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Abstract. One of the most intriguing applications of possibilia is the reduc-
tion of mathematical truths. I argue that this is not only technically feasible,
but also supported by general methodological considerations, that it reflects
a natural understanding of mathematical statements and that it solves most
of the philosophical puzzles surrounding mathematics.1

1 Philosophical puzzles about mathematics

Mathematics is puzzling. What are mathematical theories about? What are numbers,
functions, sets and lattices? Where are they? What is their nature? Do they have
properties beyond those mentioned in mathematics? Do they really exist?

These are ontological questions. Others are ‘ideological’, in Quine’s sense of the term.
Consider “member” (or “element”) in set theory. There is no official definition of this
notion. Does that mean we have to rely on supernatural revelation to grasp its meaning?
Textbooks often say, somewhere on their first pages, that a set is several things considered
as one – something like a flock of sheep –, and that the ‘members’ are simply the original
things so considered. But soon we are told that there is an empty set, a unit set of the
empty set, a unit set of that set, and so on, none of which can in any sense be called
“several things considered as one”. So what, really, do “set” and “member” mean? (cf.
[Lewis 1991: §2])

Then there are epistemological worries. Mathematical theories do not appear to de-
scribe parts or features of reality to which our senses provide access: numbers can neither
be seen nor heard. Unlike microphysical particles, they aren’t even causally responsible
for observable phenomena. But then how can we know about them? How can we be con-
fident that our mathematical beliefs track what is the case in that isolated mathematical
part of reality? (cf. e.g. [Field 1989: §1.4])

1 The approach I will present resembles proposals by Paul Fitzgerald [1976], David Lewis [1993],
Geoffrey Hellman [1996] and Daniel Nolan [2001: ch.7, 2004].

I thank Christian Nimtz, Daniel Nolan, Wolfgang Künne and Andrea Sereni for comments and
discussion.
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Another puzzle concerns the modal status of mathematics. Mathematical truths are
generally assumed to be necessary. But why couldn’t things in that mathematical part
of reality be different? If there are many objects of a certain kind, why couldn’t there
be fewer of them, or none at all? On the face of it, there is no contradiction in assuming
that numbers don’t exist, so how come there is no corresponding possibility? (cf. [Rosen
2002])

These puzzles could be easily solved by rejecting the relevant mathematical claims.
If it’s not true that there are infinitely many primes, nor that there are any numbers
at all, we need not worry about their nature and necessity and relation to us. I will
not consider this possibility. The aim is to answer the philosophical puzzles – as well as
possible – without rejecting mathematics.

2 Learning from logicism

Let’s begin with the epistemological problem: how could we explain the correlation
between our mathematical beliefs and the mathematical facts? A good step towards an
answer is to notice that many mathematical truths can be proved. It’s not a primitive
fact that there are infinitely many primes, a fact we have to grasp in some inexplicable
manner, as it where by direct insight into mathematical reality. No, that there are
infinitely many primes can be proved from simpler facts, and that is most likely how we
come to know it.

The ideological problems can be tackled in a similar way by defining certain mathe-
matical notions in terms of others. For instance, “prime number” need not be accepted
as primitive if it can be defined in terms of “division” and “1”.

Taken to its extreme, this idea leads to full-blooded logicism, the project of defining
all mathematical notions in purely logical vocabulary, and then showing how all mathe-
matical truths can be proved from purely logical truths. If this works, there will at most
remain a few concerns about the status and epistemology of logic, but these are clearly
tame in comparison with the problems raised by mathematics.

Unfortunately, full-blooded logicism does not work. For one, we know since Gödel
that not all mathematical truths are formally derivable from any neat set of axioms, let
alone from no axioms at all. We have to rest content with a neat set of axioms, like the
ZFC axioms for set theory or the first-order Peano Axioms for arithmetic, from which
at least most interesting facts can be derived. (We may find a complete set of axioms in
some higher-order logic, like the second-order Peano Axioms. But this isn’t much of an
improvement: on any reasonable conception of “proof”, many arithmetical truths will
remain unprovable.)

There is a more obvious reason why full-blooded logicism can’t work: whatever follows
from a logical truth is itself a logical truth. By definition, logical truths are true in every
model. But mathematical theories like set theory and arithmetic are false in every finite
model. So they can’t be derivable from logical truths. Again, the problem generalizes:
any axioms for set theory or arithmetic must entail the existence of infinitely many
objects, and so cannot be as ontologically innocent as we might like.

