, 𝑤, 𝑔 ⊩ ∀𝑥𝐴 and 𝔐, 𝑤, 𝑔 ⊩ 𝐸𝑦. By lemma 3.2 and
definition 2.9, the latter means that 𝑔(𝑦) ∈ 𝐷𝑤, while the former means
that 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊩ 𝐴 for all 𝑑 ∈ 𝐷𝑤. So in particular, 𝔐, 𝑤, 𝑔𝑥↦𝑔(𝑦) ⊩ 𝐴.
And so 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩𝐴 by definition 8.2.

2. (LLs). Assume 𝔐, 𝑤, 𝑔 ⊩ 𝑥 =𝑦 and 𝔐, 𝑤, 𝑔 ⊩ 𝐴. By definition 2.9, we
have 𝑔(𝑥) = 𝑔(𝑦), and so 𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦 ∶ 𝑥 ⟩𝐴 by definition 8.2.

3. (Subs). Assume for contraposition that 𝔐, 𝑤, 𝑔 ⊮ ⟨𝑦 ∶ 𝑥 ⟩𝐴. By defini-
tion 8.2, this means that 𝔐, 𝑤, 𝑔′ ⊮ 𝐴, where 𝑔′ is the 𝑥-variant of 𝑔 with
𝑔′(𝑥) = 𝑔(𝑦). So 𝐴 is not valid on every counterpart structure.

Theorem 8.4 (Soundness of FKs).
Every member of FKs is valid on every total counterpart structure.

Proof. Immediate from lemmas 7.4, 7.5. 8.2, and 8.3.

Theorem 8.5 (Soundness of NKs).
Every member of NKs is valid on every single-domain counterpart structure.

109



8 Object-language substitution

Proof. Immediate from lemmas 7.9, 7.5, 8.2, and 8.3.

8.3 Some consequences

As in earlier sections, we’ll prove some consequences of the above axiomatisations.
As before, these will hold for all logics that extend FKs or NKs by further axioms.

Definition 8.5 (Positive logics).
A set of 𝔏𝑠-sentences is a positive logic if it includes FKs and is closed under
(MP), (UG), (Nec) and (Subs).

Definition 8.6 (Negative logics).
A set of 𝔏𝑠-sentences is a negative logic if it includes NKs and is closed under
(MP), (UG), (Nec) and (Subs).

Until further notice, let 𝐿 be any positive or negative logic.
Lemmas 3.10 and 3.11 can be established as in section 3.4. Let’s turn right away

to some derived principles about substitution.

Lemma 8.6 (Substitution expansion).
If 𝐴 is an 𝔏-formula and 𝑥, 𝑦, 𝑧 𝔏-variables, then

(SE1) ⊢𝐿 𝐴 ↔ ⟨𝑥 ∶ 𝑥 ⟩𝐴;

(SE2) ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑧 ∶ 𝑥 ⟩𝐴, provided 𝑧 is not free in 𝐴.

Proof. We first prove (SE1), by induction on 𝐴.

1. 𝐴 is atomic. Then ⊢𝐿 ⟨𝑥 ∶ 𝑥 ⟩𝐴 ↔ [𝑥/𝑥]𝐴 by (SAt), and so ⊢𝐿 ⟨𝑥 ∶ 𝑥 ⟩𝐴 ↔
𝐴 because [𝑥/𝑥]𝐴 = 𝐴.

2. 𝐴 is ¬𝐵. By induction hypothesis, ⊢𝐿 𝐵 ↔ ⟨𝑥 ∶ 𝑥 ⟩𝐵. So by (PC), ⊢𝐿
¬𝐵 ↔ ¬⟨𝑥 ∶ 𝑥 ⟩𝐵. And by ⟨𝑆¬⟩, ⊢𝐿 ⟨𝑥 ∶ 𝑥 ⟩¬𝐵 ↔ ¬⟨𝑥 ∶ 𝑥 ⟩𝐵.
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3. 𝐴 is 𝐵 ⊃ 𝐶. By induction hypothesis, ⊢𝐿 𝐵 ↔ ⟨𝑥 ∶ 𝑥 ⟩𝐵 and ⊢𝐿 𝐶 ↔
⟨𝑥 ∶ 𝑥 ⟩𝐶. So ⊢𝐿 (𝐵 ⊃ 𝐶) ↔ (⟨𝑥 ∶ 𝑥 ⟩𝐵 ⊃ ⟨𝑥 ∶ 𝑥 ⟩𝐶). And by ⟨𝑆 ⊃ ⟩,
⊢𝐿 ⟨𝑥 ∶ 𝑥 ⟩(𝐵 ⊃ 𝐶) ↔ (⟨𝑥 ∶ 𝑥 ⟩𝐵 ⊃ ⟨𝑥 ∶ 𝑥 ⟩𝐶).

4. 𝐴 is ∀𝑧𝐵. If 𝑧 = 𝑥 then ⊢𝐿 ∀𝑥𝐵 ↔ ⟨𝑥 ∶ 𝑥 ⟩∀𝑥𝐵 by (VS). If 𝑧 ≠ 𝑥
then by induction hypothesis, ⊢𝐿 𝐵 ↔ ⟨𝑥 ∶ 𝑥 ⟩𝐵; by (UG) and (UD),
⊢𝐿 ∀𝑧𝐵 ↔ ∀𝑧⟨𝑥 ∶ 𝑥 ⟩𝐵; and ⊢𝐿 ⟨𝑥 ∶ 𝑥 ⟩∀𝑧𝐵 ↔ ∀𝑧⟨𝑥 ∶ 𝑥 ⟩𝐵 by (S∀).

5. 𝐴 is ⟨𝑦 ∶ 𝑧 ⟩𝐵. If 𝑧 = 𝑥, then ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ⟨𝑥 ∶ 𝑥 ⟩⟨𝑦 ∶ 𝑥 ⟩𝐵 by (VS).
If 𝑧 ≠ 𝑥 then by induction hypothesis, ⊢𝐿 𝐵 ↔ ⟨𝑥 ∶ 𝑥 ⟩𝐵; by (Subs)
and (S⊃), ⊢𝐿 ⟨𝑦 ∶ 𝑧 ⟩𝐵 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑥 ∶ 𝑥 ⟩𝐵; and ⊢𝐿 ⟨𝑥 ∶ 𝑥 ⟩⟨𝑦 ∶ 𝑧 ⟩𝐵 ↔
⟨𝑦 ∶ 𝑧⟩⟨𝑥 ∶ 𝑥 ⟩𝐵 by (SS1) (if 𝑦 ≠ 𝑥) or (SS2) (if 𝑦 = 𝑥).

6. 𝐴 is □𝐵. By (S□), ⊢𝐿 ⟨𝑥 ∶ 𝑥 ⟩□𝐵 ⊃ □⟨𝑥 ∶ 𝑥 ⟩𝐵. Conversely, since at
most one of 𝑥, 𝑥 is free in ¬𝐵, by (S♢), ⊢𝐿 ⟨𝑥 ∶ 𝑥 ⟩♢¬𝐵 ⊃ ♢⟨𝑥 ∶ 𝑥 ⟩¬𝐵.
Contraposing and unraveling the definition of the diamond, we have ⊢𝐿
□¬⟨𝑥 ∶ 𝑥 ⟩¬𝐵 ⊃ ¬⟨𝑥 ∶ 𝑥 ⟩¬□¬¬𝐵. Since ⊢𝐿 □¬⟨𝑥 ∶ 𝑥 ⟩¬𝐵 ↔ □⟨𝑥 ∶ 𝑥 ⟩𝐵
and ⊢𝐿 ¬⟨𝑥 ∶ 𝑥 ⟩¬□¬¬𝐵 ↔ ⟨𝑥 ∶ 𝑥 ⟩𝐵 (by (S¬), (Subs), (S⊃), (Nec) and
(K)), this means that ⊢𝐿 □⟨𝑥 ∶ 𝑥 ⟩𝐵 ⊃ ⟨𝑥 ∶ 𝑥 ⟩□𝐵.

Now (SE2).
By (VQ), ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑦 ∶ 𝑥 ⟩𝐴. Also, ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦 ∶ 𝑧 ⟩𝐴 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑦 ∶ 𝑥 ⟩𝐴

by (SS1) (if 𝑦 ≠ 𝑥) or (SS2) (if 𝑦 = 𝑥). Moreover, by (SS2), ⊢𝐿 ⟨𝑦 ∶ 𝑧 ⟩⟨𝑧 ∶ 𝑥 ⟩𝐴 ↔
⟨𝑦 ∶ 𝑥 ⟩⟨𝑦 ∶ 𝑧 ⟩𝐴. So by (PC), ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑧 ∶ 𝑥 ⟩𝐴.

Lemma 8.7 (Substituting bound variables).
For any 𝔏-sentence 𝐴 and variables 𝑥, 𝑦,

(SBV) ⊢𝐿 ∀𝑥𝐴 ↔ ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐴, provided 𝑦 is not free in 𝐴.
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Proof.

1. ⊢𝐿 ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ 𝐸𝑥 ⊃ ⟨𝑥 ∶ 𝑦⟩⟨𝑦 ∶ 𝑥 ⟩𝐴. (FUIs)
2. ⊢𝐿 ⟨𝑥 ∶ 𝑦⟩⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ 𝐴. ((SE1), (SE2))
3. ⊢𝐿 ∀𝑥∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ ∀𝑥𝐸𝑥 ⊃ ∀𝑥𝐴. (1, 2, (UG), (UD))
4. ⊢𝐿 ∀𝑥∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ ∀𝑥𝐴. (3, (∀Ex))
5. ⊢𝐿 ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ ∀𝑥∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐴. (VQ)
6. ⊢𝐿 ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ ∀𝑥𝐴. (4, 5)
7. ⊢𝐿 ∀𝑥𝐴 ⊃ 𝐸𝑦 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐴. (FUIs)
8. ⊢𝐿 ∀𝑦∀𝑥𝐴 ⊃ ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐴. (7, (UG), (UD), (∀Ex))
9. ⊢𝐿 ∀𝑥𝐴 ⊃ ∀𝑦∀𝑥𝐴. ((VQ), 𝑦 not free in 𝐴)

10. ⊢𝐿 ∀𝑥𝐴 ⊃ ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐴. (8, 9)
11. ⊢𝐿 ∀𝑥𝐴 ↔ ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐴. (6, 10)

Lemma 8.8 (Substituting empty variables).
For any 𝔏-sentence 𝐴 and variables 𝑥, 𝑦,

(SEV) ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (𝐴 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐴).

Proof. (SEV) is trivial if 𝐿 is positive, in which case ⊢𝐿 𝑥 =𝑥. For negative 𝐿,
we proceed by induction on 𝐴 (in smaller font, to make the lines fit).

1. 𝐴 is atomic. If 𝑥 ∉ Var(𝐴) then ⊢𝐿 𝐴 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐴 by (VS), and so ⊢𝐿 𝑥 ≠𝑥∧𝑦≠𝑦 ⊃
(𝐴 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐴) by (PC). If 𝑥 ∈ Var(𝐴) then by (Neg),

⊢𝐿 𝑥 ≠ 𝑥 ∧ 𝑦≠𝑦 ⊃ ¬𝐴. (1)

Also by (Neg), ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ ¬[𝑦/𝑥]𝐴. By (SAt), ⊢𝐿 [𝑦/𝑥]𝐴 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐴, and
so ⊢𝐿 ¬[𝑦/𝑥]𝐴 ↔ ¬⟨𝑦 ∶ 𝑥 ⟩𝐴. So

⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ ¬⟨𝑦 ∶ 𝑥 ⟩𝐴. (2)
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8 Object-language substitution

Combining (1) and (2) yields ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (𝐴 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐴).

2. 𝐴 is ¬𝐵. By induction hypothesis, ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐵). So by (PC),
⊢𝐿 𝑥 ≠ 𝑥 ∧ 𝑦 ≠ 𝑦 ⊃ (¬𝐵 ↔ ¬⟨𝑦 ∶ 𝑥 ⟩𝐵), and by (S¬), ⊢𝐿 𝑥 ≠ 𝑥 ∧ 𝑦 ≠ 𝑦 ⊃ (¬𝐵 ↔
⟨𝑦 ∶ 𝑥 ⟩¬𝐵).

3. 𝐴 is 𝐵 ⊃ 𝐶. By induction hypothesis, ⊢𝐿 𝑥 ≠ 𝑥 ∧ 𝑦 ≠ 𝑦 ⊃ (𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐵) and
⊢𝐿 𝑥 ≠ 𝑥 ∧ 𝑦 ≠ 𝑦 ⊃ (𝐶 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐶). So by (PC), ⊢𝐿 𝑥 ≠ 𝑥 ∧ 𝑦 ≠ 𝑦 ⊃ ((𝐵 ⊃ 𝐶) ↔
(⟨𝑦 ∶ 𝑥 ⟩𝐵 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐶)), and by (S⊃), ⊢𝐿 𝑥 ≠ 𝑥 ∧ 𝑦 ≠ 𝑦 ⊃ ((𝐵 ⊃ 𝐶) ↔ ⟨𝑦 ∶ 𝑥 ⟩(𝐵 ⊃
𝐶)).

4. 𝐴 is ∀𝑧𝐵. We distinguish three cases.

a) 𝑧 ∉ {𝑥, 𝑦}. Then

1. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐵) (ind. hyp.)
2. ⊢𝐿 ∀𝑧 𝑥 ≠𝑥 ∧ ∀𝑧 𝑦≠𝑦 ⊃ (∀𝑧𝐵 ↔ ∀𝑧⟨𝑦 ∶ 𝑥 ⟩𝐵) (1, UG, UD)
3. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (∀𝑧𝐵 ↔ ∀𝑧⟨𝑦 ∶ 𝑥 ⟩𝐵) (2, VQ)
4. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (∀𝑧𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐵). (3, (S∀))

b) 𝑧 = 𝑥. Then 𝐴 is ∀𝑥𝐵, and ⊢𝐿 ∀𝑥𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩∀𝑥𝐵 by (VS). So ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦 ≠
𝑦 ⊃ (∀𝑥𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩∀𝑥𝐵) by (PC).

c) 𝑧 = 𝑦 ≠ 𝑥. Then 𝐴 is ∀𝑦𝐵. Let 𝑣 be a variable not in Var(𝐴), 𝑥, 𝑦.

1. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑣≠𝑣 ⊃ (𝐵 ↔ ⟨𝑣 ∶ 𝑥 ⟩𝐵). (ind. hyp.)
2. ⊢𝐿 ∀𝑦𝑥 ≠𝑥 ∧ ∀𝑦𝑣≠𝑣 ⊃ (∀𝑦𝐵 ↔ ∀𝑦⟨𝑣 ∶ 𝑥 ⟩𝐵). (1, UG, UD)
3. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑣≠𝑣 ⊃ (∀𝑦𝐵 ↔ ∀𝑦⟨𝑣 ∶ 𝑥 ⟩𝐵). (2, VQ)
4. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑣≠𝑣 ⊃ (∀𝑦𝐵 ↔ ⟨𝑣 ∶ 𝑥 ⟩∀𝑦𝐵). (3, (S∀))
5. ⊢𝐿 ⟨𝑦 ∶ 𝑣⟩𝑥 ≠𝑥 ∧ ⟨𝑦 ∶ 𝑣⟩𝑣≠𝑣 ⊃ (⟨𝑦 ∶ 𝑣⟩∀𝑦𝐵 ↔ ⟨𝑦 ∶ 𝑣⟩⟨𝑣 ∶ 𝑥 ⟩∀𝑦𝐵). (4, (Subs), (S⊃))
6. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑣⟩∀𝑦𝐵 ↔ ⟨𝑦 ∶ 𝑣⟩⟨𝑣 ∶ 𝑥 ⟩∀𝑦𝐵). (5, (VS), (SAt))
7. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (∀𝑦𝐵 ↔ ⟨𝑦 ∶ 𝑣⟩⟨𝑣 ∶ 𝑥 ⟩∀𝑦𝐵). (6, (VS))
8. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (∀𝑦𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩∀𝑦𝐵). (7, (SE2))

5. 𝐴 is ⟨𝑦2 ∶ 𝑧 ⟩𝐵. We have four cases.
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8 Object-language substitution

a) 𝑧 ∉ {𝑥, 𝑦} and 𝑦2 ≠ 𝑥. Then

1. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐵) (ind. hyp.)
2. ⊢𝐿 ⟨𝑦2 ∶ 𝑧 ⟩𝑥 ≠𝑥 ∧ ⟨𝑦2 ∶ 𝑧 ⟩𝑦≠𝑦 ⊃ (⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨𝑦2 ∶ 𝑧 ⟩⟨𝑦 ∶ 𝑥 ⟩𝐵) (1, (Subs), (S⊃))
3. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨𝑦2 ∶ 𝑧 ⟩⟨𝑦 ∶ 𝑥 ⟩𝐵) (2, (VS))
4. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐵). (3, (SS1))

b) 𝑧 ≠ 𝑥 and 𝑦2 = 𝑥. Then 𝐴 is ⟨𝑥 ∶ 𝑧 ⟩𝐵.

1. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑧≠𝑧 ⊃ (𝐵 ↔ ⟨𝑥 ∶ 𝑧⟩𝐵) (ind. hyp.)
2. ⊢𝐿 ⟨𝑦 ∶ 𝑧 ⟩𝑥 ≠𝑥 ∧ ⟨𝑦 ∶ 𝑧⟩𝑧≠𝑧 ⊃ (⟨𝑦 ∶ 𝑧⟩𝐵 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑥 ∶ 𝑧 ⟩𝐵) (1, (Subs), (S⊃))
3. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑧⟩𝐵 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑥 ∶ 𝑧 ⟩𝐵) (2, (SAt), 𝑧 ≠ 𝑥)
4. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑧⟩𝐵 ↔ ⟨𝑥 ∶ 𝑧⟩𝐵) (3, (VS), 𝑧 ≠ 𝑥)
5. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐵) (ind. hyp.)
6. ⊢𝐿 ⟨𝑦 ∶ 𝑧 ⟩𝑥 ≠𝑥 ∧ ⟨𝑦 ∶ 𝑧⟩𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑧⟩𝐵 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑦 ∶ 𝑥 ⟩𝐵) (5, (Subs),(S⊃))
7. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑧⟩𝐵 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑦 ∶ 𝑥 ⟩𝐵) (6, (SAt), 𝑧 ≠ 𝑥)
8. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑥 ∶ 𝑧⟩𝐵 ↔ ⟨𝑦 ∶ 𝑧⟩⟨𝑦 ∶ 𝑥 ⟩𝐵) (4, 7)
9. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑥 ∶ 𝑧⟩𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑥 ∶ 𝑧 ⟩𝐵). (8, (SS2))

c) 𝑧 = 𝑥. Then 𝐴 is ⟨𝑦2 ∶ 𝑥 ⟩𝐵, and ⊢𝐿 ⟨𝑦2 ∶ 𝑥 ⟩𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑥 ⟩𝐵 by (VS). So
⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦2 ∶ 𝑥 ⟩𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑥 ⟩𝐵) by (PC).

d) 𝑧 = 𝑦 ≠ 𝑥 and 𝑦2 ≠ 𝑥. Then 𝐴 is ⟨𝑦2 ∶ 𝑦⟩𝐵. Let 𝑣 be a variable not in
Var(𝐴), 𝑥, 𝑦, 𝑦2.

1. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑣≠𝑣 ⊃ (𝐵 ↔ ⟨𝑣 ∶ 𝑥 ⟩𝐵). (ind. hyp.)
2. ⊢𝐿 ⟨𝑦2 ∶ 𝑦⟩𝑥 ≠𝑥 ∧ ⟨𝑦2 ∶ 𝑦⟩𝑣≠𝑣 ⊃ (⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨𝑦2 ∶ 𝑦⟩⟨𝑣 ∶ 𝑥 ⟩𝐵). (1, (Subs), (S⊃))
3. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑣≠𝑣 ⊃ (⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨𝑦2 ∶ 𝑦⟩⟨𝑣 ∶ 𝑥 ⟩𝐵). (2, (VS))
4. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑣≠𝑣 ⊃ (⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨𝑣 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑦⟩𝐵). (3, (SS1), 𝑦2 ≠ 𝑥)
5. ⊢𝐿 ⟨𝑦 ∶ 𝑣⟩𝑥 ≠𝑥 ∧ ⟨𝑦 ∶ 𝑣⟩𝑣≠𝑣 ⊃ (⟨𝑦 ∶ 𝑣⟩⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨𝑦 ∶ 𝑣⟩⟨𝑣 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑦⟩𝐵). (4, (Subs), (S⊃))
6. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑣⟩⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨𝑦 ∶ 𝑣⟩⟨𝑣 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑦⟩𝐵). (5, (VS), (SAt))
7. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨𝑦 ∶ 𝑣⟩⟨𝑣 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑦⟩𝐵). (6, (VS))
8. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑦⟩𝐵). (7, (SE2))

114



8 Object-language substitution

6. 𝐴 is □𝐵. Let 𝑣 be a variable not in Var(𝐵).

1. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑣≠𝑣 ⊃ (𝐵 ↔ ⟨𝑣 ∶ 𝑥 ⟩𝐵). (ind. hyp.)
2. ⊢𝐿 □(𝑥 ≠𝑥 ∧ 𝑣≠𝑣) ⊃ (□𝐵 ↔ □⟨𝑣 ∶ 𝑥 ⟩𝐵). (1, (Nec), (K))
3. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑣≠𝑣 ⊃ □(𝑥 ≠𝑥 ∧ 𝑣≠𝑣) ((NA), (EI), (Nec), (K))
4. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑣≠𝑣 ⊃ (□𝐵 ↔ □⟨𝑣 ∶ 𝑥 ⟩𝐵). (2, 3)
5. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑣≠𝑣 ⊃ (□𝐵 ↔ ⟨𝑣 ∶ 𝑥 ⟩□𝐵). (4, (S□), (S♢), 𝑣 ∉ Var(𝐵))
6. ⊢𝐿 ⟨𝑦 ∶ 𝑣⟩𝑥 ≠𝑥 ∧ ⟨𝑦 ∶ 𝑣⟩𝑣≠𝑣 ⊃ (⟨𝑦 ∶ 𝑣⟩□𝐵 ↔ ⟨𝑦 ∶ 𝑣⟩⟨𝑣 ∶ 𝑥 ⟩□𝐵). (5, (Subs), (S⊃))
7. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑣⟩□𝐵 ↔ ⟨𝑦 ∶ 𝑣⟩⟨𝑣 ∶ 𝑥 ⟩□𝐵). (6, (SAt))
8. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (□𝐵 ↔ ⟨𝑦 ∶ 𝑣⟩⟨𝑣 ∶ 𝑥 ⟩□𝐵). (7, (VS))
9. ⊢𝐿 𝑥 ≠𝑥 ∧ 𝑦≠𝑦 ⊃ (□𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩□𝐵). (8, (SE2))

Now we can prove (SC1) and (SC2). I will also show that ⟨𝑦 ∶ 𝑥 ⟩𝐴 and [𝑦/𝑥]𝐴
are provably equivalent conditional on 𝑦≠𝑦.

Lemma 8.9 (Substitution conversion).
For any 𝔏-formula 𝐴 and variables 𝑥, 𝑦,

(SC1) ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ [𝑦/𝑥]𝐴, provided 𝑦 and 𝑥 are modally separated in
𝐴.

(SC2) ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ [𝑦/𝑥]𝐴, provided 𝑦 is really free for 𝑥 in 𝐴.

(SCN) ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ [𝑦/𝑥]𝐴).

Proof. If 𝑥 and 𝑦 are the same variable, then by (SE1), ⊢𝐿 ⟨𝑥 ∶ 𝑥 ⟩𝐴 ↔ [𝑥/𝑥]𝐴.
Assume then that 𝑥 and 𝑦 are different variables. We first prove (SC1) and
(SC2), by induction on 𝐴. Observe that if 𝐴 is not a box formula □𝐵, then by
definition 7.1, 𝑦 is really free for 𝑥 in 𝐴 iff 𝑦 and 𝑥 are modally separated in 𝐴,
in which case 𝑦 and 𝑥 are also modally separated in any subformula of 𝐴.

1. 𝐴 is atomic. By (SAt), ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ [𝑦/𝑥]𝐴 holds without any restric-
tions.
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2. 𝐴 is ¬𝐵. If 𝑦 and 𝑥 are modally separated in 𝐴, then by induction hypothesis,
⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵. So by (PC), ⊢𝐿 ¬⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ¬[𝑦/𝑥]𝐵. By (S¬)
and definition 8.4, it follows that ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩¬𝐵 ↔ [𝑦/𝑥]¬𝐵.

3. 𝐴 is 𝐵 ⊃ 𝐶. If 𝑦 and 𝑥 are modally separated in 𝐴, then by induction hy-
pothesis, ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵 and ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐶 ↔ [𝑦/𝑥]𝐶. By (S⊃),
⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩(𝐵 ⊃ 𝐶) ↔ (⟨𝑦 ∶ 𝑥 ⟩𝐵 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐶). So ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩(𝐵 ⊃ 𝐶) ↔
([𝑦/𝑥]𝐵 ⊃ [𝑦/𝑥]𝐶), and so ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩(𝐵 ⊃ 𝐶) ↔ [𝑦/𝑥](𝐵 ⊃ 𝐶) by defini-
tion 8.4.

4. 𝐴 is ∀𝑧𝐵. We have to distinguish four cases, assuming each time that 𝑦 and
𝑥 are modally separated in 𝐴.

a) 𝑧 ∉ {𝑥, 𝑦}. By induction hypothesis, ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵. So
by (UG) and (UD), ⊢𝐿 ∀𝑧⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ∀𝑧[𝑦/𝑥]𝐵. Since 𝑧 ∉ {𝑥, 𝑦},
⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐵 ↔ ∀𝑧⟨𝑦 ∶ 𝑥 ⟩𝐵 by (S∀), and ∀𝑧[𝑦/𝑥]𝐵 is [𝑦/𝑥]∀𝑧𝐵 by
definition 8.4; so ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐵 ↔ [𝑦/𝑥]∀𝑧𝐵.

b) 𝑧 = 𝑦 and 𝑥 ∉ FV(𝐵). By definition 8.4, then [𝑦/𝑥]∀𝑧𝐵 is ∀𝑦[𝑦/𝑥]𝐵.

1. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵. (induction hypothesis)
2. ⊢𝐿 ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ∀𝑦[𝑦/𝑥]𝐵. (1, (UG), (UD))
3. ⊢𝐿 𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐵. ((VS), 𝑥 ∉ FV(𝐵))
4. ⊢𝐿 ∀𝑦𝐵 ↔ ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐵. (3, (UG), (UD))
5. ⊢𝐿 ∀𝑦𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩∀𝑦𝐵. ((VS), 𝑥 ∉ FV(𝐵))
6. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩∀𝑦𝐵 ↔ ∀𝑦[𝑦/𝑥]𝐵. (2, 4, 5)

c) 𝑧 = 𝑥 and 𝑦 ∉ FV(𝐵). By definition 8.4, then [𝑦/𝑥]∀𝑧𝐵 is ∀𝑦[𝑦/𝑥]𝐵.

1. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵. (induction hypothesis)
2. ⊢𝐿 ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ∀𝑦[𝑦/𝑥]𝐵. (1, (UG), (UD))
3. ⊢𝐿 ∀𝑥𝐵 ↔ ∀𝑦⟨𝑦 ∶ 𝑥 ⟩𝐵. ((SBV), 𝑦 ∉ FV(𝐵))
4. ⊢𝐿 ∀𝑥𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩∀𝑥𝐵. (VS)
5. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩∀𝑥𝐵 ↔ ∀𝑦[𝑦/𝑥]𝐵. (2, 3, 4)

116



8 Object-language substitution

d) 𝑧 = 𝑥 and 𝑦 ∈ FV(𝐵), or 𝑧 = 𝑦 and 𝑥 ∈ FV(𝐵). By definition 8.4,
then [𝑦/𝑥]∀𝑧𝐵 is ∀𝑣[𝑦/𝑥][𝑣/𝑧]𝐵 for some variable 𝑣 ∉ Var(𝐵) ∪ {𝑥, 𝑦}.
Since 𝑣 and 𝑧 are modally separated in 𝐵, by induction hypothesis ⊢𝐿
⟨𝑣 ∶ 𝑧 ⟩𝐵 ↔ [𝑣/𝑧]𝐵. So by (UG) and (UD), ⊢𝐿 ∀𝑣⟨𝑣 ∶ 𝑧⟩𝐵 ↔ ∀𝑣[𝑣/𝑧]𝐵.
By (SBV), ⊢𝐿 ∀𝑧𝐵 ↔ ∀𝑣⟨𝑣 ∶ 𝑧⟩𝐵. So ⊢𝐿 ∀𝑧𝐵 ↔ ∀𝑣[𝑣/𝑧]𝐵. Moreover,
as 𝑧 ∈ {𝑥, 𝑦}, 𝑦 and 𝑥 are modally separated in [𝑣/𝑧]𝐵. So by induction
hypothesis, ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩[𝑣/𝑧]𝐵 ↔ [𝑦/𝑥][𝑣/𝑧]𝐵. Then

1. ⊢𝐿 ∀𝑧𝐵 ↔ ∀𝑣[𝑣/𝑧]𝐵 (as just shown)
2. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩∀𝑣[𝑣/𝑧]𝐵 (1, (Subs), (S¬), (S⊃))
3. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩∀𝑣[𝑣/𝑧]𝐵 ↔ ∀𝑣⟨𝑦 ∶ 𝑥 ⟩[𝑣/𝑧]𝐵. (S∀)
4. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐵 ↔ ∀𝑣⟨𝑦 ∶ 𝑥 ⟩[𝑣/𝑧]𝐵. (2, 3)
5. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩[𝑣/𝑧]𝐵 ↔ [𝑦/𝑥][𝑣/𝑧]𝐵. (induction hypothesis)
6. ⊢𝐿 ∀𝑣⟨𝑦 ∶ 𝑥 ⟩[𝑣/𝑧]𝐵 ↔ ∀𝑣[𝑦/𝑥][𝑣/𝑧]𝐵. (5, (UG), (UD))
7. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐵 ↔ ∀𝑣[𝑦/𝑥][𝑣/𝑧]𝐵. (4, 6)

5. 𝐴 is ⟨𝑦2 ∶ 𝑧 ⟩𝐵. Again we have four cases, assuming 𝑥 and 𝑦 are modally
separated in 𝐴.

a) 𝑧 ∉ {𝑥, 𝑦}. By definition 8.4, then [𝑦/𝑥]⟨𝑦2 ∶ 𝑧 ⟩𝐵 is ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩[𝑦/𝑥]𝐵.

1. ⊢ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩⟨𝑦 ∶ 𝑥 ⟩𝐵 ((SS1) or (SS2))
2. ⊢ ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵 (induction hypothesis)
3. ⊢ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩(⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵) (2, (Subs))
4. ⊢ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩[𝑦/𝑥]𝐵 (3, (S⊃), (S¬))
5. ⊢ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩[𝑦/𝑥]𝐵. (1, 4)

b) 𝑧 = 𝑦 and 𝑥 ∉ FV(𝐵). By definition 8.4, then [𝑦/𝑥]⟨𝑦2 ∶ 𝑧 ⟩𝐵 is ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩[𝑦/𝑥]𝐵.
By induction hypothesis, ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵. So by (Subs) and
(S⊃), ⊢𝐿 ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩[𝑦/𝑥]𝐵. If 𝑦2 = 𝑥, then
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⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩⟨𝑦 ∶ 𝑥 ⟩𝐵 by (SS2). If 𝑦2 ≠ 𝑥, then

1. ⊢𝐿 ⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑦⟩𝐵 ((VS), 𝑥 ∉ FV(⟨𝑦2 ∶ 𝑦⟩𝐵))
2. ⊢𝐿 𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐵 ((VS), 𝑥 ∉ FV(𝐵))
3. ⊢𝐿 ⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨𝑦2 ∶ 𝑦⟩⟨𝑦 ∶ 𝑥 ⟩𝐵 (1, (Subs), (S⊃))
4. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩⟨𝑦 ∶ 𝑥 ⟩𝐵 (1, 3)

So either way ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩⟨𝑦 ∶ 𝑥 ⟩𝐵. So ⊢𝐿
⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑦⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩[𝑦/𝑥]𝐵.

c) 𝑧 = 𝑥 and 𝑦 ∉ FV(𝐵). By definition 8.4, then [𝑦/𝑥]⟨𝑦2 ∶ 𝑧 ⟩𝐵 is ([y/x]y2 ∶ y)[𝑦/𝑥]𝐵.
By induction hypothesis, ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵. So by (Subs) and
(S⊃), ⊢𝐿 ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩[𝑦/𝑥]𝐵. Since 𝑦 ∉
FV(𝐵), by (SE2), ⊢𝐿 ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑥 ⟩𝐵. More-
over, ⊢𝐿 ⟨[𝑦/𝑥]𝑦2 ∶ 𝑥 ⟩𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑥 ⟩𝐵 by either (VS) (if 𝑥 ≠ 𝑦2)
or by (SE1), (Subs) and (S⊃) (if 𝑥 = 𝑦2). So ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑥 ⟩𝐵 ↔
⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩⟨𝑦 ∶ 𝑥 ⟩𝐵.

d) 𝑧 = 𝑥 and 𝑦 ∈ FV(𝐵), or 𝑧 = 𝑦 and 𝑥 ∈ FV(𝐵). By definition 8.4,
then [𝑦/𝑥]⟨𝑦2 ∶ 𝑧 ⟩𝐵 is ⟨[𝑦/𝑥]𝑦2 ∶ 𝑣⟩[𝑦/𝑥][𝑣/𝑧]𝐵, where 𝑣 ∉ Var(𝐵) ∪
{𝑥, 𝑦, 𝑦2}.

1. ⊢ ⟨𝑣 ∶ 𝑧⟩𝐵 ↔ [𝑣/𝑧]𝐵 (induction hypothesis)
2. ⊢ ⟨𝑦2 ∶ 𝑣⟩⟨𝑣 ∶ 𝑧 ⟩𝐵 ↔ ⟨𝑦2 ∶ 𝑣⟩[𝑣/𝑧]𝐵 (1, (Subs), (S⊃), (S¬))
3. ⊢ ⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨𝑦2 ∶ 𝑣⟩⟨𝑣 ∶ 𝑧 ⟩𝐵 (SE2)
4. ⊢ ⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨𝑦2 ∶ 𝑣⟩[𝑣/𝑧]𝐵 (2, 3)
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Since 𝑧 ∈ {𝑥, 𝑦}, 𝑥 and 𝑦 are modally separated in [𝑣/𝑧]𝐵. So:

5. ⊢ ⟨𝑦 ∶ 𝑥 ⟩[𝑣/𝑧]𝐵 ↔ [𝑦/𝑥][𝑣/𝑧]𝐵 (ind. hyp.)
6. ⊢ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑣⟩⟨𝑦 ∶ 𝑥 ⟩[𝑣/𝑧]𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑣⟩[𝑦/𝑥][𝑣/𝑧]𝐵 (5, (Subs), (S⊃))
7. ⊢ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑣⟩[𝑣/𝑧]𝐵 (4, (Subs), (S⊃))
8. ⊢ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑣⟩[𝑣/𝑧]𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑣⟩⟨𝑦 ∶ 𝑥 ⟩[𝑣/𝑧]𝐵 ((SS1) or (SS2))
9. ⊢ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑣⟩⟨𝑦 ∶ 𝑥 ⟩[𝑣/𝑧]𝐵 (7, 8)

10. ⊢ ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑣⟩[𝑦/𝑥][𝑣/𝑧]𝐵 (6, 9)

6. 𝐴 is □𝐵. For (SC1), assume 𝑥 and 𝑦 are modally separated in 𝐴. Then they
are also modally separated in 𝐵, so by induction hypothesis, ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔
[𝑦/𝑥]𝐵. By (Nec) and (K), then ⊢𝐿 □⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ □[𝑦/𝑥]𝐵. By (S□),
⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩□𝐵 ⊃ □⟨𝑦 ∶ 𝑥 ⟩𝐵. Since at most one of 𝑥, 𝑦 is free in 𝐵, by (S♢),
⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩♢¬𝐵 ⊃ ♢⟨𝑦 ∶ 𝑥 ⟩¬𝐵; so ⊢𝐿 □⟨𝑦 ∶ 𝑥 ⟩𝐵 ⊃ ⟨𝑦 ∶ 𝑥 ⟩□𝐵 (by (S¬),
(Subs), (S⊃), (Nec), (K)). So ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩□𝐵 ↔ □[𝑦/𝑥]𝐵. Since □[𝑦/𝑥]𝐵
is [𝑦/𝑥]□𝐵 by definition 8.4, this means that ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩□𝐵 ↔ [𝑦/𝑥]□𝐵.
For (SC2), assume 𝑦 is really free for 𝑥 in □𝐵. Then 𝑦 is really free for 𝑥
in 𝐵, so by induction hypothesis, ⊢ ⟨𝑦 ∶ 𝑥 ⟩𝐵 ⊃ [𝑦/𝑥]𝐵. By (Nec) and (K),
then ⊢ □⟨𝑦 ∶ 𝑥 ⟩𝐵 ⊃ □[𝑦/𝑥]𝐵. By (S□), ⊢ ⟨𝑦 ∶ 𝑥 ⟩□𝐵 ⊃ □⟨𝑦 ∶ 𝑥 ⟩𝐵. So
⊢ ⟨𝑦 ∶ 𝑥 ⟩□𝐵 ⊃ □[𝑦/𝑥]𝐵.

