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Abstract. I show that the Absentminded Driver paradox is based on the
‘thirder’ response to the Sleeping Beauty problem. There is no paradox
if one adopts the ‘halfer’ response.

1 Introduction

The story of the absentminded driver, introduced in [Piccione and Rubinstein 1997b],
describes a case where decision theoretic reasoning apparently leads an agent to a
course of action she previously recognized as sub-optimal, and to expect a payoff
she previously didn’t expect for the same decision – despite the fact that she acquired
no relevant new information in the meantime. I will argue that these conclusions
only follow on a certain interpretation of the story that corresponds to the ‘thirder’
response to the Sleeping Beauty problem (also introduced in [Piccione and Rubinstein
1997b]). The paradox disappears if instead one employs the ‘halfer’ response.

2 The paradox

An absentminded driver has to take the second exit off the highway to get home.
The first exit leads into a disastrous area; if she takes neither exit, she has to stay at
a motel at the end of the highway. Due to her absentmindedness, she is unable to
tell whether she is at the first or the second exit when she reaches an intersection.
Fortunately however, she has a selection of coins with different biases at her disposal:
when she reaches an intersection, she can toss a coin and exit iff it lands heads.

Ideally, she would throw different coins at the two intersections, with a bias
towards tails on the first and towards heads on the second. But since she can’t tell
the two intersections apart, she cannot execute such a plan. She has to figure out
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the optimal bias on the assumption that it is used on any intersection that will be
reached.

For concreteness, let’s say that taking the second exit (home) has utility 4, taking
the first exit has utility 0, and taking neither has utility 1. The selected coin will
definitely be tossed at the first intersection, leading to payoff 0 with probability
(1− b), where b is the coin’s bias towards tails. With the remaining probability b, the
driver reaches the second intersection, where she will use the same coin again and
get payoff 4 with probability (1 − b) or payoff 1 with probability b. So the expected
payoff for the action b = tossing a coin with bias b is

U(b) = (1 − b) · 0 + b · (1 − b) · 4 + b · b · 1

= −3b2 + 4b.
(1)

This function has its maximum at b = 2/3, where the expected utility is 4/3. The
optimal coin therefore has bias 2/3 towards tails. Let’s call this calculation, which
the driver may have carried out before starting her trip, the simple calculation.

Now consider what she ought to do once she reaches an intersection, assuming she
is fully aware of her predicament. There are three possible outcomes – the disastrous
area (D), home (H), and the motel (M). By standard decision theory, the expected
utility of a coin selection is determined by the probability with which it leads to
those outcomes multiplied by their respective value:

U(b) = P(b⇒ D) · 0 + P(b⇒ H) · 4 + P(b⇒ M) · 1. (2)

P(b ⇒ D) is the probability for reaching the disastrous area D by choosing a coin
with bias b. In evidential decision theory (à la [Jeffrey 1965]) this is taken to equal
the conditional probability P(D | b); in causal decision theory (à la [Gibbard and
Harper 1978]) it is taken to be a suitable subjunctive conditional, stating that the
driver would reach D if she chose a coin with bias b. I will return to this difference
soon.

On either account, P(b ⇒ D) depends on whether the driver is at the first inter-
section, call it “Monday”, or at the second, “Tuesday”. For she can only reach the
disastrous area if she is at the Monday intersection, in which case she will get to D
iff her chosen coin lands heads. That is,

P(b⇒ D) = P(Mon) · (1 − b). (3)

Likewise, the probability for getting home (H) is 1 − b given that she is at the
Tuesday intersection. If she is at the Monday intersection, her present coin toss only
determines the probability with which she reaches Tuesday, where another coin toss
will decide about her fate. So P(b⇒ H) depends both on her current choice b and
on the choice she will make at Tuesday if she is currently at Monday.

Now, on the assumption that the driver selects bias b at Monday and then reaches
Tuesday, it is clear that she will select b there as well, since whatever reasoning and
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evidence leads her to b on the first intersection will still be available to her on the
second. (I assume the driver knows that she has no possibility to randomize her coin
selection, and that she is not in danger of suffering cognitive mishaps.) Hence in
evidential decision theory, where P(b⇒ H) is the conditional probability of H on
the assumption that b, we know that the relevant choice she will make at Tuesday
given that she selects b at Monday is b as well.