2



Or can they? Perhaps arithmetic does not really presuppose the existence of infinitely
many objects. Of course it contains sentences like “there are infinitely many primes”.
But perhaps on the correct interpretation, such sentences don’t really commit us to the
existence of many primes, just as, arguably, accepting “there is a lack of wine” does
not commit us to the existence of a peculiar lack-of-wine entity. That there is a lack of
wine only means that there is not enough wine. So perhaps “there are infinitely many
primes” only means, say, that it follows from the Peano Axioms that there are infinitely
many primes, or that if there were a structure exemplifying the Peano Axioms, it would
contain infinitely many things occupying the position of primes.

I am not very enthusiastic about this idea. As I said, the aim is to solve the philo-
sophical problems without rejecting substantial mathematical truths. If there are only
finitely many things overall, there can’t be infinitely many primes. And if there aren’t
infinitely many primes, Euclid’s Theorem is false. Saying that the sentence “there are
infinitely many primes” is nevertheless true because it doesn’t really mean that there are
infinitely many primes sounds like cheating. No faithful interpretation of mathematics
can get rid of its commitment to lots of objects.

But we can try to hide the commitment, for instance behind ‘abstraction principles’
like ‘Hume’s Principle’:

HP) The number of F s equals the number of Gs iff the F s correspond one
to one with the Gs.

It does sound trivial: how could one deny that if the knives on a table are in one-one
correspondence with the forks, then the number of knives is the same as the number of
forks? It seems that anyone who rejects (HP) must have misunderstood what we mean
by “number” or “corresponding one to one”.

In fact, “corresponding one to one” can be defined in second-order logic: the F s
correspond one to one with the Gs iff ∃R(∀x(Fx → ∃!y(Gy∧Rxy))∧∀x(Gx → ∃!y(Fy∧
Ryx)))). So if we accept second-order logic as logic, the only non-logical term in (HP)
is “the number of”. Proponents of the so-called ‘Neo-Fregean’ St. Andrews school thus
suggest that (HP) should be regarded as implicitly defining “the number of”. That’s
why rejecting (HP) is a sign of misunderstanding: one in effect rejects a definition.

Now surprisingly, the full second-order Peano Axioms are derivable from (HP) together
with fairly natural definitions of “successor” and “zero”. (The proof is due to Frege; see
e.g. [Boolos 1996] for details.) So if second-order logic counts as logic and (HP) as a
definition, the second-order Peano Axioms are after all provable from logic and definitions
alone.

Let me set aside the status of second-order logic until later and concentrate on (HP).
Since the Peano Axioms entail that there are infinitely many things, and (HP) entails the
Peano Axioms, (HP) itself, trivial though it may seem, entails that there are infinitely
many things.2 Could a mere definition, an analytical truth, do that?

2 To see how, take the predicate x 6= x. There evidently is a one-one correspondence between the (zero)
things that fall under this predicate and the things that fall under this predicate. So taking (HP)
from right to left, the number of non-self-identical things equals the number of non-self-identical
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Of course not. (HP) contains a substantial metaphysical assumption. But none the
worse for that. There is no way to get arithmetic without substantial metaphysical
assumptions, in particular about the size of reality. The question is whether (HP)
is better apt to solve the puzzles raised by arithmetic than, say, the Peano Axioms
themselves. But that isn’t clear. How, for instance, do we know that (HP) – this
trivially sounding substantial assumption – is true? How can we explain its necessity?
How does it help us answering questions about the nature and whereabouts of numbers?
(HP) doesn’t tell us what kind of internal structure numbers have, in what relations
they stand to us, and, notoriously, whether Julius Caesar is one of them.

At this stage, Neo-Fregeans usually take rescue in some kind of anti-realist meta-
physics: whether an existence claim is correct, they say, is determined by the rules that
govern those claims. (HP) is a rule of this kind, allowing us to move from “the F s corre-
spond one to one with the Gs” to “the number of F s = the number of Gs”, and thus to
“there is something which is the number of F s”. So all that’s needed for the truth of the
existence claim is that the original correspondence claim was correct. There is no need
for a further matching with what there really is, objectively, out there. Moreover, since
objects introduced by a particular abstraction principle like (HP) constitute a genuine
ontological category, they are, according to Neo-Fregeans, never identical with objects
belonging to other categories, like Julius Caesar (see e.g. [Hale and Wright 2001]).

Unfortunately, I fail to see how we could make it true that there are infinitely many
things of a special ontological category just by adopting a linguistic rule. I could under-
stand if “the number of F s = the number of Gs” should be regarded as a mere façon

de parler, a slightly misleading way of saying that the F s correspond one to one with
the Gs. But then it would be wrong to infer that there is at least one number from this
façon de parler, just as it is wrong to infer that there is at least one lack from “there is
a lack of wine” if this is just an odd way of saying that there is not enough wine.