Here is the proof for (SCN). The first three clauses are very similar.

1. 𝐴 is atomic. Then ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ [𝑦/𝑥]𝐴 as we’ve seen above, and so
⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩𝐴 ↔ [𝑦/𝑥]𝐴) by (PC).

2. 𝐴 is ¬𝐵. By induction hypothesis, ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵). So
by (PC), ⊢𝐿 𝑦 ≠ 𝑦 ⊃ (¬⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ¬[𝑦/𝑥]𝐵). By (S¬) and definition
8.4, it follows that ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩¬𝐵 ↔ [𝑦/𝑥]¬𝐵).

3. 𝐴 is 𝐵 ⊃ 𝐶. By induction hypothesis, ⊢𝐿 𝑦 ≠ 𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵)
and ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩𝐶 ↔ [𝑦/𝑥]𝐶). By (S⊃), ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩(𝐵 ⊃
𝐶) ↔ (⟨𝑦 ∶ 𝑥 ⟩𝐵 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐶)). So ⊢𝐿 𝑦 ≠ 𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩(𝐵 ⊃ 𝐶) ↔
([𝑦/𝑥]𝐵 ⊃ [𝑦/𝑥]𝐶)), and so ⊢𝐿 𝑦 ≠ 𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩(𝐵 ⊃ 𝐶) ↔ [𝑦/𝑥](𝐵 ⊃
𝐶)) by definition 8.4.
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4. 𝐴 is ∀𝑧𝐵. If 𝑧 ∉ {𝑥, 𝑦}, then by induction hypothesis, ⊢𝐿 𝑦 ≠ 𝑦 ⊃
(⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵). So by (UG) and (UD), ⊢𝐿 ∀𝑧 𝑦≠𝑦 ⊃ (∀𝑧⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔
∀𝑧[𝑦/𝑥]𝐵). Since 𝑧 ∉ {𝑥, 𝑦}, ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐵 ↔ ∀𝑧⟨𝑦 ∶ 𝑥 ⟩𝐵 by (S∀), and
⊢𝐿 𝑦≠𝑦 ⊃ ∀𝑧 𝑦≠𝑦 by (VQ), and ∀𝑧[𝑦/𝑥]𝐵 is [𝑦/𝑥]∀𝑧𝐵 by definition 8.4;
so ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐵 ↔ [𝑦/𝑥]∀𝑧𝐵).
Alternatively, if 𝑧 ∈ {𝑥, 𝑦}, then either 𝑥 or 𝑦 is not free in 𝐴, and thus 𝑥 and
𝑦 are modally separated in 𝐴. By (SC2), then ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐵 ↔ [𝑦/𝑥]∀𝑧𝐵,
and so by (PC), ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩∀𝑧𝐵 ↔ [𝑦/𝑥]∀𝑧𝐵).

5. 𝐴 is ⟨𝑦2 ∶ 𝑧 ⟩𝐵. If 𝑧 ∉ {𝑥, 𝑦}, then by induction hypothesis, ⊢𝐿 𝑦 ≠ 𝑦 ⊃
(⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵). So by (Subs) and (S⊃), ⊢𝐿 ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩𝑦 ≠ 𝑦 ⊃
(⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩[𝑦/𝑥]𝐵). By (VS), ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩𝑦≠
𝑦 ↔ 𝑦≠𝑦. And by (SS1) or (SS2), ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩⟨𝑦 ∶ 𝑥 ⟩𝐵.
So ⊢𝐿 𝑦 ≠ 𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ ⟨[𝑦/𝑥]𝑦2 ∶ 𝑧 ⟩[𝑦/𝑥]𝐵). But by defini-
tion 8.4, [𝑦/𝑥]⟨𝑦2 ∶ 𝑧 ⟩𝐵 is ⟨[𝑦/𝑥]𝑦2 ∶ 𝑦⟩[𝑦/𝑥]𝐵.

Alternatively, if 𝑧 ∈ {𝑥, 𝑦}, then either 𝑥 or 𝑦 is not free in 𝐴, and thus 𝑥
and 𝑦 are modally separated in 𝐴. By (SC2), then ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔
[𝑦/𝑥]⟨𝑦2 ∶ 𝑧 ⟩𝐵, and so by (PC), ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩⟨𝑦2 ∶ 𝑧 ⟩𝐵 ↔ [𝑦/𝑥]⟨𝑦2 ∶ 𝑧 ⟩𝐵).

6. 𝐴 is □𝐵. Then

1. ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ [𝑦/𝑥]𝐵). (ind. hyp.)
2. ⊢𝐿 □𝑦≠𝑦 ⊃ (□⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ □[𝑦/𝑥]𝐵). (1, (Nec), (K))
3. ⊢𝐿 𝑦≠𝑦 ⊃ □𝑦≠𝑦. ((=R) or (NA), (EI) and (Nec))
4. ⊢𝐿 𝑦≠𝑦 ⊃ (□⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ □[𝑦/𝑥]𝐵). (2, 3)
5. ⊢𝐿 𝑦≠𝑦 ⊃ ⟨𝑦 ∶ 𝑥 ⟩(𝑥 ≠𝑥 ∧ 𝑦≠𝑦) ((SAt), (S⊃), (S¬))
6. ⊢𝐿 (𝑥 ≠𝑥 ∧ 𝑦≠𝑦) ⊃ □(𝑥 ≠𝑥 ∧ 𝑦≠𝑦). ((=R) or (NA), (EI), (Nec) and (K))
7. ⊢𝐿 □(𝑥 ≠𝑥 ∧ 𝑦≠𝑦) ⊃ (□𝐵 ↔ □⟨𝑦 ∶ 𝑥 ⟩𝐵). ((SEV), (Nec), (K))
8. ⊢𝐿 (𝑥 ≠𝑥 ∧ 𝑦≠𝑦) ⊃ (□𝐵 ↔ □⟨𝑦 ∶ 𝑥 ⟩𝐵). (6, 7)
9. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩(𝑥 ≠𝑥 ∧ 𝑦≠𝑦) ⊃ (⟨𝑦 ∶ 𝑥 ⟩□𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩□⟨𝑦 ∶ 𝑥 ⟩𝐵). (8, (Subs), (S⊃))

10. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩(𝑥 ≠𝑥 ∧ 𝑦≠𝑦) ⊃ (⟨𝑦 ∶ 𝑥 ⟩□𝐵 ↔ □⟨𝑦 ∶ 𝑥 ⟩𝐵). (9, (VS))
11. ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩□𝐵 ↔ □⟨𝑦 ∶ 𝑥 ⟩𝐵). (7, 10)
12. ⊢𝐿 𝑦≠𝑦 ⊃ (⟨𝑦 ∶ 𝑥 ⟩□𝐵 ↔ [𝑦/𝑥]□𝐵). (4, 13, def. 8.4)
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8 Object-language substitution

For the next lemma, we extend the definition of alphabetic variants (definition 3.6)
to formulas with the substitution operator.

Definition 8.7 (Alphabetic variant).
A formula 𝐴′ is an alphabetic variant of a formula 𝐴 if one of the following
conditions is satisfied.

1. 𝐴 = 𝐴′.

2. 𝐴 = ¬𝐵, 𝐴′ = ¬𝐵′, and 𝐵′ is an alphabetic variant of 𝐵.

3. 𝐴 = 𝐵 ⊃ 𝐶, 𝐴′ = 𝐵′ ⊃ 𝐶′, and 𝐵′, 𝐶′ are alphabetic variants of 𝐵, 𝐶,
respectively.

4. 𝐴 = ∀𝑥𝐵, 𝐴′ = ∀𝑧[𝑧/𝑥]𝐵′, 𝐵′ is an alphabetic variant of 𝐵, and either
𝑧 = 𝑥 or 𝑧 ∉ Var(𝐵′).

5. 𝐴 = ⟨𝑦 ∶ 𝑥 ⟩𝐵, 𝐴′ = ⟨𝑦 ∶ 𝑧⟩[𝑧/𝑥]𝐵′, 𝐵′ is an alphabetic variant of 𝐵, and
either 𝑧 = 𝑥 or 𝑧 ∉ Var(𝐵′).

6. 𝐴 = □𝐵, 𝐴′ = □𝐵′, and 𝐵′ is an alphabetic variant of 𝐴′.

Lemma 8.10 (Syntactic alpha-conversion).
If 𝐴, 𝐴′ are 𝔏-formulas, and 𝐴′ is an alphabetic variant of 𝐴, then

(AC) ⊢𝐿 𝐴 ↔ 𝐴′.

Proof. by induction on 𝐴.

1. 𝐴 is atomic. Then 𝐴 = 𝐴′ and ⊢𝐿 𝐴 ↔ 𝐴′ by (Taut).

2. 𝐴 is ¬𝐵. Then 𝐴′ is ¬𝐵′ with 𝐵′ an alphabetic variant of 𝐵. By induction
hypothesis, ⊢𝐿 𝐵 ↔ 𝐵′. By (PC), ⊢𝐿 ¬𝐵 ↔ ¬𝐵′.
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8 Object-language substitution

3. 𝐴 is 𝐵 ⊃ 𝐶. Then 𝐴′ is 𝐵′ ⊃ 𝐶′ with 𝐵′, 𝐶′ alphabetic variants of 𝐵, 𝐶,
respectively. By induction hypothesis, ⊢𝐿 𝐵 ↔ 𝐵′ and ⊢𝑠𝐶 𝐶 ↔ 𝐶′.
By (PC), then ⊢𝐿 (𝐵 ⊃ 𝐶) ↔ (𝐵′ ⊃ 𝐶′).

4. 𝐴 is ∀𝑥𝐵. Then 𝐴′ is either ∀𝑥𝐵′ or ∀𝑧[𝑧/𝑥]𝐵′, where 𝐵′ is an alphabetic
variant of 𝐵 and 𝑧 ∉ Var(𝐵′). Assume first that 𝐴′ is ∀𝑥𝐵′. By induction
hypothesis, ⊢𝐿 𝐵 ↔ 𝐵′. So by (UG) and (UD), ⊢𝐿 ∀𝑥𝐵 ↔ ∀𝑥𝐵′.

Alternatively, assume 𝐴′ is ∀𝑧[𝑧/𝑥]𝐵′ and 𝑧 ∉ Var(𝐵′). Since 𝐵′ differs
from 𝐵 at most in renaming bound variables, if 𝑧 were free in 𝐵, then
𝑧 ∈ Var(𝐵′). So 𝑧 is not free in 𝐵. Then

1. ⊢𝐿 𝐵 ↔ 𝐵′. induction hypothesis
2. ⊢𝐿 ⟨𝑧 ∶ 𝑥 ⟩𝐵 ↔ ⟨𝑧 ∶ 𝑥 ⟩𝐵′. (1, (Subs), (S¬))
3. ⊢𝐿 ⟨𝑧 ∶ 𝑥 ⟩𝐵′ ↔ [𝑧/𝑥]𝐵′. ((SC1), 𝑧 ∉ Var(𝐵′))
4. ⊢𝐿 ⟨𝑧 ∶ 𝑥 ⟩𝐵 ↔ [𝑧/𝑥]𝐵′. (2, 3)
5. ⊢𝐿 ∀𝑧⟨𝑧 ∶ 𝑥 ⟩𝐵 ↔ ∀𝑧[𝑧/𝑥]𝐵′. (4, (UG), (UD))
6. ⊢𝐿 ∀𝑥𝐵 ↔ ∀𝑧⟨𝑧 ∶ 𝑥 ⟩𝐵. ((SBV), 𝑧 not free in 𝐵)
7. ⊢𝐿 ∀𝑥𝐵 ↔ ∀𝑧[𝑧/𝑥]𝐵′. (5, 6)

5. 𝐴 is ⟨𝑦 ∶ 𝑥 ⟩𝐵. Then 𝐴′ is either ⟨𝑦 ∶ 𝑥 ⟩𝐵′ or ⟨𝑦 ∶ 𝑧 ⟩[𝑧/𝑥]𝐵′, where 𝐵′

is an alphabetic variant of 𝐵 and 𝑧 ∉ Var(𝐵). Assume first that 𝐴′ is
⟨𝑦 ∶ 𝑥 ⟩𝐵′. By induction hypothesis, ⊢𝐿 𝐵 ↔ 𝐵′. So by (Subs) and (S⊃),
⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐵′.

Alternatively, assume 𝐴′ is ⟨𝑦 ∶ 𝑧 ⟩[𝑧/𝑥]𝐵′ and 𝑧 ∉ Var(𝐵′). Again, it
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8 Object-language substitution

follows that 𝑧 is not free in 𝐵. So

1. ⊢𝐿 𝐵 ↔ 𝐵′. induction hypothesis
2. ⊢𝐿 ⟨𝑧 ∶ 𝑥 ⟩𝐵 ↔ ⟨𝑧 ∶ 𝑥 ⟩𝐵′. (1, (Subs), (S⊃))
3. ⊢𝐿 ⟨𝑧 ∶ 𝑥 ⟩𝐵′ ↔ [𝑧/𝑥]𝐵′. ((SC1), 𝑧 ∉ Var(𝐵′))
4. ⊢𝐿 ⟨𝑧 ∶ 𝑥 ⟩𝐵 ↔ [𝑧/𝑥]𝐵′. (2, 3)
5. ⊢𝐿 ⟨𝑦 ∶ 𝑧 ⟩⟨𝑧 ∶ 𝑥 ⟩𝐵 ↔ ⟨𝑦 ∶ 𝑧⟩[𝑧/𝑥]𝐵′. (4, (Subs), (S⊃))
6. ⊢𝐿 ⟨𝑦 ∶ 𝑧 ⟩⟨𝑧 ∶ 𝑥 ⟩𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐵. ((SE2), 𝑧 not free in 𝐵)
7. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐵 ↔ ⟨𝑦 ∶ 𝑧⟩[𝑧/𝑥]𝐵′. (5, 6)

6. 𝐴 is □𝐴′. Then 𝐵 is □𝐵′ with 𝐵′ an alphabetic variant of 𝐴′. By induc-
tion hypothesis, ⊢𝐿 𝐴′ ↔ 𝐵′. Then by (Nec), ⊢𝐿 □(𝐴′ ↔ 𝐵′), and by
(K), ⊢𝐿 □𝐴′ ↔ □𝐵′.

Theorem 8.11 (Substitution and non-substitution logics).
For any 𝔏-formula 𝐴 and variables 𝑥, 𝑦,

(FUI∗) ⊢𝐿 ∀𝑥𝐴 ⊃ (𝐸𝑦 ⊃ [𝑦/𝑥]𝐴), provided 𝑦 is really free for 𝑥 in 𝐴,

(LL∗) ⊢𝐿 𝑥 =𝑦 ⊃ 𝐴 ⊃ [𝑦/𝑥]𝐴, provided 𝑦 is really free for 𝑥 in 𝐴,

(Sub∗) if ⊢𝐿 𝐴, then ⊢𝐿 [𝑦/𝑥]𝐴, provided 𝑦 is really free for 𝑥 in 𝐴.

It follows that FK∗ ⊆ FKs and NK∗ ⊆ NKs.

Proof. Assume 𝑦 is really free for 𝑥 in 𝐴. Then by (SC2), ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ [𝑦/𝑥]𝐴.
By (FUIs), ⊢𝐿 ∀𝑥𝐴 ⊃ (𝐸𝑦 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐴), so by (PC), ⊢𝐿 ∀𝑥𝐴 ⊃ (𝐸𝑦 ⊃ [𝑦/𝑥]𝐴).
Similarly, by (LLs), ⊢𝐿 𝑥 = 𝑦 ⊃ 𝐴 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐴, so by (PC), ⊢𝐿 𝑥 = 𝑦 ⊃ 𝐴 ⊃
[𝑦/𝑥]𝐴. Finally, by (Subs), if ⊢𝐿 𝐴, then ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴, so then ⊢𝐿 [𝑦/𝑥]𝐴 by
(PC).
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Lemma 8.12 (Symmetry and transitivity of identity).
For any 𝔏-variables 𝑥, 𝑦, 𝑧,

(=S) ⊢𝐿 𝑥 =𝑦 ⊃ 𝑦=𝑥;

(=T) ⊢𝐿 𝑥 =𝑦 ⊃ 𝑦=𝑧 ⊃ 𝑥 =𝑧.

Proof. Immediate from theorem 8.11 and lemma 7.12.

Lemma 8.13 (Variations on Leibniz’ Law).
If 𝐴 is an 𝔏-formula and 𝑥, 𝑦, 𝑦′ are 𝔏-variables, then

(LV1) ⊢𝐿 𝑥 =𝑦 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ 𝐴.

(LV2) ⊢𝐿 𝑦=𝑦′ ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ [𝑦′/𝑥]𝐴, provided 𝑦′ is really free for 𝑥 in 𝐴.