Things are less straightforward in causal decision theory, where P(b⇒ H) is the
probability that the driver would reach H by choosing b. Assume she is at Monday,
and consider various counterfactuals about what would happen later at Tuesday
depending on what coin she selects now. It is at least not obvious that her Tuesday
choice would vary in the right way with her Monday choice. In particular, it doesn’t
seems like she would cause herself to make a certain choice later by making it now.
One might therefore hold that when calculating the payoff for b at Monday, we
cannot assume that the driver will select b again at Tuesday.1

For maximal generality, let us introduce a second variable c for the bias the driver
assumes she will take at Tuesday if she is now at Monday and selects b. More
generally, c is the bias the driver assumes she will take at any intersection she
reaches – for she knows that she will certainly not choose different values at different
intersections. Keeping in mind that c might depend on b (for instance, by identity),
we have

P(b⇒ H) = P(Tue) · (1 − b) + P(Mon) · b · (1 − c). (4)

Analogously,

P(b⇒ M) = P(Tue) · b + P(Mon) · b · c. (5)

To calculate the expected utility of b, we finally need to know how probable
Monday and Tuesday are by the light of our driver – or, strictly, how probable they
are depending on b. Observe that if it is Tuesday, then the Monday coin must have
landed tails. So the probability for it being Monday depends on the driver’s view
about what bias she would select upon reaching an intersection. This is our value
c (which equals b at least in evidential decision theory). If c = 0, she ought to be
certain that it is Monday; if c = 1, so that she is certain she never exits, I will assume
she gives equal credence to being at Monday and being at Tuesday.

In general, since the probability of reaching Tuesday is c times the probability
of reaching Monday, it seems that the driver should assign Tuesday c times the
probability of Monday. This yields:2

P(Mon) = 1/(c + 1). (6)

1 The dependency assumption was made in [Piccione and Rubinstein 1997b], and critizised in
[Aumann et al. 1997].

2 The fact that P(Mon) depends on c (and hence on b, if c = b), was overlooked by Piccione and
Rubinstein [1997b], who instead use a fixed value α for P(Mon). The mistake was again pointed
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Putting (3), (4), (5), (6) and (2) together, the expected payoff for choosing bias b
is3

U(b) = (4b − 6bc + 4c)/(c + 1). (7)

Setting b = c, this reduces to

U(b) = (8b − 6b2)/(b + 1). (8)
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Here is the paradox: (7) and (8) contradict the payoff matrix reached by our
original simple calculation, (1)!

The contradiction is plain if we use (8), as we should on evidential decision theory.
The maximum of (8) lies at b =

√
336/12 − 1, which roughly equals 0.53; the

expected payoff there is around 1.67. So should our driver toss a coin with bias 2/3,
as the simple calculation said, or would she be better off with bias 0.53? Or was 2/3
indeed optimal from the perspective at the start of the trip, but is no longer optimal as
soon as an intersection is reached – despite the fact that she acquired no relevant new
information, and that she could easily have foreseen this change of mind? [[Maybe
explain how bad this is? It violates Reflection, and can be exploited with a Dutch
Book (or simply: charge for switching coins).]]

Things don’t look much better on the causal account. – If not, we would have
found a decisive argument for causal decision theory that has nothing to do with
intuitions about Newcomb cases! Too good to be true.

out by Aumann et al. [1997], who also propose (6) as the correct probability. In [Piccione and
Rubinstein 1997b], (6) is effectively used to calculate α = 3/5, based on the prior decision by the
driver to select bias 2/3.

3 This is the payoff matrix suggested in [Aumann et al. 1997]. [Piccione and Rubinstein 1997b],
setting c = b and P(Mon) = α, instead reach U(b) = α(4p − 3p2) + (1 − α)(4 − 3p), which for
α = 3/5 has its maximum at b = 1/3, with expected payoff 9/5, compared to 8/5 for b = 2/3.
[Rabinowicz 2003: Appendix] considers the result of setting c = b but leaving P(Mon) = 1/(c+1),
leading to (8) below.
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The verdict of causal decision theory is not entirely straightforward, since (7) now
doesn’t obviously collapse onto (8), and (7) alone only tells us what the driver should
pick given a certain prior belief about what she will pick. I will have a few more
thoughts about this in the final section. To see that something is wrong with (7),
however, we don’t even need to settle on a precise verdict.4

Recall that according to our simple calculation, the expected payoff for choosing
the optimal bias 2/3 at both intersections is 4/3. In (7), this ought to correspond to
the payoff assigned to b = c = 2/3. But this value is 8/5, not 2/3. The only c-value
for which selecting b = 2/3 yields payoff 4/3 is 1. That is, the only way to reconcile
(7) with (1) is to claim that upon reaching an intersection, i) the driver ought to select
bias 2/3, and ii) she ought to believe, based on this choice, that she would select bias
1 when reaching an intersection. (The belief has to depend on the choice, for if the
driver believes that c = 1 anyway, then (7) tells her to choose b = 0, not b = 2/3.)
But it is hard to see (to put it mildly) how any sensible decision theory could have
this result.