In fact, I don’t think it is a good idea to claim, for whatever reason, that the numbers
comprise a special ontological category. For this is just what creates all the philosophical
puzzles. If it turns out to be the only acceptable interpretation of arithmetic – if there
is no way to locate the numbers among more familiar objects –, I’m willing to accept
that. But we shouldn’t give up without trying.

3 The Canberra Plan

We have what Frank Jackson [1998: ch.1] calls a location problem, a problem of finding
entities given in a certain vocabulary among entities described in a different vocabulary.
Suppose for example that the world can be completely described in some vocabulary
not containing “Mount Everest”. Perhaps microphysical vocabulary suffices, or perhaps

things. So there is a number of non-self-identical things. Let’s call it 0. This is our first object.
Next, consider the predicate x = 0. Again the things falling under this predicate correspond one to
one with the things falling under it, so just as before we get from (HP) a number – 1 – of things
falling under this predicate. Since 0 falls under x = 0 and not under x 6= x, there is no one-one
correspondence between these two predicates. Taking (HP) from left to right it follows that 0 6= 1,
giving us a second object. And so on.
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phenomenal and indexical terms must also be used, or perhaps all kinds of macrophysical
facts need to be included. In any case, the question arises how these facts make true
facts about Mount Everest and which, if any, of the entities mentioned in the basic
description is Mount Everest.

A general strategy for solving location problems is the Canberra Plan: to locate a
certain thing (or property) A among the things (and properties) given in some restricted
vocabulary, first collect information we possess about A; then look for something B in
the basic description that satisfies these conditions. The idea is that if A is known to do
this and that, and B (and only B) in fact does this and that, then A can be identified
with B. In this way, we can presumably identify Mount Everest with some huge network
of microphysical particles, water with H2O, heat with molecular energy, and events with
triples of things, times and properties (or sets of spacetime regions, or whatever events
are on your favourite account).

None of these identities are immediately obvious or somehow bring to the surface what
we ‘always really meant’ by “heat”, “water”, “event” and “Mount Everest”. Off-hand,
one might even have thought that Mount Everest is not a huge network of little particles
with lots of empty space in between. But it would be unwise to dogmatically hold on
to this opinion and conclude in the light of scientific evidence that either Mount Everest
does not exist at all or is some further entity, miraculously co-located with an aggregate
of particles. Likewise, for the benefit of a manageable ontology, we shouldn’t treat events
as irreducible sui generis entities merely because, intuitively, events aren’t sets.

It is also by applying the Canberra Plan that mathematicians have managed to greatly
reduce their primitive ideology. For example, the main feature of ordered pairs – the only
feature relevant for mathematical purposes – is that <x, y> = <v,w> iff x=v and y=w.
As sets of the form {x, {x, y}} satisfy this job description, ordered pairs are commonly
identified with such sets. Likewise, as the natural numbers can be characterized by the
(second-order) Peano Axioms, and both the finite von Neumann ordinals (the sets ∅,
{∅}, {∅, {∅}}, . . . ) and the finite Zermelo ordinals (the sets ∅, {∅}, {{∅}}, . . . ) satisfy
these axioms, mathematicians commonly identify the numbers with those ordinals.

However, the numbers can hardly be identical with both the von Neumann and the
Zermelo ordinals, otherwise 2 would be both {{∅}, ∅} and {{∅}}, contradicting the fact
that {{∅}, ∅} 6= {{∅}}. In general, if A is characterized as being such-and-such, and
several things satisfy the job description, how can we single out the one with which to
identify A?

This happens not only with numbers, but also with ordered pairs, and with mass and
Mount Everest: when we speak of “mass”, do we mean rest mass or of relativistic mass?
Having agreed to identify Mount Everest with an aggregate of physical particles, exactly
which aggregate shall we choose? Lots of aggregates seem equally well suited, depending
on where exactly the mountain’s boundaries are drawn.