Proof. (LV1). Let 𝑧 be an 𝔏-variable not in Var(𝐴). Then

1. ⊢𝐿 𝑥 =𝑧 ⊃ ⟨𝑧 ∶ 𝑥 ⟩𝐴 ⊃ ⟨𝑥 ∶ 𝑧⟩⟨𝑧 ∶ 𝑥 ⟩𝐴. (LLs)
2. ⊢𝐿 𝑥 =𝑧 ⊃ ⟨𝑧 ∶ 𝑥 ⟩𝐴 ⊃ ⟨𝑥 ∶ 𝑥 ⟩𝐴. (1, (SE2), 𝑧 ∉ Var(𝐴))
3. ⊢𝐿 𝑥 =𝑧 ⊃ ⟨𝑧 ∶ 𝑥 ⟩𝐴 ⊃ 𝐴. (2, (SE1))
4. ⊢𝐿 ⟨𝑦 ∶ 𝑧 ⟩𝑥 =𝑧 ⊃ ⟨𝑦 ∶ 𝑧⟩⟨𝑧 ∶ 𝑥 ⟩𝐴 ⊃ ⟨𝑦 ∶ 𝑧⟩𝐴. (3, (VS), (S⊃))
5. ⊢𝐿 𝑥 =𝑧 ⊃ ⟨𝑦 ∶ 𝑧⟩⟨𝑧 ∶ 𝑥 ⟩𝐴 ⊃ ⟨𝑦 ∶ 𝑧⟩𝐴. (4, (SAt))
6. ⊢𝐿 𝑥 =𝑧 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ ⟨𝑦 ∶ 𝑧⟩𝐴. (5, (SE2), 𝑧 ∉ Var(𝐴))
7. ⊢𝐿 𝑥 =𝑧 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ 𝐴. (6, (VS), 𝑧 ∉ Var(𝐴)).
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(LV2).

1. ⊢𝐿 𝑥 =𝑦 ∧ 𝑦=𝑦′ ⊃ 𝑥 =𝑦′. (=T)
2. ⊢𝐿 𝐴 ∧ 𝑥 =𝑦′ ⊃ [𝑦′/𝑥]𝐴. ((LL∗), 𝑦′ m.f. in 𝐴)
3. ⊢𝐿 𝐴 ∧ 𝑥 =𝑦 ∧ 𝑦=𝑦′ ⊃ [𝑦′/𝑥]𝐴. (1, 2)
4. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ∧ ⟨𝑦 ∶ 𝑥 ⟩𝑥 =𝑦 ∧ ⟨𝑦 ∶ 𝑥 ⟩𝑦=𝑦′ ⊃ ⟨𝑦 ∶ 𝑥 ⟩[𝑦′/𝑥]𝐴. (3, (Subs), (S¬), (S⊃))
5. ⊢𝐿 𝑦=𝑦 ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝑥 =𝑦. (SAt)
6. ⊢𝐿 𝑦=𝑦′ ⊃ 𝑦=𝑦. ((LL∗), (=S))
7. ⊢𝐿 𝑦=𝑦′ ⊃ ⟨𝑦 ∶ 𝑥 ⟩𝑦=𝑦′. (VS)
8. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ∧ 𝑦=𝑦′ ⊃ ⟨𝑦 ∶ 𝑥 ⟩[𝑦′/𝑥]𝐴. (4, 5, 6, 7)
9. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩[𝑦′/𝑥]𝐴 ⊃ [𝑦′/𝑥]𝐴. (VS)

10. ⊢𝐿 ⟨𝑦 ∶ 𝑥 ⟩𝐴 ∧ 𝑦=𝑦′ ⊃ [𝑦′/𝑥]𝐴. (8, 9)

Lemma 8.14 (Leibniz’ Law with sequences).
For any 𝔏-formula 𝐴 and variables 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 such that the 𝑥1, … , 𝑥𝑛
are pairwise distinct,

(LLn) ⊢𝐿 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛 =𝑦𝑛 ⊃ 𝐴 ⊃ ⟨𝑦1, … , 𝑦𝑛 ∶ 𝑥1, … , 𝑥𝑛 ⟩𝐴.

Proof. For 𝑛 = 1, (LLn) is (LLs). Assume then that 𝑛 > 1. To keep formulas
in the following proof at a managable length, let 𝜙(𝑖) abbreviate the sequence
𝜙(1), … , 𝜙(𝑛 − 1). For example, ⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩ is ⟨𝑦1, … , 𝑦𝑛−1 ∶ 𝑥1, … , 𝑥𝑛−1 ⟩. Let 𝑧
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be the alphabetically first variable not in 𝐴 or 𝑥1, … , 𝑥𝑛. Now

1. ⊢𝐿 𝑥𝑛 =𝑦𝑛 ⊃ ⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩𝐴 ⊃ ⟨𝑦𝑛 ∶ 𝑥𝑛 ⟩⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩𝐴. (LLs)
2. ⊢𝐿 ⟨𝑦𝑛 ∶ 𝑥𝑛 ⟩⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩𝐴 ⊃ ⟨𝑦𝑛 ∶ 𝑧 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩𝐴. (SE1)
3. ⊢𝐿 ⟨𝑧 ∶ 𝑥𝑛 ⟩⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩𝐴 ⊃ ⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. ((SS1) or (SS2))
4. ⊢𝐿 ⟨𝑦𝑛 ∶ 𝑧 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩𝐴

⊃ ⟨𝑦𝑛 ∶ 𝑧 ⟩⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. (3, (Subs), (S⊃))
5. ⊢𝐿 𝑥𝑛 =𝑦𝑛 ⊃ ⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩𝐴 ⊃ ⟨𝑦𝑛 ∶ 𝑧 ⟩⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. (1, 2, 4)

6. ⊢𝐿 𝑥𝑛 =𝑧 ⊃ ⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴
⊃ ⟨𝑧 ∶ 𝑥𝑛 ⟩⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. (LLs)

7. ⊢𝐿 𝑥𝑛 =𝑧 ⊃ ⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴
⊃ ⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. (6, (SS1))

8. ⊢𝐿 𝑧=𝑥𝑛 ⊃ ⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴
⊃ ⟨𝑥𝑛 ∶ 𝑧 ⟩⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. (LLs)

9. ⊢𝐿 𝑧=𝑥𝑛 ⊃ ⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴
⊃ ⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑥𝑛 ∶ 𝑧 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. (8, (SS1), (SS2))

10. ⊢𝐿 ⟨𝑥𝑛 ∶ 𝑧 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴 ↔ ⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴 ((SE1), (SE2))
11. ⊢𝐿 ⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑥𝑛 ∶ 𝑧 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴 ⊃ ⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴 (10, (Subs), (S⊃))
12. ⊢𝐿 𝑧=𝑥𝑛 ⊃ 𝑥𝑛 =𝑧 (=S)
13. ⊢𝐿 𝑧=𝑥𝑛 ⊃ ⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴 ⊃ ⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. (7, 9, 11, 12)

14. ⊢𝐿 𝑥𝑛 =𝑦𝑛 ⊃ ⟨𝑦𝑛 ∶ 𝑧 ⟩𝑧=𝑥𝑛 ((=S), (SAt))
15. ⊢𝐿 𝑥𝑛 =𝑦𝑛 ⊃ ⟨𝑦𝑛 ∶ 𝑧 ⟩⟨[𝑧/𝑥𝑛]𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴

⊃ ⟨𝑦𝑛 ∶ 𝑧 ⟩⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. 13, 14, (Subs), (S⊃)
16. ⊢𝐿 𝑥𝑛 =𝑦𝑛 ⊃ ⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩𝐴 ⊃ ⟨𝑦𝑛 ∶ 𝑧 ⟩⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. 5, 15

17. ⊢𝐿 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛−1 =𝑦𝑛−1 ⊃ 𝐴 ⊃ ⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩𝐴. (induction hypothesis)

18. ⊢𝐿 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛 =𝑦𝑛 ⊃ 𝐴 ⊃ ⟨𝑦𝑛 ∶ 𝑧 ⟩⟨𝑦𝑖 ∶ 𝑥𝑖 ⟩⟨𝑧 ∶ 𝑥𝑛 ⟩𝐴. (16, 17)

19. ⊢𝐿 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛 =𝑦𝑛 ⊃ 𝐴 ⊃ ⟨𝑦1, … , 𝑦𝑛 ∶ 𝑥1, … , 𝑥𝑛 ⟩𝐴. (18, def. 8.3)
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8 Object-language substitution

Lemma 8.15 (Closure under injective substitutions).
For any 𝔏-formula 𝐴 and injective substitution 𝜏 on 𝔏,

(Subt) ⊢𝐿 𝐴 iff ⊢𝐿 𝐴𝜏.

Proof. The proof is almost exactly as in lemma 7.13. We only need to add a
clause to the proof that that 𝐴𝜏 = [𝑥𝜏𝑛 /𝑣𝑛] … [𝑥𝜏

2 /𝑣2][𝑥𝜏
1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛]𝐴,

where 𝑣2, … , 𝑣𝑛 are distinct variables not in 𝐴 or 𝐴𝜏. The proof is by induction
on the subformulas 𝐵 of 𝐴, ordered by complexity. Recall that Σ abbreviates
[𝑥𝜏𝑛 /𝑣𝑛] … [𝑥𝜏

2 /𝑣2][𝑥𝜏
1 /𝑥1][𝑣2/𝑥2] … [𝑣𝑛/𝑥𝑛].

Now assume 𝐵 is ⟨𝑦 ∶ 𝑧 ⟩𝐶. By induction hypothesis, Σ𝐶 = 𝐶𝜏. Since
𝜏 is injective, it follows by definition 8.4 that Σ⟨𝑦 ∶ 𝑧⟩𝐶 is ⟨Σ𝑦 ∶ Σ𝑧⟩Σ𝐶, and
(⟨𝑦 ∶ 𝑧 ⟩𝐶)𝜏 is ⟨𝑦𝜏 ∶ 𝑧𝜏 ⟩𝐶𝜏. It is easy to verify that Σ𝑦 = 𝑦𝜏 and Σ𝑧 = 𝑧𝜏.
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9 Canonical models for
non-functional logics

9.1 Preview

Establishing completeness for the functional base logics from chapter 3 was easy.
For nonfunctional logics, the situation is more complicated. Here’s why.

As before, we assume that singular terms denote equivalence classes of terms.
Any counterpart relation in a canonical model will therefore be a relation between
variable classes. We would like to represent such relations by substitutions, as in
the functional case. In non-functional models, it is not obvious that this can be
done. Suppose {𝑥} at 𝑤 has two 𝐶-counterparts {𝑢}, {𝑣} at 𝑤′. Then there is no
substitution that maps 𝑥 to both 𝑢 and 𝑣. We could try to work with substitution
relations. But this gets messy. My strategy is to say that a class [𝑥]𝑤 at 𝑤 only has
two 𝐶-counterparts at 𝑤′ if it contains at least two variables: {𝑥, 𝑦} can have both {𝑢}
and {𝑣} as 𝐶-counterparts, relative to a substitution that maps 𝑥 to 𝑢 and 𝑦 to 𝑣.

The next problem we face is that the substitution lemma doesn’t hold for non-
functional logics. In chapter 4, we used the substitution lemma in the proof of the
truth lemma. Knowing that 𝑤, 𝑔𝑤 ⊩ □𝐴 iff 𝑤′, 𝑔𝑤′ ∘ 𝜎 ⊩ 𝐴 for all 𝑤′ and 𝜎 such
that {𝜎(𝑋) ∶ □𝑋 ∈ 𝑤} ⊆ 𝑤′, we’d like to infer that 𝑤′, 𝑔𝑤′ ⊩ 𝜎(𝐴) for all such 𝑤′

and 𝜎 so that we can apply the induction hypothesis.
If we have a substitution operator in the language, we can replace 𝜎(𝐴) by ⟨𝑦1 … 𝑦𝑛/𝑥1 … 𝑥𝑛 ⟩𝐴.

Without a substitution operator, we can get around the problem by stipulating that
all relevant substitutions 𝜎 must be injective. Injective substitutions – which we’ll
henceforth call transformations – make capturing impossible: for the free variable 𝑦
in ∀𝑥𝐴(𝑦) to be captured by the initial quantifier ∀𝑥 after substitution, 𝑥 and 𝑦 have
to be replaced by the same variable. Indeed, definition 3.1 has been chosen to entail
that if 𝜎 is injective then 𝜎(𝐴) is simply 𝐴 with all variables simultaneously replaced
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9 Canonical models for non-functional logics

by their 𝜎-value.

Lemma 9.1 (Transformation Lemma).
For any counterpart model 𝔐, world 𝑤 in 𝔐, assignment 𝑔 on 𝑈𝑤, formula
𝐴, and transformation 𝜏,

𝔐, 𝑤, 𝑔 ∘ 𝜏 ⊩ 𝐴 iff 𝔐, 𝑤, 𝑔 ⊩ 𝜏(𝐴).

Proof. By induction on 𝐴.

1. 𝐴 is 𝑃𝑥1 … 𝑥𝑛. 𝔐, 𝑤, 𝑔 ∘ 𝜏 ⊩ 𝑃𝑥1 … 𝑥𝑛 iff ⟨(𝑔 ∘ 𝜏)(𝑥1), … , (𝑔 ∘ 𝜏)(𝑥𝑛)⟩ ∈
𝐼𝑤(𝑃) by definition 2.9, iff ⟨𝑔(𝑥𝜏

1 ), … , 𝑔(𝑥𝜏𝑛 )⟩ ∈ 𝐼𝑤(𝑃), iff 𝔐, 𝑤, 𝑔 ⊩
𝜏(𝑃𝑥1 … 𝑥𝑛) by definition 3.1.

2. 𝐴 is ¬𝐵. 𝔐, 𝑤, 𝑔 ∘ 𝜏 ⊩ ¬𝐵 iff 𝔐, 𝑤, 𝑔 ∘ 𝜏 ⊮ 𝐵 by definition 2.9, iff
𝔐, 𝑤, 𝑔 ⊮ 𝜏(𝐵) by induction hypothesis, iff 𝔐, 𝑤, 𝑔 ⊩ ¬𝜏(𝐵) by defini-
tion 2.9, iff 𝔐, 𝑤, 𝑔 ⊩ 𝜏(¬𝐵) by definition 3.1.

3. 𝐴 is 𝐵 ⊃ 𝐶. Analogous.

4. 𝐴 is ⟨𝑦 ∶ 𝑥 ⟩𝐵. By definition 8.2, 𝔐, 𝑤, 𝑔 ∘ 𝜏 ⊩ ⟨𝑦 ∶ 𝑥 ⟩𝐵 iff 𝑤, (𝑔 ∘ 𝜏)[𝑦/𝑥] ⊩
𝐵. Now (𝑔 ∘ 𝜏)[𝑦/𝑥](𝑥) = (𝑔 ∘ 𝜏)(𝑦) = 𝑔[𝑦𝜏/𝑥𝜏](𝑥𝜏) = (𝑔[𝑦𝜏/𝑥𝜏] ∘ 𝜏)(𝑥).
Also, for any variable 𝑧 ≠ 𝑥, (𝑔 ∘ 𝜏)[𝑦/𝑥](𝑧) = (𝑔 ∘ 𝜏)(𝑧) = 𝑔[𝑦𝜏/𝑥𝜏](𝑧𝜏

(because 𝑧𝜏 ≠ 𝑥𝜏, by injectivity of 𝜏) = (𝑔[𝑦𝜏/𝑥𝜏] ∘ 𝜏)(𝑧). So (𝑔 ∘ 𝜏)[𝑦/𝑥] =
𝑔[𝑦𝜏/𝑥𝜏] ∘ 𝜏. And so 𝔐, 𝑤, (𝑔 ∘ 𝜏)[𝑦/𝑥] ⊩ 𝐵 iff 𝔐, 𝑤, 𝑔[𝑦𝜏/𝑥𝜏] ∘ 𝜏 ⊩ 𝐵.
The latter holds iff 𝔐, 𝑤, 𝑔[𝑦𝜏/𝑥𝜏] ⊩ 𝜏(𝐵) by induction hypothesis, iff
𝔐, 𝑤, 𝑔 ⊩ ⟨𝑦𝜏 ∶ 𝑥𝜏 ⟩𝜏(𝐵) by definition 8.2, iff 𝔐, 𝑤, 𝑔 ⊩ 𝜏(⟨𝑦 ∶ 𝑥 ⟩𝐵) by
definition 3.1.

5. 𝐴 is ∀𝑥𝐵. Assume 𝔐, 𝑤, 𝑔 ∘ 𝜏 ⊮ ∀𝑥𝐵. Then 𝔐, 𝑤, 𝑔𝑥↦𝑑 ⊮ 𝐵 for
some 𝑑 ∈ 𝐷𝑤. We have (𝑔𝑥𝜏↦𝑑 ∘ 𝜏)(𝑥) = 𝑔𝑥↦𝑑(𝑥). For any variable
𝑧 ≠ 𝑥, we also have (𝑔𝑥𝜏↦𝑑 ∘ 𝜏)(𝑧) = 𝑔𝑥↦𝑑(𝑧) (because 𝑧𝜏 ≠ 𝑥𝜏, by
injectivity of 𝜏). So 𝑔𝑥𝜏↦𝑑 ∘ 𝜏 = 𝑔𝑥↦𝑑 and 𝔐, 𝑤, 𝑔𝑥𝜏↦𝑑 ⊮ 𝐵. And so
𝔐, 𝑤, 𝑔𝑥𝜏↦𝑑 ∘ 𝜏 ⊮ 𝐵. By induction hypothesis, it follows that 𝔐, 𝑤, 𝑔𝑥𝜏↦𝑑 ⊮
𝜏(𝐵). By definition 2.9, this means that 𝔐, 𝑤, 𝑔 ⊮ ∀𝑥𝜏𝜏(𝐵). Hence
𝔐, 𝑤, 𝑔 ⊮ 𝜏(∀𝑥𝐵) by definition 3.1.
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9 Canonical models for non-functional logics

In the other direction, assume 𝔐, 𝑤, 𝑔 ⊮ 𝜏(∀𝑥𝐵), and thus 𝔐, 𝑤, 𝑔 ⊮
∀𝑥𝜏𝜏(𝐵). Then 𝔐, 𝑤, 𝑔𝑥𝜏↦𝑑 ⊮ 𝜏(𝐵) for some 𝑑 ∈ 𝐷𝑤. By induction
hypothesis 𝑤, 𝑔𝑥𝜏↦𝑑 ∘ 𝜏 ⊮ 𝐵. We have 𝑔 ∘ 𝜏𝑥↦𝑑(𝑥) = (𝑔𝑥𝜏↦𝑑 ∘ 𝜏)(𝑥).
For any variable 𝑧 ≠ 𝑥, we also have 𝑔 ∘ 𝜏𝑥↦𝑑(𝑧) = (𝑔𝑥𝜏↦𝑑 ∘ 𝜏)(𝑧) (be-
cause 𝑧𝜏 ≠ 𝑥𝜏, by injectivity of 𝜏). So 𝑔 ∘ 𝜏𝑥↦𝑑 = 𝑔𝑥𝜏↦𝑑 ∘ 𝜏. And so
𝔐, 𝑤, 𝑔 ∘ 𝜏𝑥↦𝑑 ⊮ 𝐵. By definition 2.9, this means that 𝔐, 𝑤, 𝑔 ∘ 𝜏 ⊮
∀𝑥𝐵.