The problem generalizes. (1) not only tells us what the optimal bias is, and how
good it is, it also tells us the expected payoffs for other possible choices – as becomes
important if the driver has only a limited number of coins to choose from, or if she
has to pay for coins with a particular bias. For instance, (1) tells us that a fair coin
has an expected payoff of 5/4. But in (7), there is no way selecting b = 1/2 could
have payoff 5/4: the minimum value is 3/2, at c = 1. How much, then, should our
driver be willing to pay for a fair coin? (If this value changes between the outset and
the first intersection, we can make a sure profit on her by first buying the coin off her

4 [Aumann et al. 1997] point out two constraints on the optimal choice: 1) it should satisfy b = c, 2)
it should maximize U(b) holding c fixed. As the picture shows, for large values of c, the optimal
b is always 0, and for low values it is always 1. Only at c = 2/3 does U(b) not slope in either
direction, but rests at constant 8/5. Setting b = 2/3 is therefore the only way to satisfy the two
conditions. This is why the driver should stick to 2/3 according to [Aumann et al. 1997].

There are reasons to be dissatified with this solution. For one, it would be desirable to have
not only a recommendation on the best option, but also a result about which other options are
good, and which are worse. Which coins should our driver prefer over which others? The two
constraints don’t help us with this.

Moreover, the proposal only works for very specific cases and numbers. If we put another
motel at the first intersection, so that we get payoff 1 there as well, [Aumann et al. 1997]’s two
conditions are nowhere satisfied. Obviously, their solution also doesn’t help in any case where the
agent does not have a 2/3 coin at his disposal, as in the original case in [Piccione and Rubinstein
1997b]. [Aumann et al. 1997]’s response is to declase this case “uninteresting”. I agree with
[Piccione and Rubinstein 1997a] that this is not an adequate solution.

Moreover, assuming full independence of b and c, 2/3 is only rational if the driver knows
that c = 2/3; otherwise she ought to pick 0 or 1. However, if the agent knows that c = 2/3, then
she ought to be wholly indifferent between all options, since the outcome is 8/5 anyway. And
therefore she ought to know that she ought to be equally indifferent at any intersection. And then
how can she be certain that c = 2/3?

[[What shall I do with this? Move it to the main text? Drop it?]]
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and then selling it again.)
[[Can I make another point here: if evidential and causal decision theory deliver

different results, that is because the coin the driver chooses at another intersection
depends probabilistically, but not causally on the coin she chooses at the present
intersection. Can we change the story so that the probabilistic dependence coincides
with a causal dependence?]]

I conclude that (7) is wrong.5 This means that either we have to give up traditional
decision theory, as represented by (2), when self-locating beliefs and absentminded-
ness are involved, or we have made a mistake somewhere in (3) – (6)?

I will argue that (3) – (6) are indeed wrong. Once they are fixed, we get the desired
coincidence of answers.

3 Halfing and thirding

Suppose for a minute that the driver has only one coin to choose from, which is fair,
i.e. b = 1/2. Let us focus on the Monday tossing of this coin. Depending on its
outcome, the driver will reach Tuesday or not: if tails, yes; if heads, no. So when she
reaches the Monday intersection, she can rule out one possibility: that she is at the
Tuesday intersection and the coin landed heads. The three other possibilities are still
open; it could be tails & Monday, heads & Monday, or tails & Tuesday.

How should she distribute her credence among these possibilities? As before, we
assume that she is indifferent between tails & Monday and tails & Tuesday:

P(T&Mon) = P(T&Tue). (9)

The question is, how should these two values be related to the third, P(H&Mon)?
This question is known as the Sleeping Beauty problem.6 Two answers have been

defended in the literature. Thirders (including [Piccione and Rubinstein 1997b],
[Elga 2000]) say that all three possibilities should have the same probability:

P(T&Mon) = P(T&Tue) = P(H&Mon) = 1/3. (10)

Halfers (including [Lewis 2001], [Halpern 2006]) say that P(H&Mon) should be
considered twice as probable as the two others:

P(H&Mon) = P(T&Tue) + P(T&Mon) = 1/2. (11)

5 I am not alone with this opinion. Every paper in the 1997 issue of Games and Economic
Behavior devoted to the Absentminded Driver paradox supports sticking to the 2/3 coin, mostly
by considering various different formal models of the situation (see e.g. xxx). If this is correct, at
least (8) cannot be the correct payoff matrix.