Some conclude that Mount Everest cannot be an aggregate of particles after all, but
instead belongs to the special ontological category of ‘vague objects’ (see [Rosen and
Smith 2004]). Similarly, Paul Benacerraf [1965] concludes that the natural numbers
cannot be sets. As for mass, this response would mean that we speak of neither rest
mass nor relativistic mass (nor of nothing at all), but of a third kind of mass, strangely
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ignored by recent physics.
There is something odd about this response: if different things B and C satisfy the

job description for A, how does it help to introduce yet another entity D that also
satisfies the description? Why identify A with this further entity D rather than B or C?
It seems to me that the introduction of new entities, rather than solving the problem,
only makes it worse. An equally bad response, proposed by David Lewis in his early
papers on theoretical identification (e.g. [Lewis 1970: 83]), is to conclude that where the
conditions are multiply satisfied, the relevant entities – Mount Everest, mass, numbers,
etc. – simply do not exist.3

A better response is to conclude that it is simply indeterminate exactly what “Mount
Everest”, “mass” etc. denote. One way to make this more precise is supervaluation-
ism: on the supervaluationist interpretation of indeterminacy and vagueness, a sentence
containing an indeterminate expression is true iff it is true on all resolutions of the
indeterminacy, and false iff it is false on all resolutions. If, like “Mount Everest con-
sists of an even number of atoms”, the sentence is true on some resolutions and false
on others, it remains truth-value-less (see [Keefe 2000] for a discussion and defense of
supervaluationism).

I don’t want to get into the semantics of vagueness and indeterminacy here. What I
want to claim is only that if all we know about some thing A is that it is such-and-such,
and if several things turn out to satisfy that condition, then we should conclude that A

is F only if all the such-and-suchs are F .

4 Locating the numbers

Let’s apply the Canberra Plan to arithmetic. First, we have to gather facts about the
natural numbers and their properties. We know, for example, that 2+3 equals 5, that
there are infinitely many primes, and that all numbers have a unique decomposition
into prime factors. All these facts, indeed all arithmetical truths whatever, follow from
the second-order Peano Axioms. So an obvious idea is to take the Peano Axioms as
characterizing arithmetical things and properties. (Notice that here we do not use the
axioms as a foundation from which to derive arithmetical theorems. Rather, we use
them to explicate arithmetical terms. The second-order Peano Axioms do this much
better than their incomplete first-order counterparts.)

Here is a (slightly uncommon) version of the second-order Peano Axioms, with “suc-
cessor” as the only primitive:

1) Nothing has more than one successor, and nothing is the successor of more
than one thing;

2) all things that are successors have a successor;

3 Often, when several things satisfy the job description for A equally well, they all satisfy it badly
(e.g. because it is part of the job description that nothing else satisfies the relevant conditions). In
this case it is reasonably to conclude either that A doesn’t exist or that it is some further entity, not
identical with any of the considered things. These cases are not cases of multiple satisfaction, but
cases of failed satisfaction.
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3) there is a single thing that has a successor but is not itself a successor;

4) whenever there are some things F such that a) the thing mentioned in
(3) belongs to the F s, and b) every successor of every thing that belongs to
the F s also belongs to the F s, then every thing that has a successor belongs
to the F s.

All other arithmetical terms are easily definable in terms of “successor”: zero is the
unique thing that has a successor but is no successor; x is a natural number if x has a
successor; x is less than or equal to y if y belongs to all things F such that x is one of
the F s and any successor of any of the F s is also one of the F s; x is the number of F s if
the F s correspond one to one with the numbers less than (i.e. less than or equal to but
not equal to) x; and so on.

To complete the application of the Canberra Plan, we only need to find a relation in
our basic ontology that satisfies the conditions these axioms lay down for the successor
relation.

What shall we take as the basic ontology? If we restrict it to a narrow range of things
– say, the books on my shelf –, it will not be very interesting to learn that the numbers
cannot be found among them. So we should include everything we believe in, except
perhaps Platonic mathematical entities.

Now I suggest that we include not only all things of which we believe that they actually
exist, but also all things of which we believe that they might have existed. I apologize
if that is more than what you believe in.

Things that might have existed – possibilia – are things that exist at other possible
worlds. Possible worlds correspond to ways the world might be. There could have been
dragons, and there could have been a planet made entirely of chocolate; so there is
a possible world containing a dragon, and a world containing a chocolate planet. For
present purposes, the metaphysics of merely possible objects is not very important.
The merely possible dragons might be concrete and physical animals, occupying their
own spatiotemporal universe; or they might be some kind of representations, or sui

generis modal entities. What matters here is only that they exist, and that they are not
mathematical entities.