6. 𝐴 is □𝐵. Assume 𝔐, 𝑤, 𝑔 ⊮ □𝜏(𝐵). Then 𝔐, 𝑤′, 𝑔′ ⊮ 𝜏(𝐵) for some
𝑤′, 𝑔′ with 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. This means that there is a counterpart relation
𝐶 ∈ 𝐾𝑤,𝑤′ such that for all variables 𝑥, 𝑔′(𝑥) is some 𝐶-counterpart at
𝑤′ of 𝑔(𝑥) at 𝑤 (if there is one, else undefined). By induction hypoth-
esis, 𝑤′, 𝑔′ ∘ 𝜏 ⊮ 𝐵. Since (𝑔′ ∘ 𝜏)(𝑥) = 𝑔′(𝑥𝜏) for all 𝑥, (𝑔′ ∘ 𝜏)(𝑥) is
a 𝐶-counterpart of (𝑔 ∘ 𝜏)(𝑥) (if there is one, else undefined), for all 𝑥.
So 𝑤, (𝑔 ∘ 𝜏) ▷ 𝑤′, (𝑔′ ∘ 𝜏). Hence 𝔐, 𝑤′, 𝑔∗ ⊮ 𝐵 for some 𝑤′, 𝑔∗ with
𝑤, (𝑔 ∘ 𝜏) ▷ 𝑤′, 𝑔∗. (Namely, 𝑔∗ = 𝑔′ ∘ 𝜏.) So 𝔐, 𝑤, 𝑔 ∘ 𝜏 ⊮ □𝐵.

In the other direction, assume 𝔐, 𝑤, 𝑔 ∘ 𝜏 ⊮ □𝐵. Then 𝔐, 𝑤′, 𝑔∗ ⊮ 𝐵
for some 𝑤′, 𝑔∗ with 𝑤, (𝑔 ∘ 𝜏) ▷ 𝑤′, 𝑔∗. This means that there is a coun-
terpart relation 𝐶 ∈ 𝐾𝑤,𝑤′ such that for all variables 𝑥, 𝑔∗(𝑥) is some
𝐶-counterpart at 𝑤′ of 𝑔 ∘ 𝜏(𝑥) at 𝑤 (if there is one, else undefined). De-
fine 𝑔′ so that for any variable 𝑥, 𝑔′(𝑥𝜏) = 𝑔∗(𝑥), and for all 𝑥 ∉ Ran(𝜏),
𝑔′(𝑥) is an arbitrary 𝐶-counterpart of 𝑉𝑤(𝑥), or undefined if there is none.
Then 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. Moreover, 𝑔∗ is 𝑔′ ∘ 𝜏. Since 𝔐, 𝑤′, 𝑔∗ ⊮ 𝐵, we
have 𝔐, 𝑤′, 𝑔′ ∘ 𝜏 ⊮ 𝐵. By induction hypothesis, 𝔐, 𝑤′, 𝑔′ ⊮ 𝜏(𝐵).
So 𝔐, 𝑤′, 𝑔′ ⊮ 𝜏(𝐵) for some 𝑤′, 𝑔′ with 𝑤𝑅𝑤′ and 𝑤, 𝑔 ▷ 𝑤′, 𝑔′. So
𝔐, 𝑤, 𝑔 ⊮ 𝜏(□𝐵).

There’s more trouble ahead. Assume 𝑤 extends {𝑥 =𝑦,□𝐹𝑥,□¬𝐹𝑦}. Let 𝑤′, 𝜏 be
such that {𝑥𝜏 ∶ □𝑋 ∈ 𝑤} ⊆ 𝑤′, so that 𝑤𝑅𝑤′. Concretely, assume that 𝑤′ extends
{𝐹𝑢, ¬𝐹𝑣}, and 𝑥𝜏 = 𝑢, 𝑦𝜏 = 𝑣. So [𝑥]𝑤 = {𝑥, 𝑦} has two counterparts {𝑢}, {𝑣}
at 𝑤′, relative to the same counterpart relation 𝐶 determined by the condition that
[𝑣𝑖]𝑤𝐶[𝑢𝑖]𝑤′ iff 𝜏(𝑣𝑖) ∈ [𝑢𝑖]𝑤′ . For □𝜙(𝑥) to be true at 𝑤, 𝜙 must be true of both
counterparts at 𝑤′. That is, an assignment 𝑔′ on 𝑈𝑤′ that assigns to each variable
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a 𝐶-counterpart of its 𝑔𝑤-value does not always map 𝑣𝑖 to [𝜏(𝑣𝑖)]𝑤′ = 𝑔𝑤′(𝜏(𝑣𝑖)):
we can’t assume that if 𝑤, 𝑔 ▷ 𝑤′, 𝑔′ then 𝑔′ = 𝑔𝑤′ ∘ 𝜏.

This not only complicates the proof of the truth lemma, it actually blocks it. To
see the problem, assume that the above world 𝑤 also contains □♢𝑥 ≠𝑦. So

𝑤 = {𝑥 =𝑦,□𝐹𝑥,□¬𝐹𝑦,□♢𝑥 ≠𝑦, …}.

If 𝑤 𝜏−→ 𝑤′ then 𝑤′ contains 𝐹𝑥𝜏, ¬𝐹𝑦𝜏, and ♢𝑥𝜏 ≠𝑦𝜏. Letting 𝑥𝜏 = 𝑢 and 𝑦𝜏 = 𝑣,
we have

𝑤′ = {𝐹𝑢, ¬𝐹𝑣,♢𝑢≠𝑣, …}.
To ensure that 𝑤, 𝑔𝑤 ⊩ □♢𝑥 ≠ 𝑦, we must have 𝑤′, 𝑔′ ⊩ ♢𝑥 ≠ 𝑦 for all 𝑔′ that map
individuals in 𝑈𝑤 to their 𝐶-counterparts in 𝑈𝑤′ , One such 𝑔′ is 𝑔𝑤′ ∘𝜏, but another
assigns [𝑢]𝑤′ to both 𝑥 and 𝑦. Focus on this one. To ensure that 𝑤′, 𝑔′ ⊩ ♢𝑥 ≠ 𝑦,
there must be some 𝑤″, 𝑔″ such that 𝑤′, 𝑔′ ▷ 𝑤″, 𝑔″ and 𝑤″, 𝑔″ ⊩ 𝑥 ≠𝑦. So we need
a transformation 𝜎, world 𝑤″ and assignment 𝑔″ such that {𝜎(𝑋) ∶ □𝑋 ∈ 𝑤′} ⊆ 𝑤″,
and for all 𝑣𝑖 there is a 𝑣 ∈ 𝑔′(𝑣𝑖) such that 𝜎(𝑣) ∈ 𝑔″(𝑣𝑖), and 𝑤″, 𝑔″ ⊩ 𝑥 ≠𝑦. Since
𝑔′(𝑥) = 𝑔′(𝑦) = [𝑢]𝑤′ , this means that [𝑢]𝑤′ must have two counterparts at some
𝑤″ relative to the same transformation 𝜎. We have no guarantee that this is the case.
There has to be a variable 𝑧 other than 𝑢 for which 𝑤′ contains 𝑧=𝑢 as well as ♢𝑧≠𝑢.
The latter ensures that 𝑧𝜎 ≠𝑢𝜎 ∈ 𝑤″ for some 𝑤″ with {𝜎(𝑋) ∶ □𝑋 ∈ 𝑤′} ⊆ 𝑤″.

So we complicate the definition of accessibility in canonical models. We stipulate
that if 𝑤′ does not contain 𝑧 = 𝑦𝜏 and ♢𝑧 ≠ 𝑦𝜏 for some suitable 𝑧, then 𝑤′ is not
𝜏-accessible from 𝑤. In general, if 𝑤 contains □𝐴 as well as 𝑥 =𝑦, and 𝑥 is free in 𝐴,
then for 𝑤′ to be accessible from 𝑤 via 𝜏, we require that 𝑤′ must contain not only
𝐴𝜏, but also 𝑧=𝑦𝜏 and [𝑧/𝑥𝜏]𝐴𝜏, for some 𝑧 not free in 𝐴𝜏.

This requirement is easier to understand if we consider the same situation in a
language with substitution. Here □♢𝑥 ≠ 𝑦 and 𝑥 =𝑦 entail □⟨𝑦 ∶ 𝑥 ⟩♢𝑥 ≠ 𝑦 (by (LLs)
and (S□)). By the original, simple definition of 𝑤 𝜏−→ 𝑤′, each world 𝑤′ accessible
from 𝑤 via 𝜏 must contain

⟨𝑦𝜏 ∶ 𝑥𝜏 ⟩♢𝑥𝜏 ≠𝑦𝜏. (1)

This formula expresses that the individual picked out by 𝑦𝜏 has multiple counterparts
at some accessible world. Before we worry about images other than 𝑔𝜏, we ought
to make sure that (1) is true at 𝑤′ under 𝑔𝜏. This requires that there is a variable 𝑧
other than 𝑦𝜏 such that 𝑤′ contains 𝑧=𝑦𝜏 as well as ♢𝑧≠𝑦𝜏. In effect, 𝑧 is a kind of
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witness for the substitution formula (1). Just as an existential formula ∃𝑥𝐴 must be
witnessed by an instance [𝑧/𝑥]𝐴, a substitution formula ⟨𝑦 ∶ 𝑥 ⟩𝐴 must be witnessed
by [𝑧/𝑥]𝐴 together with 𝑧=𝑦. Loosely speaking, ⟨𝑦 ∶ 𝑥 ⟩𝐴(𝑥) says that 𝑦 is identical
to some 𝑥 such that 𝐴(𝑥). In a canonical model, we want a concrete witness 𝑧 so that
𝑦 is identical to 𝑧 and 𝐴(𝑧). 𝑦 itself may not serve that purpose, because ⟨𝑦 ∶ 𝑥 ⟩𝐴(𝑥)
does not guarantee 𝐴(𝑦).

The requirement of substitutional witnessing entails that if 𝑤 contains □𝐴, then
any 𝜏-accessible 𝑤′ contains not only 𝐴𝜏, but also 𝑧 = 𝑦𝜏 and [𝑧/𝑥𝜏]𝐴𝜏 (for some
suitable 𝑧). So we don’t need to complicate the accessibility relation. In our example,
since 𝑤′ contains 𝐴𝜏 whenever 𝑤 contains □𝐴, 𝑤′ contains ⟨𝑦𝜏 ∶ 𝑥𝜏 ⟩♢𝑥𝜏 ≠ 𝑦𝜏,
which settles that [𝑦𝜏]𝑤′ has two counterparts at some accessible world. Without
substitution, (1) is inexpressible, as per lemma 7.3. So we have to limit the accessible
worlds by requiring membership of the relevant witnessing formulas in addition to
𝐴𝜏.

9.2 Constructing canonical models

From now on, let 𝔏 be some language with or without substitution and let 𝐿 any
positive or negative logic. As in section 4.2, the worlds of the 𝐿’s canonical model
are constructed in a language 𝔏∗ that adds infinitely many new variables Var+ to
those of 𝔏. (Var∗ is the set of 𝔏∗-variables.)

We redefine the concept of a Henkin set by adding the condition of substitutional
witnessing. The added fourth clause is vacuous if 𝔏 is without substitution.

Definition 9.1 (Henkin set).
A Henkin set for 𝐿 in 𝔏∗ is a set 𝐻 of 𝔏∗-formulas that is

1. 𝐿-consistent: there are no 𝐴1, … , 𝐴𝑛 ∈ 𝐻 with ⊢𝐿 ¬(𝐴1 ∧ … ∧ 𝐴𝑛),
2. maximal: for every 𝔏∗-formula 𝐴, 𝐻 contains either 𝐴 or ¬𝐴,

3. witnessed: whenever 𝐻 contains an existential formula ∃𝑥𝐴, then there
is a variable 𝑦 ∉ FV(𝐴) such that 𝐻 contains [𝑦/𝑥]𝐴 as well as 𝐸!𝑦, and

4. substitutionally witnessed: whenever 𝐻 contains a substitution formula
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⟨𝑦 ∶ 𝑥 ⟩𝐴 as well as 𝑦=𝑦, then there is a variable 𝑧 ∉ Var(⟨𝑦 ∶ 𝑥 ⟩𝐴) such
that 𝐻 contains 𝑦=𝑧.

As before, ℌ𝐿 is the class of Henkin sets for 𝐿 in 𝔏∗.
Above I said that witnessing a substitution formula ⟨𝑦 ∶ 𝑥 ⟩𝐴 requires 𝑦=𝑧 as well

as [𝑧/𝑥]𝐴. In fact 𝑦 = 𝑧 is enough, since [𝑧/𝑥]𝐴 follows from ⟨𝑦 ∶ 𝑥 ⟩𝐴 and 𝑦 = 𝑧
by (LV2) (lemma 8.13). I have also added the condition that 𝐻 contains 𝑦 = 𝑦. In
negative logics, a Henkin set may contain 𝑦 ≠ 𝑦 as well as ⟨𝑦 ∶ 𝑥 ⟩𝐴; adding 𝑦 = 𝑧
would render the set inconsistent.

The requirement of substitutional witnessing generalises to substitution sequences:

Lemma 9.2.
If 𝐻 contains a substitution formula ⟨𝑦1, … , 𝑦𝑛 ∶ 𝑥1, … , 𝑥𝑛 ⟩𝐴 as well as 𝑦𝑖 =𝑦𝑖
for all 𝑦𝑖 in 𝑦1, … , 𝑦𝑛, then there are (distinct) new variables 𝑧1, … , 𝑧𝑛 such
that 𝐻 contains 𝑦1 =𝑧1, … , 𝑦𝑛 =𝑧𝑛 as well as [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴.

Proof. By induction on 𝑛. Suppose 𝐻 contains ⟨𝑦1, … , 𝑦𝑛 ∶ 𝑥1, … , 𝑥𝑛 ⟩𝐴. By
definition 8.3, this is ⟨𝑦𝑛 ∶ 𝑣⟩⟨𝑦1, … , 𝑦𝑛−1 ∶ 𝑥1, … , 𝑥𝑛−1 ⟩⟨𝑣 ∶ 𝑥𝑛 ⟩𝐴, where 𝑣 is
new. Witnessing requires 𝑦𝑛 =𝑧𝑛 ∈ 𝐻 and (hence) [𝑧𝑛/𝑣]⟨𝑦1, … , 𝑦𝑛−1 ∶ 𝑥1, … , 𝑥𝑛−1 ⟩
⟨𝑣 ∶ 𝑥𝑛 ⟩𝐴 = ⟨𝑦1, … , 𝑦𝑛−1 ∶ 𝑥1, … , 𝑥𝑛−1 ⟩⟨𝑧𝑛 ∶ 𝑥𝑛 ⟩𝐴 ∈ 𝐻 for some new 𝑧𝑛. By
induction hypothesis, the latter means that there are (distinct) 𝑧1, … , 𝑧𝑛−1 ∉
Var(⟨𝑧𝑛 ∶ 𝑥𝑛 ⟩𝐴) such that 𝐻 contains 𝑦1 =𝑧1, … , 𝑦𝑛−1 =𝑧𝑛−1 as well as [𝑧1, … , 𝑧𝑛−1/
𝑥1, … , 𝑥𝑛−1]⟨𝑧𝑛 ∶ 𝑥𝑛 ⟩𝐴. Since all the 𝑥𝑖 and 𝑧𝑖 are distinct, [𝑧1, … , 𝑧𝑛−1/𝑥1, … , 𝑥𝑛−1]
⟨𝑧𝑛 ∶ 𝑥𝑛 ⟩𝐴 is ⟨𝑧𝑛 ∶ 𝑥𝑛 ⟩[𝑧1, … , 𝑧𝑛−1/𝑥1, … , 𝑥𝑛−1]𝐴. By (SC1), it follows that
[𝑧𝑛/𝑥𝑛][𝑧1, … , 𝑧𝑛−1/𝑥1, … , 𝑥𝑛−1]𝐴 = [𝑧1, … , 𝑧𝑛/𝑥1, … , 𝑥𝑛]𝐴 ∈ 𝐻.

Next, we define the variable classes [𝑥]𝑤, just as in section 4.4.

Definition 9.2 (Variable classes).
For any Henkin set 𝐻, define ∼𝐻 to be the relation on Var∗ such that 𝑥 ∼𝐻 𝑦
iff 𝑥 =𝑦 ∈ 𝐻. For any variable 𝑥, let [𝑥]𝐻 be {𝑦 ∶ 𝑥 ∼𝐻 𝑦}.

This definition is justified by the following lemma.
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Lemma 9.3 (∼-Lemma).
∼𝐻 is an equivalence relation on the set {𝑥 ∶ 𝑥 =𝑥 ∈ 𝐻}.

Proof. Immediate from lemmas 7.12 and 8.12.

Now comes the revised definition of 𝑤 𝜎−→ 𝑤′.

Definition 9.3 (Accessibility via transformations).
Let 𝑤, 𝑤′ be Henkin sets and 𝜏 a transformation.

If 𝔏 is with substitution, then 𝑤′ is accessible from 𝑤 via 𝜏 (for short: 𝑤 𝜏−→
𝑤′) iff {𝜎(𝑋) ∶ □𝑋 ∈ 𝑤} ⊆ 𝑤′.

If 𝔏 is without substitution, then 𝑤 𝜏−→ 𝑤′ iff the following holds for every
formula 𝐴 and variables 𝑥1 … 𝑥𝑛, 𝑦1, … , 𝑦𝑛 (𝑛 ≥ 0) such that the 𝑥1 … 𝑥𝑛 are
distinct members of FV(𝐴): if

(𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛 =𝑦𝑛 ∧ □𝐴) ∈ 𝑤

and
(𝑦𝜏

1 =𝑦𝜏
1 ∧ … ∧ 𝑦𝜏𝑛 =𝑦𝜏𝑛 ) ∈ 𝑤′,

then there are variables 𝑧1 … 𝑧𝑛 ∉ Var(𝐴𝜏) such that

(𝑧1 =𝑦𝜏
1 ∧ … ∧ 𝑧𝑛 =𝑦𝜏𝑛 ∧ [𝑧1 … 𝑧𝑛/𝑥𝜏

1 … 𝑥𝜏𝑛 ]𝐴𝜏) ∈ 𝑤′.