6 The current version differs from the standard one in that the coin is tossed after the Monday
situation, as in Elga’s version xxx. It is commonly assumed, and I agree, that this makes no
difference to the answer.
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An argument for this is that at the point under consideration, the driver has no
information about the outcome of the coin toss, and therefore should align her
credences with the known objective chances: P(H) = 1/2.

In general, if there is a known objective chance b of there being multiple situations
indistinguishable from the present one, and a chance (1 − b) of there being just one,
halfers say that, barring further information, one should assign credence (1−b) to the
latter possibility, and credence b to the disjunction of the multiple others; whereas
thirders maintain that one should give each of the multiple situations the value b and
then renormalize the credence for all situations.7

Notice that on either account, the information that the driver is at Monday is
relevant to heads vs tails: it rules out one of the three previously open possibilities,
tails & Tuesday, which inevitably raises the probability of heads. More precisely,
given indifference between tails & Monday and tails & Tuesday, halfers and thirders
agree that

P(T | Mon) = P(T&Mon)/(1 − P(T&Tue))

= (P(T)/2)/(1 − P(T)/2)

= P(T)/(2 − P(T)).

(12)

Thus if upon reaching an intersection, the driver’s credence in tails is 1/2, then
conditional on being at Monday, her credence should be 1/3. If her unconditional
credence in tails is 2/3, her conditional credence should be 1/2.

4 The paradox resolved

Let’s return to the above calculation of U(b). I assumed that the probability of
reaching the desastrous area D when throwing a b-coin is

P(b⇒ D) = P(Mon) · (1 − b). (3)

The motivation was this. The driver reaches D iff she is at the Monday intersection
and tosses a coin that lands heads. And the probability that a b-coin will land heads
if she is at the Monday intersection is 1 − b.

This last statement seems innocent enough, but it presupposes thirding. The
objective probability for heads is certainly 1 − b. But what matters here is the
subjective probability for heads given that it’s Monday and a b-coin is being tossed.
(3) assumes that P(H | Mon) = 1−b, and therefore, by (12), that P(T) = 2/3 ·b. This
corresponds to the thirder distribution, see (10). Halfers object that the unconditional
credence for tails should match the known objective chance: P(T) = b, and therefore,
by (12), that P(T | Mon) = b/(2 − b). As halfers, we should therefore replace b in

7 see [Halpern 2006], xxx compare z-consistency vs time-consistency in [Piccione and Rubinstein
1997b].
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(3) with b/(2 − b):

P(b→ D) = P(Mon) · (1 − b/(2 − b)). (3′)

Similarly for (4) and (5):

P(b→ H) = P(Tue) · (1 − b) + P(Mon) · b/(2 − b) · (1 − c); (4′)

P(b→ M) = P(Tue) · b + P(Mon) · b/(2 − b) · c. (5′)

The probabilities for the Tuesday intersection don’t have to be adjusted, because
the coin toss on Tuesday has no effect on how many indistinguishable situations
there are.

However, (6), describing how the probability for Monday depends on the coin
bias c, again uses thirding:

P(Mon) = 1/(c + 1). (6)

Note that for c = 1/2, (6) entails that P(Mon) = 2/3, in agreement with (10) and
contradicting (11). In fact, (6) merely captures the thirder account for distributing an
objective chance c of multiple indistinguishable situations by assigning each of them
probability c and renormalizing the result: P(Mon) = (c + (1 − c))/(c + c + (1 − c)) =
1/(c + 1). On the halfer account, the disjunction of the indistinguishable situations
gets probability c (corresponding to the objective chance), so that P(T&Mon) = c/2
and P(Mon) = c/2 + (1 − c) = 1 − c/2. Halfers should therefore replace (6) by

P(Mon) = 1 − c/2. (6′)

Putting (3′), (4′), (5′), (6′) and (2) together, we get

U(b) = (4b − 5bc + (3/2)bc2)/(2 − b) + 2c − (3/2)bc. (13)

For b = c, this reduces to
U(b) = −3b2 + 4b, (14)

which is exactly the result of our simple calculation (1). The previously unresolvable
contradiction disappears.
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A picture of (13). The surface is a bit more saggy than before.
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What the paradox shows is therefore not that traditional decision theory fails in
cases of absentmindedness or self-locating beliefs. What it shows is that to adopt
decision theory to such a case, one better be a halfer.

5 PS: deciding in causal decision theory

I haven’t yet said what the payoff matrix should be in causal decision theory, as the
paradox was unavoidable anyway. On the other hand, if we want to fully avoid the
paradox, it is obvious what it should be: it should be (1). That is, just like evidential
decision theory, causal decision theory should support setting c = b. The question is
why.