This generalises the witnessing requirements on accessible world as explained
above to multiple variables and negative logics. (Here the generalised version for 𝑛
variable pairs is not entailed by the requirement for a single pair, unlike in the case of
substitutional witnessing.) Note that the 𝑥1, … , 𝑥𝑛 need not be all the free variables
in 𝐴.

Definition 9.3 is supposed to include the case where 𝑛 = 0. Here, we adopt the
convention that a conjunction of zero sentences is the tautology ⊤; the accessibility
requirement therefore says that if ⊤ ∧ □𝐴 ∈ 𝑤 and ⊤ ∈ 𝑤′, then ⊤ ∧ 𝐴𝜏 ∈ 𝑤′ –
equivalently: if □𝐴 ∈ 𝑤, then 𝐴𝜏 ∈ 𝑤′.
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Definition 9.4 (Canonical model).
The canonical model ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ for a logic 𝐿 is defined as follows.

1. The worlds 𝑊 are the Henkin sets ℌ𝐿.

2. For each 𝑤 ∈ 𝑊 , the outer domain 𝑈𝑤 comprises all non-empty sets
[𝑥]𝑤 for 𝑥 in Var∗.

3. For each 𝑤 ∈ 𝑊 , the inner domain 𝐷𝑤 comprises all sets [𝑥]𝑤 for which
𝐸!𝑥 ∈ 𝑤. That is, 𝐷𝑤 = {[𝑥]𝑤 ∶ 𝐸!𝑥 ∈ 𝑤}.

4. The accessibility relation 𝑅 holds between world 𝑤 and world 𝑤′ iff
there is a transformation 𝜏 such that 𝑤 𝜏−→ 𝑤′.

5. 𝐶 is a counterpart relation in 𝐾𝑤,𝑤′ iff there is a transformation 𝜏 such
that (i) 𝑤 𝜏−→ 𝑤′ and (ii) for all 𝑑 ∈ 𝑈𝑤, 𝑑′ ∈ 𝑈𝑤′ , 𝑑𝐶𝑑′ iff there is an
𝑥 ∈ 𝑑 with 𝜏(𝑥) ∈ 𝑑′.

6. The interpretation 𝐼 assigns to every non-logical predicate 𝑃 and world
𝑤 the set 𝐼𝑤(𝑃) = {⟨[𝑥1]𝑤, … , [𝑥𝑛]𝑤 ⟩ ∶ 𝑃𝑥1 … 𝑥𝑛 ∈ 𝑤}.

Definition 9.5 (Canonical Assignment).
If 𝑤 is a world in a canonical model 𝔐 then the canonical assignment for 𝑤
is the function 𝑔𝑤 that maps every 𝑥 ∈ Var∗ for which [𝑥]𝑤 is non-empty to
[𝑥]𝑤.

Lemma 9.4 (Charge of canonical models).
If 𝐿 is positive then the canonical model for 𝐿 is total. If 𝐿 is negative then
the canonical model for 𝐿 is single-domain.

Proof. The proof is exactly as in lemma 4.3.

Lemma 9.5 (Extensibility Lemma).
If Γ is an 𝐿-consistent set of 𝔏∗-sentences in which infinitely many 𝔏∗-
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variables do not occur, then there is a Henkin set 𝐻 ∈ ℌ𝐿 such that Γ ⊆ 𝐻.

Proof. Let 𝑆1, 𝑆2, … be an enumeration of all 𝔏∗-sentences, and 𝑧1, 𝑧2, … an
enumeration of the unused 𝔏∗-variables in such a way that 𝑧𝑖 ∉ Var(𝑆1∧…∧𝑆𝑖).
Let Γ0 = Γ, and define Γ𝑛 for 𝑛 ≥ 1 as follows.

(i) If Γ𝑛−1 ∪ {𝑆𝑛} is not 𝐿-consistent, then Γ𝑛 = Γ𝑛−1;

(ii) else if 𝑆𝑛 is an existential formula ∃𝑥𝐴, then Γ𝑛 = Γ𝑛−1∪{∃𝑥𝐴, [𝑧𝑛/𝑥]𝐴, 𝐸!𝑧𝑛};

(iii) else if 𝑆𝑛 is a substitution formula ⟨𝑦 ∶ 𝑥 ⟩𝐴, then Γ𝑛 = Γ𝑛−1∪{⟨𝑦 ∶ 𝑥 ⟩𝐴, 𝑦=𝑦 ⊃
𝑦=𝑧𝑛};

(iv) else Γ𝑛 = Γ𝑛−1 ∪ {𝑆𝑛}.

Define 𝑤 as the union of all Γ𝑛. We show that 𝑤 is a Henkin set for 𝐿.

1. 𝑤 is 𝐿-consistent. This is shown by proving that Γ0 is 𝐿-consistent and that
whenever Γ𝑛−1 is 𝐿-consistent, then so is Γ𝑛. It follows that no finite subset
of 𝑤 is 𝐿-inconsistent, and hence that 𝑤 itself is 𝐿-consistent. The base step,
that Γ0 is 𝐿-consistent is given by assumption. Now assume (for 𝑛 > 0) that
Γ𝑛−1 is 𝐿-consistent. Then Γ𝑛 is constructed by applying one of (i)–(iv).

a) If case (i) in the construction applies, then Γ𝑛 = Γ𝑛−1, and so Γ𝑛 is also
𝐿-consistent.

b) Assume case (ii) in the construction applies, and suppose that Γ𝑛 =
Γ𝑛−1∪{∃𝑥𝐴, [𝑧𝑛/𝑥]𝐴, 𝐸!𝑧} is 𝐿-inconsistent. Then there is a finite subset
{𝐶1, … , 𝐶𝑚} ⊆ Γ𝑛−1 such that

1. ⊢𝐿 ¬(𝐶1 ∧ … ∧ 𝐶𝑚 ∧ ∃𝑥𝐴 ∧ [𝑧𝑛/𝑥]𝐴 ∧ 𝐸!𝑧𝑛).
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Let 𝐶 abbreviate 𝐶1 ∧ … ∧ 𝐶𝑚. Then

2. ⊢𝐿 𝐶 ∧ ∃𝑥𝐴 ⊃ (𝐸!𝑧𝑛 ⊃ ¬[𝑧𝑛/𝑥]𝐴) (1)
3. ⊢𝐿 ∀𝑧𝑛(𝐶 ∧ ∃𝑥𝐴) ⊃ ∀𝑧𝑛𝐸!𝑧𝑛 ⊃ ∀𝑧𝑛¬[𝑧𝑛/𝑥]𝐴 (2, (UG), (UD))
4. ⊢𝐿 𝐶 ∧ ∃𝑥𝐴 ⊃ ∀𝑧𝑛(𝐶 ∧ ∃𝑥𝐴) ((VQ), 𝑧𝑛 not in Γ𝑛−1)
5. ⊢𝐿 𝐶 ∧ ∃𝑥𝐴 ⊃ ∀𝑧𝑛𝐸!𝑧𝑛 ⊃ ∀𝑧𝑛¬[𝑧𝑛/𝑥]𝐴. (3, 4)
6. ⊢𝐿 𝐶 ∧ ∃𝑥𝐴 ⊃ ∀𝑧𝑛¬[𝑧𝑛/𝑥]𝐴. (5, (∀E!x))
7. ⊢𝐿 ∀𝑧𝑛¬[𝑧𝑛/𝑥]𝐴 ↔ ∀𝑥¬𝐴 ((AC), 𝑧𝑛 ∉ Var(𝐴))
8. ⊢𝐿 𝐶 ∧ ∃𝑥𝐴 ⊃ ¬∃𝑥𝐴. (6, 7)

So {𝐶1, … 𝐶𝑚, ∃𝑥𝐴} is not 𝐿-consistent, contradicting the assumption
that clause (ii) applies.

c) Assume case (iii) in the construction applies (hence 𝐿 is with substi-
tution), and suppose that Γ𝑛 = Γ𝑛−1 ∪ {⟨𝑦 ∶ 𝑥 ⟩𝐴, 𝑦 = 𝑦 ⊃ 𝑦 = 𝑧𝑛} is
𝐿-inconsistent. Then there is a finite subset {𝐶1, … , 𝐶𝑚} ⊆ Γ𝑛−1 such
that

1. ⊢𝐿 ¬(𝐶 ∧ ⟨𝑦 ∶ 𝑥 ⟩𝐴 ∧ (𝑦=𝑦 ⊃ 𝑦≠𝑧)).

(As before, 𝐶 is 𝐶1 ∧ … ∧ 𝐶𝑚.) But then

2. ⊢𝐿 𝐶 ∧ ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ 𝑦=𝑦 ∧ 𝑦≠𝑧𝑛 (1)
3. ⊢𝐿 ⟨𝑦 ∶ 𝑧𝑛 ⟩(𝐶 ∧ ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ 𝑦=𝑦 ∧ 𝑦≠𝑧𝑛) (2, (Subs))
4. ⊢𝐿 ⟨𝑦 ∶ 𝑧𝑛 ⟩(𝐶 ∧ ⟨𝑦 ∶ 𝑥 ⟩𝐴) ⊃ ⟨𝑦 ∶ 𝑧𝑛 ⟩𝑦=𝑦 ∧ ⟨𝑦 ∶ 𝑧𝑛 ⟩𝑦≠𝑧𝑛 (3, (S⊃), (S¬))
5. ⊢𝐿 𝐶 ∧ ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ ⟨𝑦 ∶ 𝑧𝑛 ⟩(𝐶 ∧ ⟨𝑦 ∶ 𝑥 ⟩𝐴) ((VS), 𝑧𝑛 not in Γ𝑛−1, 𝑆𝑛)
6. ⊢𝐿 𝐶 ∧ ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ ⟨𝑦 ∶ 𝑧𝑛 ⟩𝑦=𝑦 ∧ ⟨𝑦 ∶ 𝑧𝑛 ⟩𝑦≠𝑧𝑛 (4, 5)
7. ⊢𝐿 ⟨𝑦 ∶ 𝑧𝑛 ⟩𝑦≠𝑧𝑛 ↔ 𝑦≠𝑦 (SAt)
8. ⊢𝐿 ⟨𝑦 ∶ 𝑧𝑛 ⟩𝑦=𝑦 ↔ 𝑦=𝑦 (SAt)
9. ⊢𝐿 𝐶 ∧ ⟨𝑦 ∶ 𝑥 ⟩𝐴 ⊃ (𝑦=𝑦 ∧ 𝑦≠𝑦). (6, 7, 8)

So {𝐶1, … , 𝐶𝑚, ⟨𝑦 ∶ 𝑥 ⟩𝐴} is 𝐿-inconsistent, contradicting the assumption
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that clause (iii) applies.

d) Assume case (iv) in the construction applies. Then Γ𝑛 = Γ𝑛−1 ∪ {𝑆𝑛} is
𝐿-consistent, since otherwise (i) would have applied.

2. 𝑤 is maximal. Assume some formula 𝑆𝑛 is not in 𝑤. Then case (i) applied to
𝑆𝑛, so Γ𝑛−1 ∪ {𝑆𝑛} is not 𝐿-consistent. So there are 𝐶1, … , 𝐶𝑚 ∈ Γ𝑛−1 such
that ⊢𝐿 𝐶1 ∧ … 𝐶𝑚 ⊃ ¬𝑆𝑛. Similarly, if 𝑆𝑘 = ¬𝑆𝑛 is not in 𝑤, then there are
𝐷1, … , 𝐷𝑙 ∈ Γ𝑘−1 such that ⊢𝐿 𝐷1 ∧ … 𝐷𝑙 ⊃ ¬𝑆𝑘. By (PC), it follows that
there are 𝐶1, … , 𝐶𝑚, 𝐷1, … 𝐷𝑙 ∈ 𝑤 such that

⊢𝐿 𝐶1 ∧ … ∧ 𝐶𝑚 ∧ 𝐷1 ∧ … ∧ 𝐷𝑙 ⊃ (¬𝑆𝑛 ∧ ¬¬𝑆𝑛).

But then 𝑤 is inconsistent, contradicting what was just shown under 1.

3. 𝑤 is witnessed. This is guaranteed by clause (ii) of the construction and the
fact that the 𝑧𝑛 ∉ Var(𝑆𝑛).

4. 𝑤 is substitutionally witnessed. This is guaranteed by clause (iii) and the
fact that the 𝑧𝑛 ∉ Var(𝑆𝑛).

Lemma 9.6 (Existence Lemma).
If 𝑤 is a world in the canonical model for 𝐿, 𝐴 a formula with ♢𝐴 ∈ 𝑤, and 𝜏
any transformation whose range excludes infinitely many variables of 𝔏, then
there is a world 𝑤′ in the model such that 𝑤 𝜏−→ 𝑤′ and 𝐴𝜏 ∈ 𝑤′.

Proof. I first prove the lemma for logics 𝐿 with substitution. Let Γ = {𝐴𝜏} ∪
{𝜏(𝐵) ∶ □𝐵 ∈ 𝑤}. Suppose Γ is not 𝐿-consistent. Then there are 𝐵𝜏

1 , … , 𝐵𝜏𝑛
with □𝐵𝑖 ∈ 𝑤 such that ⊢𝐿 𝐵𝜏

1 ∧ … ∧ 𝐵𝜏𝑛 ⊃ ¬𝐴𝜏. By definition 3.1, this means
that ⊢𝐿 (𝐵1 ∧… 𝐵𝑛 ⊃ ¬𝐴)𝜏, and so ⊢𝐿 𝐵1 ∧…∧𝐵𝑛 ⊃ ¬𝐴 by (Subt). By (Nec)
and (K), ⊢𝐿 □𝐵1 ∧ … ∧ □𝐵𝑛 ⊃ □¬𝐴. But then 𝑤 contains both ♢𝐴 and ¬♢𝐴,
which is impossible because 𝑤 is 𝐿-consistent. So Γ is 𝐿-consistent. Since
the range of 𝜏 excludes infinitely many variables, it follows by the extensibility
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lemma that Γ ⊆ 𝐻 for some Henkin set 𝐻. Moreover, 𝑤 𝜏−→ 𝑤′ because 𝜏(𝐵) ∈
𝐻 whenever for □𝐵 ∈ 𝑤.

Now for logics without substitution.
Let 𝑆1, 𝑆2 … enumerate all sentences in 𝑤 of the form

𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛 =𝑦𝑛 ∧ □𝐵,

where 𝑥1, … , 𝑥𝑛 are zero or more distinct variables free in 𝐵. Let 𝑈 be the
“unused” 𝔏-variables that are not in the range of 𝜏. Let 𝑍 be an infinite subset
of 𝑈 such that 𝑍\𝑈 is also infinite. For each 𝑆𝑖 = (𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛 =𝑦𝑛 ∧□𝐵),
let 𝑍𝑆𝑖 be a set of distinct variables 𝑧1, … , 𝑧𝑛 ∈ 𝑍 such that 𝑍𝑆𝑖 ∩ ⋃𝑗<𝑖 𝑍𝑆𝑗 = ∅
(i.e. none of the 𝑧𝑖 has been used for any earlier 𝑆𝑗). Abbreviate

𝐵𝑖 = [𝑧1, … , 𝑧𝑛/𝑥𝜏
1 , … , 𝑥𝜏𝑛 ]𝜏(𝐵);

𝑋𝑖 = 𝑥1 =𝑦1 ∧ … ∧ 𝑥𝑛 =𝑦𝑛;
𝑌𝑖 = 𝑦𝜏

1 =𝑦𝜏
1 ∧ … ∧ 𝑦𝜏𝑛 =𝑦𝜏𝑛 ;

𝑍𝑖 = 𝑦𝜏
1 =𝑧1 ∧ … ∧ 𝑦𝜏𝑛 =𝑧𝑛.

(For 𝑛 = 0, 𝑋𝑖, 𝑌𝑖 and 𝑍𝑖 are the tautology ⊤, and 𝐵𝑖 is 𝜏(𝐵).)
Let Γ− = {(𝑌𝑖 ⊃ 𝑍𝑖 ∧ 𝐵𝑖) ∶ 𝑆𝑖 ∈ 𝑆1, 𝑆2, …}, and let Γ = Γ− ∪ {𝐴𝜏}.
Suppose for reductio that Γ is inconsistent. Then there are sentences (𝑌1 ⊃

𝑍1 ∧ 𝐵1), … , (𝑌𝑚 ⊃ 𝑍𝑚 ∧ 𝐵𝑚) ∈ Γ− such that

⊢𝐿 ¬(𝐴𝜏 ∧ (𝑌1 ⊃ 𝑍1 ∧ 𝐵1) ∧ … ∧ (𝑌𝑚 ⊃ 𝑍𝑚 ∧ 𝐵𝑚)). (1)

By (Nec),

⊢𝐿 □¬(𝐴𝜏 ∧ (𝑌1 ⊃ 𝑍1 ∧ 𝐵1) ∧ … ∧ (𝑌𝑚 ⊃ 𝑍𝑚 ∧ 𝐵𝑚)). (2)

Any member (𝑌𝑖 ⊃ 𝑍𝑖 ∧ 𝐵𝑖) of Γ− has the form

𝑦𝜏
1 =𝑦𝜏

1 ∧ … ∧ 𝑦𝜏𝑛 =𝑦𝜏𝑛 ⊃ 𝑦𝜏
1 =𝑧1 ∧ … ∧ 𝑦𝜏𝑛 =𝑧𝑛 ∧ [𝑧1, … , 𝑧𝑛/𝑥𝜏

1 , … , 𝑥𝜏𝑛 ]𝜏(𝐵).
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By (CSn),

⊢𝐿 𝑥𝜏
1 =𝑦𝜏

1 ∧ … ∧ 𝑥𝜏𝑛 =𝑦𝜏𝑛 ∧ □𝜏(𝐵) ⊃
□(𝑦𝜏

1 =𝑧1 ∧ … ∧ 𝑦𝜏𝑛 =𝑧𝑛 ⊃ [𝑧1, … , 𝑧𝑛/𝑥𝜏
1 , … , 𝑥𝜏𝑛 ]𝜏(𝐵)). (3)

Now 𝑤 contains 𝑥1 = 𝑦1 ∧ … ∧ 𝑥𝑛 = 𝑦𝑛 ∧ □𝐵. So 𝑤𝜏 contains 𝑥𝜏
1 = 𝑦𝜏

1 ∧
… ∧ 𝑥𝜏𝑛 =𝑦𝜏𝑛 ∧□𝜏(𝐵), which is the antecedent of (3). The consequent of (3) is
□(𝑍𝑖 ⊃ 𝐵𝑖). Thus

𝑤𝜏 ⊢𝐿 □(𝑍1 ⊃ 𝐵1) ∧ … ∧ □(𝑍𝑚 ⊃ 𝐵𝑚). (4)

(By Γ ⊢𝐿 𝐴, I mean that there are sentences 𝐴1, … , 𝐴𝑛 ∈ Γ such that ⊢𝐿
𝐴1 ∧ … ∧ 𝐴𝑛 ⊃ 𝐴.) Let Δ = 𝑤𝜏 ∪ {♢(𝐴𝜏 ∧ (𝑌1 ⊃ 𝑍1) ∧ … ∧ (𝑌𝑚 ⊃ 𝑍𝑚))}. So

Δ ⊢𝐿 □(𝑍1 ⊃ 𝐵1) ∧ … ∧ □(𝑍𝑚 ⊃ 𝐵𝑚); (5)
Δ ⊢𝐿 ♢(𝐴𝜏 ∧ (𝑌1 ⊃ 𝑍1) ∧ … ∧ (𝑌𝑚 ⊃ 𝑍𝑚)). (6)

By (K) and (Nec), (5) and (6) yield

Δ ⊢𝐿 ♢(𝐴𝜏 ∧ (𝑌1 ⊃ 𝑍1 ∧ 𝐵1) ∧ … ∧ (𝑌𝑚 ⊃ 𝑍𝑚 ∧ 𝐵𝑚)). (7)

By (2), it follows that Δ is inconsistent. This means that

𝑤𝜏 ⊢𝐿 ¬♢(𝐴𝜏 ∧ (𝑌1 ⊃ 𝑍1) ∧ … ∧ (𝑌𝑚 ⊃ 𝑍𝑚)). (8)

Now consider 𝑍1 = (𝑦𝜏
1 =𝑧1 ∧ … ∧ 𝑦𝜏𝑛 =𝑧𝑛). By (LL∗

n) (or repeated application
of (LL∗)),

⊢𝐿 𝑦𝜏
1 =𝑧1∧…∧𝑦𝜏𝑛 =𝑧𝑛 ⊃ □¬(𝐴𝜏∧(𝑦𝜏

1 =𝑦𝜏
1 ∧…∧𝑦𝜏𝑛 =𝑦𝜏𝑛 ⊃ 𝑦𝜏

1 =𝑧1∧…∧𝑦𝜏𝑛 =𝑧𝑛))
⊃ □¬(𝐴𝜏 ∧ (𝑦𝜏

1 =𝑦𝜏
1 ∧ … ∧ 𝑦𝜏𝑛 =𝑦𝜏𝑛 ⊃ 𝑦𝜏

1 =𝑦𝜏
1 ∧ … ∧ 𝑦𝜏𝑛 =𝑦𝜏𝑛 )), (9)

because the 𝑧𝑖 are not free in 𝐴𝜏. In other words (and dropping the tautologous
conjunct at the end),

⊢𝐿 𝑍1 ⊃ □¬(𝐴𝜏 ∧ (𝑌1 ⊃ 𝑍1)) ⊃ □¬𝐴𝜏. (10)
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By the same reasoning,

⊢𝐿 𝑍1 ∧ … ∧ 𝑍𝑚 ⊃ □¬(𝐴𝜏 ∧ (𝑌1 ⊃ 𝑍1) ∧ … ∧ (𝑌𝑚 ⊃ 𝑍𝑚)) ⊃ □¬𝐴𝜏. (11)

By (PC), (Nec) and (K), this means

⊢𝐿 𝑍1 ∧ … ∧ 𝑍𝑚 ⊃ ♢𝐴𝜏 ⊃ ♢(𝐴𝜏 ∧ (𝑌1 ⊃ 𝑍1) ∧ … ∧ (𝑌𝑚 ⊃ 𝑍𝑚)). (12)

Since 𝑤𝜏 ⊢𝐿 ♢𝐴𝜏, (8) and (12) together entail

𝑤𝜏 ⊢𝐿 ¬(𝑍1 ∧ … ∧ 𝑍𝑚). (13)

So there are 𝐶1, … , 𝐶𝑘 ∈ 𝑤 such that

⊢𝐿 𝐶𝜏
1 ∧ … ∧ 𝐶𝜏

𝑘 ⊃ ¬(𝑍1 ∧ … ∧ 𝑍𝑚). (14)

Each 𝑍𝑖 has the form 𝑦𝜏
1 = 𝑧1 ∧ … ∧ 𝑦𝜏𝑛 = 𝑧𝑛. All the 𝑧𝑖 are distinct, and none

of them occur in 𝐶𝜏
1 ∧ … ∧ 𝐶𝜏

𝑘 (because the 𝑧𝑖 are not in the range of 𝜏) nor
in any other 𝑍𝑖. By (Sub∗), we can therefore replace each 𝑧𝑖 in (14) by the
corresponding 𝑦𝜏

𝑖 , turning 𝑍𝑖 into 𝑌𝑖:

⊢𝐿 𝐶𝜏
1 ∧ … ∧ 𝐶𝜏

𝑘 ⊃ ¬(𝑌1 ∧ … ∧ 𝑌𝑚). (15)

For any 𝑌𝑖 = (𝑦𝜏
1 = 𝑦𝜏

1 ∧ … ∧ 𝑦𝜏𝑛 = 𝑦𝜏𝑛 ), 𝑋𝑖 is a sentence of the form 𝑥1 =𝑦1 ∧
… ∧ 𝑥𝑛 =𝑦𝑛. So 𝑋𝜏

𝑖 is 𝑥𝜏
1 =𝑦𝜏

1 ∧ … ∧ 𝑥𝜏𝑛 =𝑦𝜏𝑛 , and ⊢𝐿 𝑋𝜏
𝑖 ⊃ 𝑌𝑖 by either (=R)

or (Neg) and (∀=R). So (15) entails

⊢𝐿 𝐶𝜏
1 ∧ … ∧ 𝐶𝜏

𝑘 ⊃ ¬(𝑋𝜏
1 ∧ … ∧ 𝑋𝜏𝑚). (16)

Thus by (Subt),

⊢𝐿 𝐶1 ∧ … ∧ 𝐶𝑘 ⊃ ¬(𝑋1 ∧ … ∧ 𝑋𝑚). (17)

Since {𝐶1, … , 𝐶𝑘, 𝑋1, … , 𝑋𝑚} ⊆ 𝑤, it follows that 𝑤 is inconsistent. Which it
isn’t. This completes the reductio.

So Γ is consistent. Since the infinitely many variables in 𝑈\𝑍 do not occur
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in Γ, lemma 9.5 guarantees that Γ ⊆ 𝑤′ for some world 𝑤′ in the canonical
model for 𝐿. And of course, Γ was constructed so that 𝑤′ satisfies the con-
dition in definition 9.3 for 𝑤 𝜏−→ 𝑤′. This requires that for every formula 𝐵
and variables 𝑥1 … 𝑥𝑛, 𝑦1, … , 𝑦𝑛 such that the 𝑥1 … 𝑥𝑛 are zero or more pair-
wise distinct members of FV(𝐵), if 𝑥1 = 𝑦1 ∧ … ∧ 𝑥𝑛 = 𝑦𝑛 ∧ □𝐵 ∈ 𝑤 and
𝑦𝜏

1 = 𝑦𝜏
1 ∧ … ∧ 𝑦𝜏𝑛 = 𝑦𝜏𝑛 ∈ 𝑤′, then there are variables 𝑧1 … 𝑧𝑛 ∉ Var(𝜏(𝐵))

such that 𝑧1 = 𝑦𝜏
1 ∧ … ∧ 𝑧𝑛 = 𝑦𝜏𝑛 ∧ [𝑧1 … 𝑧𝑛/𝑥𝜏

1 … 𝑥𝜏𝑛 ]𝜏(𝐵) ∈ 𝑤′. By con-
struction of Γ, whenever 𝑥1 = 𝑦1 ∧ … ∧ 𝑥𝑛 = 𝑦𝑛 ∧ □𝐵 ∈ 𝑤, then there are
suitable 𝑧1, … , 𝑧𝑛 such that 𝑦𝜏

1 = 𝑦𝜏
1 ∧ … ∧ 𝑦𝜏𝑛 = 𝑦𝜏𝑛 ⊃ 𝑦𝜏

1 = 𝑧1 ∧ … ∧ 𝑦𝜏𝑛 =
𝑧𝑛 ∧ [𝑧1, … , 𝑧𝑛/𝑥𝜏

1 , … , 𝑥𝜏𝑛 ]𝜏(𝐵) ∈ 𝑤′. So if 𝑦𝜏
1 =𝑦𝜏

1 ∧ … ∧ 𝑦𝜏𝑛 =𝑦𝜏𝑛 ∈ 𝑤′, then
𝑦𝜏

1 =𝑧1 ∧ … ∧ 𝑦𝜏𝑛 =𝑧𝑛 ∧ [𝑧1, … , 𝑧𝑛/𝑥𝜏
1 , … , 𝑥𝜏𝑛 ]𝜏(𝐵) ∈ 𝑤′.

Lemma 9.7 (Truth Lemma).
If 𝔐 = ⟨𝑊, 𝑅, 𝑈, 𝐷, 𝐾, 𝐼 ⟩ is the canonical model for a positive or negative
logic 𝐿, 𝑤 ∈ 𝑊 , and 𝑔𝑤 is the canonical assignment for 𝑤, then for any 𝔏-
sentence 𝐴,

𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐴 iff 𝐴 ∈ 𝑤.

Proof. By induction on 𝐴.

1. 𝐴 is 𝑃𝑥1 … 𝑥𝑛.

By definition 2.9, 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝑃𝑥1 … 𝑥𝑛 iff ⟨𝑔𝑤(𝑥1), … , 𝑔𝑤(𝑥𝑛)⟩ ∈ 𝐼𝑤(𝑃).
By definition 9.5, 𝑔𝑤(𝑥𝑖) is [𝑥𝑖]𝑤 or undefined if [𝑥𝑖]𝑤 = ∅. Moreover,
𝐼𝑤(𝑃) = {⟨[𝑧1]𝑤, … , [𝑧𝑛]𝑤 ⟩ ∶ 𝑃𝑧1 … 𝑧𝑛 ∈ 𝑤} by definition 9.4 and, for the
identity predicate, by the fact 𝐼𝑤(=) is {⟨𝑑, 𝑑 ⟩ ∶ 𝑑 ∈ 𝑈𝑤} = {⟨[𝑧]𝑤, [𝑧]𝑤 ⟩ ∶
𝑧=𝑧 ∈ 𝑤} = {⟨[𝑧1]𝑤, [𝑧2]𝑤 ⟩ ∶ 𝑧1 =𝑧2 ∈ 𝑤}.
Now if ⟨𝑔𝑤(𝑥1), … , 𝑔𝑤(𝑥𝑛)⟩ ∈ 𝐼𝑤(𝑃), then ⟨[𝑥1]𝑤, … , [𝑥𝑛]𝑤 ⟩ ∈ {⟨[𝑧1]𝑤, … , [𝑧𝑛]𝑤 ⟩ ∶
𝑃𝑧1 … 𝑧𝑛 ∈ 𝑤}, where all the [𝑥𝑖]𝑤 are non-empty (for 𝑔𝑤(𝑥𝑖) is defined).
This means that there are variables 𝑧1, … , 𝑧𝑛 such that {𝑥1 = 𝑧1, … , 𝑥𝑛 =
𝑧𝑛, 𝑃𝑧1 … 𝑧𝑛} ⊆ 𝑤. Then 𝑃𝑥1 … 𝑥𝑛 ∈ 𝑤 by (LL∗).
In the other direction, if 𝑃𝑥1 … 𝑥𝑛 ∈ 𝑤 then 𝑥𝑖 = 𝑥𝑖 ∈ 𝑤 for all 𝑥𝑖 in
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𝑥1 … 𝑥𝑛. Hence ⟨[𝑥1]𝑤, … , [𝑥𝑛]𝑤 ⟩ ∈ {⟨[𝑧1]𝑤, … , [𝑧𝑛]𝑤 ⟩ ∶ 𝑃𝑧1 … 𝑧𝑛 ∈ 𝑤},
and ⟨𝑔𝑤(𝑥1), … , 𝑔𝑤(𝑥𝑛)⟩ ∈ 𝐼𝑤(𝑃).

2. 𝐴 is ¬𝐵.

𝔐, 𝑤, 𝑔𝑤 ⊩ ¬𝐵 iff 𝔐, 𝑤, 𝑔𝑤 ⊮ 𝐵 by definition 2.9, iff 𝐵 ∉ 𝑤 by induction
hypothesis, iff ¬𝐵 ∈ 𝑤 by definition 9.1.

3. 𝐴 is 𝐵 ⊃ 𝐶.

𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐵 ⊃ 𝐶 iff 𝔐, 𝑤, 𝑔𝑤 ⊮ 𝐵 or 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐶 by definition 2.9, iff
𝐵 ∉ 𝑤 or 𝐶 ∈ 𝑤 by induction hypothesis, iff 𝐵 ⊃ 𝐶 ∈ 𝑤 by definition 9.1
and the fact that 𝐵 ⊃ 𝐶 is 𝐿-entailed by ¬𝐵 and by 𝐶.

4. 𝐴 is ⟨𝑦 ∶ 𝑥 ⟩𝐵.

Assume first that 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝑦 ≠ 𝑦. So 𝑔𝑤(𝑦) is undefined, and it is not the
case that 𝑔𝑤(𝑦) has multiple counterparts at any world. Then 𝔐, 𝑤, 𝑔𝑤 ⊩
⟨𝑦 ∶ 𝑥 ⟩𝐵 iff 𝔐, 𝑤, 𝑔[𝑦/𝑥]

𝑤 ⊩ 𝐵 by definition 8.2, iff 𝔐, 𝑤, 𝑔𝑤 ⊩ [𝑦/𝑥]𝐵 by
lemma 7.2, iff [𝑦/𝑥]𝐵 ∈ 𝑤 by induction hypothesis. Also by induction hy-
pothesis, 𝑦 ≠ 𝑦 ∈ 𝑤. By (SCN), ⊢𝐿 𝑦 ≠ 𝑦 ⊃ ([𝑦/𝑥]𝐵 ↔ ⟨𝑦 ∶ 𝑥 ⟩𝐵). So
[𝑦/𝑥]𝐵 ∈ 𝑤 iff ⟨𝑦 ∶ 𝑥 ⟩𝐵 ∈ 𝑤.

Next, assume that 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝑦 = 𝑦; so by induction hypothesis 𝑦 = 𝑦 ∈ 𝑤.
Assume further that ⟨𝑦 ∶ 𝑥 ⟩𝐵 ∉ 𝑤. Then ¬⟨𝑦 ∶ 𝑥 ⟩𝐵 ∈ 𝑤 by maximality of
𝑤, and ⟨𝑦 ∶ 𝑥 ⟩¬𝐵 ∈ 𝑤 by (S¬). Since 𝑤 is substitutionally witnessed and
𝑦 = 𝑦 ∈ 𝑤, there is a variable 𝑧 ∉ Var(⟨𝑦 ∶ 𝑥 ⟩¬𝐵) such that 𝑦 = 𝑧 ∈ 𝑤
and [𝑧/𝑥]¬𝐵 ∈ 𝑤. By induction hypothesis, 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝑦 = 𝑧. More-
over, by definition 3.1, ¬[𝑧/𝑥]𝐵 ∈ 𝑤, and so [𝑧/𝑥]𝐵 ∉ 𝑤 by consistency
of 𝑤. By induction hypothesis, 𝔐, 𝑤, 𝑔𝑤 ⊮ [𝑧/𝑥]𝐵. By definition 2.9, then
𝔐, 𝑤, 𝑔𝑤 ⊩ ¬[𝑧/𝑥]𝐵, i.e. 𝔐, 𝑤, 𝑔𝑤 ⊩ [𝑧/𝑥]¬𝐵. Since 𝑧 and 𝑥 are modally
separated in 𝐵, then 𝔐, 𝑤, 𝑔[𝑧/𝑥]

𝑤 ⊩ ¬𝐵 by lemma 7.2. But 𝑔[𝑧/𝑥]
𝑤 = 𝑔[𝑦/𝑥]

𝑤
because 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝑦=𝑧. So 𝔐, 𝑤, 𝑔[𝑦/𝑥]

𝑤 ⊩ ¬𝐵. And so 𝔐, 𝑤, 𝑔[𝑦/𝑥]
𝑤 ⊮ 𝐵

by definition 2.9, and 𝔐, 𝑤, 𝑔𝑤 ⊮ ⟨𝑦 ∶ 𝑥 ⟩𝐵 by definition 8.2.

In the other direction, assume ⟨𝑦 ∶ 𝑥 ⟩𝐵 ∈ 𝑤. Since 𝑤 is substitutionally
witnessed and 𝑦 = 𝑦 ∈ 𝑤, there is a new variable 𝑧 such that 𝑦 = 𝑧 ∈ 𝑤 and
[𝑧/𝑥]𝐵 ∈ 𝑤. By induction hypothesis, 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝑦 = 𝑧 and 𝔐, 𝑤, 𝑔𝑤 ⊩
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[𝑧/𝑥]𝐵. Since 𝑧 and 𝑥 are modally separated in 𝐵, 𝔐, 𝑤, 𝑔[𝑧/𝑥]
𝑤 ⊩ 𝐵 by lemma

7.2. As before, 𝑔[𝑧/𝑥]
𝑤 = 𝑔[𝑦/𝑥]

𝑤 because 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝑦 = 𝑧; so 𝔐, 𝑤, 𝑔[𝑦/𝑥]
𝑤 ⊩

𝐵, and so 𝔐, 𝑤, 𝑔𝑤 ⊩ ⟨𝑦 ∶ 𝑥 ⟩𝐵 by definition 8.2.

5. 𝐴 is ∀𝑥𝐵.

We first show that for any variable 𝑥, 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐸!𝑥 iff 𝐸!𝑥 ∈ 𝑤: 𝔐, 𝑤, 𝑔𝑤 ⊩
𝐸!𝑥 iff 𝑔𝑤(𝑥) ∈ 𝐷𝑤 by definition 3.1, iff [𝑥]𝑤 ∈ 𝐷𝑤 by definition 9.4, iff
𝐸!𝑥 ∈ 𝑤 by definition 9.4.