According to causal decision theory, (13) tells us what the optimal bias b is, given
a certain view about what the driver will choose at an intersection. For instance,
given that she would choose bias c = 0, the optimal bias for her to choose is b = 1,
delivering an expected payoff of 2.

To find the optimal bias, our driver thus has to first figure out what bias she would
choose when she reaches an intersection. To this end, she has to reproduce her
reasoning given her evidence at an intersection. Which leads into a loop: to find the
optimal bias, she first has to figure out the optimal bias. (The problem, unlike in
‘Death in Damascus’, is not that making a decision will alter the expected payoffs,
even though it might: after choosing b = 1, it is clear that her belief in c = 0 was
false, and that the expected payoff will be 0, not 2. The main problem here is that
there seems to be no way to calculate the payoffs so as to reach a decision in the first
place. We seem to have a coordination problem of some sort.)

One might suggest that since our agent cannot complete her circular reasoning,
she won’t find out what she will do once she reaches an intersection and therefore
should select whatever bias is best given total ignorance about c. Let this value be
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x. However, if this is what she ought to select, then she could have figured that she
will select x upon reaching an intersection. And if c = x, then (13) tells us that the
optimal b value is not x – more precisely, that it is 0 if c ≥ 13/6 −

√
73/4/3 and 1 if

c ≤ that number.8 And if by this reasoning the driver will conclude that she ought
to select, say, bias 1, reproducing this reasoning will lead her to conclude that she
ought to select bias 0; and so on.

[[Alternatively, we might look at the ratifiability or stability of the different options.
That is, we look at what the driver considers to be the right choice after deciding.
For instance, if she somehow thought she would select bias 1/4 at an intersection and
therefore decides to select bias 1, promising payoff 2, this decision is now evidence
that she would actually not select 1/4, but rather 1; so the payoff she would now
expect is close to 0, and it must seem to her that selecting 1 was not a good idea. We
can calculate an option’s degree of ratifiability as the closeness between the expected
payoff before and after the decision. 2/3 might be the most ratifiable option in the
matrix. I have to check other stability measures. I suspect that on some measure, you
actually get the desired matrix 14. – Also need to think about reasons to be skeptical
about ratifiability measures, see [Rabinowicz 1989].]]

Perhaps there is a simpler way out. Note that c is not (as [Aumann et al. 1997]
indicate) the bias the driver thinks she will choose at the other intersection, but the
bias she thinks she will choose at any intersection, including the present one. For
instance, in (6′), c is the value (assumed to be) selected at the Monday intersection –
which may well be the value selected at the current intersection. Of course, the driver
knows that whatever she chooses at one intersection, she will also choose at any
other, so we would get the same value either way. But while it is unclear whether the
bias at another intersection suitably depends on the bias chosen now, it is much more
plausible that this dependency holds between the bias chosen at any intersection
and the one chosen at the present one. In other words, the variable c is not causally
independent of b. Thus when we consider the consequences of selecting b, we must
not hold fixed c.

In fact, as long as we stick to (13), we have to set c = b: (13) tells us the expected
payoff if the agent were to select b now, given that she selects c at any intersection.
This makes no sense unless b = c. One might therefore reconsider (13): perhaps c
should be broken up into the value chosen at the present intersection and the value
chosen at any other intersection, if reached? [[Can we do that?]] However, there was
a reason why we didn’t break up c in this way: the driver is not merely confident,
but absolutely certain that whatever bias she chooses now is exactly what she would
choose at any intersection. When she ponders what would happen if she were to
choose, say, bias 1, she therefore ought to discard any possibility in which she ends

8 The fact that the optimal b depends in this way on c entails that, as in the additional motel setup
above, [Aumann et al. 1997]’s solution is inapplicable because their second condition is nowhere
satisfied.
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up choosing different things at different intersections: she knows for sure that this
is not going to happen, whatever she decides. (This is why arguably one-boxing is
rational in a Newcomb problem with a perfectly reliable predictor.)

[[I need to say more here. Is one-boxing agreed to be rational for absolutely
reliable predictors, as can easily happen in a twin setup? If so, why? Should also
look into the ‘screening of self-prediction’ debate.

Perhaps it wouldn’t actually be too bad if causal decision theory delivers a different
payoff matrix. E.g. if 2/3 is optimal, it might be okay if it says that the expected
payoff for 1/2 is U(1/2) on c = 2/3. For this doesn’t tell us anything about the case
where the driver has no 2/3 coin, or where she has to sell or buy a coin (at least
unless there is selling and buying in between the exits)?]]
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