Now assume ∀𝑥𝐵 ∈ 𝑤, and let 𝑦 be any variable such that 𝐸!𝑦 ∈ 𝑤. As just
shown, 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐸!𝑦. By (FUI∗∗), ∃𝑥(𝑥 = 𝑦 ∧ 𝐵) ∈ 𝑤. By witnessing,
there is a 𝑧 ∉ Var(𝐵) such that 𝑧 = 𝑦 ∧ [𝑧/𝑥]𝐵 ∈ 𝑤, and thus 𝑧 = 𝑦 ∈ 𝑤 and
[𝑧/𝑥]𝐵 ∈ 𝑤. By induction hypothesis, 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝑧 = 𝑦 and 𝔐, 𝑤, 𝑔𝑤 ⊩
[𝑧/𝑥]𝐵. By lemma 7.2, then 𝔐, 𝑤, 𝑔[𝑧/𝑥]

𝑤 ⊩ 𝐵. And since 𝑔𝑤(𝑧) = 𝑔𝑤(𝑦), we
have 𝔐, 𝑤, 𝑔[𝑦/𝑥]

𝑤 ⊩ 𝐵. So if ∀𝑥𝐵 ∈ 𝑤, then 𝔐, 𝑤, 𝑔[𝑦/𝑥]
𝑤 ⊩ 𝐵 for all variables

𝑦 with 𝐸!𝑦 ∈ 𝑤, i.e. with 𝑔𝑤(𝑦) ∈ 𝐷𝑤. Since every member [𝑦]𝑤 of 𝐷𝑤 is
denoted by some variable 𝑦 under 𝑔𝑤, this means that 𝔐, 𝑤, 𝑔𝑤𝑥↦𝑑 ⊩ 𝐵 for
all 𝑑 ∈ 𝐷𝑤. So 𝔐, 𝑤, 𝑔𝑤 ⊩ ∀𝑥𝐵.

Conversely, assume ∀𝑥𝐵 ∉ 𝑤. Then ∃𝑥¬𝐵 ∈ 𝑤; so by witnessing, [𝑦/𝑥]¬𝐵 ∈
𝑤 for some 𝑦 ∉ Var(𝐵) with 𝐸!𝑦 ∈ 𝑤. Then ¬[𝑦/𝑥]𝐵 ∈ 𝑤 and so [𝑦/𝑥]𝐵 ∉
𝑤. As shown above, 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐸!𝑦. Moreover, by induction hypothe-
sis, 𝔐, 𝑤, 𝑔𝑤 ⊮ [𝑦/𝑥]𝐵. By lemma 7.2, then 𝔐, 𝑤, 𝑔[𝑦/𝑥]

𝑤 ⊮ 𝐵. And so
𝔐, 𝑤, 𝑔𝑤𝑥↦𝑔[𝑦/𝑥]

𝑤 (𝑥) ⊮ 𝐵. So 𝔐, 𝑤, 𝑔𝑤 ⊮ ∀𝑥𝐵.

6. 𝐴 is □𝐵.

Assume 𝔐, 𝑤, 𝑔𝑤 ⊩ □𝐵. Then 𝔐, 𝑤′, 𝑔′𝑤 ⊩ 𝐵 for all 𝑤′, 𝑔′𝑤 with 𝑤, 𝑔𝑤 ▷ 𝑤′, 𝑔′𝑤.
We first show that if 𝑤 𝜏−→ 𝑤′ then 𝑤, 𝑔𝑤 ▷ 𝑤′, 𝑔𝑤′ ∘ 𝜏. By definitions 2.8 and
9.4, 𝑤, 𝑔𝑤 ▷ 𝑤′, 𝑔𝑤′ ∘ 𝜏 means that there is a transformation 𝜎 such that 𝑤 𝜎−→
𝑤′ and for every variable 𝑦, if there is a 𝑧 ∈ 𝑔𝑤(𝑦) such that [𝑧𝜎]𝑤′ ∈ 𝑈𝑤′

(i.e., if 𝑔𝑤(𝑦) has any 𝜎-counterpart at 𝑤′), then there is a 𝑧 ∈ 𝑔𝑤(𝑦) with
𝑧𝜎 ∈ (𝑔𝑤′ ∘ 𝜏)(𝑦) (i.e., then (𝑔𝑤′ ∘ 𝜏)(𝑦) is such a counterpart), otherwise
(𝑔𝑤′ ∘ 𝜏)(𝑦) is undefined. The relevant transformation 𝜎 will be 𝜏. So what
we’ll show is this: for every variable 𝑦, if there is a 𝑧 ∈ 𝑔𝑤(𝑦) such that
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[𝑧𝜏]𝑤′ ∈ 𝑈𝑤′ , then there is a 𝑧 ∈ 𝑔𝑤(𝑦) with 𝑧𝜏 ∈ (𝑔𝑤′ ∘ 𝜏)(𝑦), otherwise
(𝑔𝑤′ ∘ 𝜏)(𝑦) is undefined.

Let 𝑦 be any variable. Assume first that there is a 𝑧 ∈ 𝑔𝑤(𝑦) such that
[𝑧𝜏]𝑤′ ∈ 𝑈𝑤′ . Then 𝑧 =𝑦 ∈ 𝑤 and 𝑧𝜏 =𝑧𝜏 ∈ 𝑤′. By either (Neg) and (EI)
or (=R), ⊢𝐿 𝑧 = 𝑦 ⊃ 𝑦 = 𝑦; so 𝑦 = 𝑦 ∈ 𝑤. Moreover, by either (TE), (EI),
(Nec) and (K) or (=R) and (Nec), ⊢𝐿 𝑧 = 𝑦 ⊃ □(𝑧 = 𝑧 ⊃ 𝑦 = 𝑦); so □(𝑧 =
𝑧 ⊃ 𝑦=𝑦) ∈ 𝑤. By definition of 𝑤 𝜏−→ 𝑤′, then 𝑧𝜏 =𝑧𝜏 ⊃ 𝑦𝜏 =𝑦𝜏 ∈ 𝑤′. So
𝑦𝜏 = 𝑦𝜏 ∈ 𝑤′. Hence 𝑦 ∈ 𝑔𝑤(𝑦) and 𝑦𝜏 ∈ [𝑦𝜏]𝑤′ = 𝑔𝑤′(𝑦𝜏) = (𝑔𝑤′ ∘ 𝜏)(𝑦).
Alternatively, assume there is no 𝑧 ∈ 𝑔𝑤(𝑦) with 𝑧𝜏 = 𝑧𝜏 ∈ 𝑤′. Then
either 𝑔𝑤(𝑦) = ∅, in which case 𝑦 ≠ 𝑦 ∈ 𝑤, and so □(𝑦 ≠ 𝑦) ∈ 𝑤 by
(NA), (EI), (Nec) and (K), and 𝑦𝜏 ≠ 𝑦𝜏 ∈ 𝑤′ by definition of 𝑤 𝜏−→ 𝑤′,
or else 𝑔𝑤(𝑦) ≠ ∅, but 𝑧𝜏 ≠ 𝑧𝜏 ∈ 𝑤′ for all 𝑧 ∈ 𝑔𝑤(𝑦), in which case,
too, 𝑦𝜏 ≠ 𝑦𝜏 ∈ 𝑤′ since 𝑦 ∈ 𝑔𝑤(𝑦). Either way, 𝑔𝑤′(𝑦𝜏) = (𝑔𝑤′ ∘ 𝜏)(𝑦) is
undefined.

We’ve shown that if 𝔐, 𝑤, 𝑔𝑤 ⊩ □𝐵, then for every 𝑤′ and 𝜏 with 𝑤 𝜏−→ 𝑤′,
𝔐, 𝑤′, 𝑔𝜏

𝑤′ ⊩ 𝐵. By the transformation lemma, then 𝔐, 𝑤′, 𝑔𝑤′ ⊩ 𝜏(𝐵).
By induction hypothesis, 𝐵𝜏 ∈ 𝑤′. Now suppose □𝐵 ∉ 𝑤. Then ♢¬𝐵 ∈ 𝑤
by maximality of 𝑤. By the existence lemma, there is then a world 𝑤′ and
transformation 𝜏 with 𝑤 𝜏−→ 𝑤′ and ¬𝐵𝜏 ∈ 𝑤′. (Any transformation whose
range excludes infinitely many variables will do.) But we’ve just seen that if
𝑤 𝜏−→ 𝑤′, then 𝜏(𝐵) ∈ 𝑤′. So if 𝔐, 𝑤, 𝑔𝑤 ⊩ □𝐵, then □𝐵 ∈ 𝑤.

For the other direction, assume 𝔐, 𝑤, 𝑔𝑤 ⊮ □𝐵. So 𝔐, 𝑤′, 𝑔′ ⊮ 𝐵 for
some 𝑤′, 𝑔′ with 𝑤, 𝑔𝑤 ▷ 𝑤′, 𝑔′. As before, this means that there is a trans-
formation 𝜏 with 𝑤 𝜏−→ 𝑤′ such that for every variable 𝑥, either there is a
𝑦 ∈ 𝑔𝑤(𝑥) with 𝑦𝜏 ∈ 𝑔′(𝑥), or there is no 𝑦 ∈ 𝑔𝑤(𝑥) with 𝑦𝜏 = 𝑦𝜏 ∈ 𝑤′, in
which case 𝑔′(𝑥) is undefined. Let 𝜏 be any transformation with 𝑤 𝜏−→ 𝑤′,
and let ∗ be a substitution that maps each variable 𝑥 in 𝐵 to some mem-
ber 𝑦 of 𝑔𝑤(𝑥) with 𝑦𝜏 ∈ 𝑔′(𝑥), or to itself if there is no such 𝑦. Thus
if 𝑥 ∈ Var(𝐵) and 𝑔′(𝑥) is defined, then (∗𝑥)𝜏 ∈ 𝑔′(𝑥), and so 𝑔′(𝑥) =
[(∗𝑥)𝜏]𝑤′ = (𝑔𝑤′ ∘ 𝜏 ∘ ∗)(𝑥). Alternatively, if 𝑔′(𝑥) is undefined (so ∗𝑥 = 𝑥),
then (𝑔𝑤′ ∘ 𝜏 ∘ ∗(𝑥) = 𝑔𝑤′(𝜏(𝑥)) is also undefined. That’s because otherwise
𝑔𝑤′(𝜏(𝑥)) = [𝑥𝜏]𝑤′ ≠ ∅ and 𝑥𝜏 =𝑥𝜏 ∈ 𝑤′; since 𝑤 𝜏−→ 𝑤′, then □𝑥 ≠𝑥 ∉ 𝑤
and hence 𝑥 =𝑥 ∈ 𝑤, as ⊢𝐿 𝑥 ≠𝑥 ⊃ □𝑥 ≠𝑥; so there is a 𝑦 ∈ 𝑔𝑤(𝑥), namely
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𝑥, such that 𝑦𝜏 = 𝑦𝜏 ∈ 𝑤′, in which case 𝑔′(𝑥) cannot be undefined (by
definition 2.8). So 𝑔′ = 𝑔𝑤′ ∘ 𝜏 ∘ ∗, and 𝔐, 𝑤′, 𝑔𝑤′ ∘ 𝜏 ∘ ∗ ⊮ 𝐵.

Now suppose for reductio that □𝐵 ∈ 𝑤. Let 𝑥1, … , 𝑥𝑛 be the variables 𝑥
in Var(𝐵) with (∗𝑥)𝜏 ∈ 𝑔′(𝑥) (thus excluding empty variables as well as
variables denoting individuals without 𝜏-counterparts at 𝑤′). For each such
𝑥𝑖, ∗𝑥𝑖 ∈ 𝑔𝑤(𝑥𝑖), and so 𝑥𝑖 =∗𝑥𝑖 ∈ 𝑤.

If 𝐿 is with substitution, then ⟨∗𝑥1, … , ∗𝑥𝑛 ∶ 𝑥1, … , 𝑥𝑛 ⟩□𝐵 ∈ 𝑤 by (LLn),
and so □⟨∗𝑥1, … , ∗𝑥𝑛 ∶ 𝑥1, … , 𝑥𝑛 ⟩𝐵 ∈ 𝑤 by (S□). Since 𝑤 𝜏−→ 𝑤′, then
⟨(∗𝑥1)𝜏, … , (∗𝑥𝑛)𝜏 ∶ 𝑥𝜏

1 , … , 𝑥𝜏𝑛 ⟩𝜏(𝐵) ∈ 𝑤′. By substitutional witnessing,
it follows that there are new variables 𝑧1, … , 𝑧𝑛 such that 𝑧𝑖 = (∗𝑥𝑖)𝜏 ∈ 𝑤′

and (hence) [𝑧1, … , 𝑧𝑛/𝑥𝜏
1 , … , 𝑥𝜏𝑛 ]𝜏(𝐵) ∈ 𝑤′.

If 𝐿 is without substitution, this fact – that there are new variables 𝑧1, … , 𝑧𝑛
such that 𝑧𝑖 =(∗𝑥𝑖)𝜏 ∈ 𝑤′ and [𝑧1, … , 𝑧𝑛/𝑥𝜏

1 , … , 𝑥𝜏𝑛 ]𝜏(𝐵) ∈ 𝑤′ – is guaran-
teed directly by definition of 𝑤 𝜏−→ 𝑤′ and the fact that □𝐵 ∈ 𝑤.

By induction hypothesis, 𝔐, 𝑤′, 𝑔𝑤′ ⊩ 𝑧𝑖 =(∗𝑥𝑖)𝜏 and 𝔐, 𝑤′, 𝑔𝑤′ ⊩ [𝑧1, … , 𝑧𝑛/
𝑥𝜏

1 , … , 𝑥𝜏𝑛 ]𝜏(𝐵). Since the 𝑧𝑖 are new, 𝔐, 𝑤′, 𝑔𝑤′ ∘ [𝑧1, … , 𝑧𝑛/𝑥𝜏
1 , … , 𝑥𝜏𝑛 ] ⊩

𝜏(𝐵) by lemma 7.2. By the transformation lemma, it follows that 𝔐, 𝑤′, 𝑔𝑤′ ∘
[𝑧1, … , 𝑧𝑛/𝑥𝜏

1 , … , 𝑥𝜏𝑛 ] ∘ 𝜏 ⊩ 𝐵. However, for each 𝑥𝑖, (𝑔𝑤′ ∘ [𝑧1, … , 𝑧𝑛/𝑥𝜏
1 , … , 𝑥𝜏𝑛 ] ∘ 𝜏)(𝑥𝑖) =

(𝑔𝑤′ ∘ [𝑧1, … , 𝑧𝑛/𝑥𝜏
1 , … , 𝑥𝜏𝑛 ])(𝑥𝜏

𝑖 ) = 𝑔𝑤′(𝑧𝑖) = 𝑔𝑤′((∗𝑥𝑖)𝜏) [because 𝔐, 𝑤′, 𝑔𝑤′ ⊩
(∗𝑥𝑖)𝜏 =𝑧𝑖] = 𝑔𝜏

𝑤′(∗𝑥𝑖) = (𝑔𝑤′ ∘ 𝜏 ∘ [∗𝑥1, … , ∗𝑥𝑛/𝑥1, … , 𝑥𝑛])(𝑥𝑖) = (𝑔𝑤′ ∘ 𝜏 ∘ ∗)(𝑥𝑖).
Similarly, if 𝑥 ∈ Var(𝐵) is none of the 𝑥1, … , 𝑥𝑛, so (∗𝑥)𝜏 ∉ 𝑔′(𝑥), then
∗𝑥 is 𝑥 by definition of ∗, and so (𝑔𝑤′ ∘ [𝑧1, … , 𝑧𝑛/𝑥𝜏

1 , … , 𝑥𝜏𝑛 ] ∘ 𝜏)(𝑥) =
𝑔𝜏

𝑤′(𝑥) = 𝑔𝜏
𝑤′(∗𝑥) = (𝑔𝑤′ ∘ 𝜏 ∘ ∗)(𝑥). So 𝑔𝑤′ ∘ [𝑧1, … , 𝑧𝑛/𝑥𝜏

1 , … , 𝑥𝜏𝑛 ] ∘ 𝜏 co-
incides with 𝑔𝑤′ ∘ 𝜏 ∘ ∗ for all variables in 𝐵. By the locality lemma, it follows
that 𝔐, 𝑤′, 𝑔𝑤′ ∘ 𝜏 ∘ ∗ ⊩ 𝐵 – contradiction.

9.3 Completeness

As in section 4.3, we can use the canonical model technique to prove completeness
of our base logics.
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Lemma 9.8 (Completeness lemma).
Every positive or negative modal predicate logic is strongly complete with
respect to any class of counterpart structures that contains the structure of its
canonical model.

Proof. Let 𝐿 be a positive or negative modal predicate logic, and 𝔐 its canoni-
cal model. Assume some set Γ of 𝔏-formulas is 𝐿-consistent. By the extensibil-
ity lemma 9.5, Γ is contained in some Henkin set 𝑤 for 𝐿. (Note that Γ contains
no variables from Var∗.) By the truth lemma 9.7, 𝔐, 𝑤, 𝑔𝑤 ⊩ 𝐴 for each 𝐴 ∈ Γ.
So Γ is satisfiable any class of structures that contains the structure of 𝔐.

Lemma 9.9 (Canonicity of FK∗).
The structure of the canonical model for FK∗ is total.

Proof. Immediate from lemma 9.4.

Theorem 9.10 (Completeness of FK∗).
The system FK∗ is strongly complete with respect to the class of total counter-
part structures.

Proof. Immediate from lemmas 9.8 and 9.9.

Lemma 9.11 (Canonicity of NK∗).
The structure of the canonical model for NK is single-domain.

Proof. Immediate from lemmas 9.4.
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Theorem 9.12 (Completeness of NK∗).
The system NK∗ is strongly complete with respect to the class of single-domain
counterpart structures.

Proof. Immediate from lemmas 9.8 and 9.11.

Let me briefly return to a point I mentioned on p.13: that the introduction of
multiple counterpart relations makes little difference to the base logics. The easiest
way to see this is perhaps to note that all the lemmas in the previous section still go
through if we define accessibility and counterparthood in canonical models by a fixed
transformation 𝜏 whose range excludes infinitely many variables. The extensibility
lemma (9.5) and existence lemma (9.6) are unaffected by this change; the only part
that needs adjusting is the clause for □𝐵 in the proof of the truth lemma 9.7, but the
adjustments are straightforward.
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