Do merely possible things really exist? The fact that we appear to talk about them
when we describe what might have been the case is hardly conclusive. But possibilia
also prove of great use in more sophisticated theorizing, in intensional semantics and
probability theory, and in many parts of philosophy (see [Lewis 1986: ch.1]). This is a
good, but not decisive, reason to believe in them. I will offer you another reason: that
if you accept possibilia, you can eschew the Platonic realm of mathematicalia and solve
the puzzles it raises.4

4 Some have argued that talk about alternative possibilities should not be understood literally, but
paraphrased away, like talk about lacks. I don’t want to preclude this possibility, though the currently
available suggestions, e.g. [Armstrong 1989] and [Rosen 1990], don’t look very promising to me.
Even if their technical problems could be overcome, they would deliver strange results: if modal
and counterfactual and mathematical statements are to be interpreted in terms of possibilia, and
statements about possibilia in terms of, say, what is true according to a certain fiction, modal and
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So assume possibilia are in our basic ontology. The next question is whether there
is a relation on the things in that ontology which satisfies what the Peano Axioms say
about the successor relation. On a sparse conception of relations (on which a relation is
something like a natural, polyadic universal), this is far from obvious. On an abundant
conception however, on which there is a two-place relation for every class of ordered
pairs, it is quite plausible. Indeed, it is not difficult to see that such a relation exists if
only (and only if) there are infinitely many things in our ontology.5

I think it is safe to assume that there are infinitely many possibilia. Hence there is
a successor relation satisfying the Peano Axioms. Or rather, there are such relations:
any relation that results from a successor relation by permutation of its relata is also
a successor relation. That is, if one successor relation identifies me with the number 6
and Julius Caesar with the number 7, the relation that is just like this one except that
Caesar and I have traded places is also a successor relation.

Thus we have a (rather extreme) case of indeterminacy: lots of relations in our basic
ontology perfectly satisfy the successor conditions. In line with what I said in the
previous section, we should therefore regard an arithmetical sentence as true iff it is true
for all relations on possibilia satisfying the successor conditions expressed by the Peano
Axioms.

5 Possibilist (eliminative) structuralism

The interpretation reached in the previous section closely resembles eliminative struc-

turalism in the philosophy of mathematics. (Non-eliminative structuralism is the view
that the object of mathematical studies are abstract entities called “structures”, see e.g.
[Parsons 1990]. From now on I will mean eliminative structuralism by “structuralism”.)

Structuralism was developed by Frege [1906] in an attempt to understand some re-
marks of Hilbert and his allies on the foundations of geometry. Hilbert had claimed
that his axioms of geometry should be regarded as defining the terms “point”, “straight
line”, “between” etc. they contain. Frege found that unacceptable, for largely the same
reasons for which I’ve rejected the Neo-Fregean approach: Hilbert’s ‘definitions’ don’t
settle whether (or under what conditions) Julius Caesar is a point, and they entail the
existence of infinitely many objects, which mere definitions can’t do. Frege suggested
that perhaps on Hilbert’s view, “point”, “line” etc. aren’t really terms with a fixed
meaning – somehow defined by the axioms –, but rather universally bound variables,

counterfactual and mathematical statements are in effect interpreted as statements about what is
true in a certain fiction, which, as I mentioned in section 2, I find hard to believe. Nevertheless, if
some reinterpretation programme of talk about possibilia proves feasible, what I’m going to say will
not be undermined. It will simply have to be reinterpreted accordingly.

5 Consider the ‘Ramsey sentence’ ∃R PA2(successor/R) of the Peano Axioms, where all occurrences of
“successor” in PA2 have been replaced by the existentially bound variable R. This sentence contains
only logical vocabulary, hence whether it is true in a given model can only depend on the size of the
domain, not on the assignment to non-logical constants. As PA2 is true in some countably infinite
model, and remains true when further elements are added to the domain (without changing the
interpretation of “successor”), it follows that its Ramsey sentence is true in all infinite models.
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restricted by the axioms. (Though Frege preferred to reserve “axiom” for basic assump-
tions on which mathematical theories are built, as opposed to conditions explicating
mathematical notions.) On this reading, geometrical statements do not describe spe-
cial geometrical objects. They are abbreviate quantified conditionals: “whenever some
property Point, relation Between, etc., together satisfy such-and-such conditions (the
axioms), then . . .” (see in particular [Frege 1906: 304–309]).

Which is more or less just what I suggested in the previous section concerning arith-
metic. A minor difference concerns truth-values other than true: on Frege’s structuralist
interpretation, an arithmetical sentence is false iff it is false on some assignment of values
to “successor” satisfying the Peano Axioms, whereas on the supervaluationist reading it
is false iff it is false on all such assignments. Another difference is that the structural-
ist interpretation is often understood as a claim about the ‘deep structure’ or ‘logical
form’ of sentences: arithmetical sentences are somehow supposed to really be abbreviated
universal conditionals. This understanding is less widespread for the supervaluationist
conditionals. At any rate, I think it is better to leave speculations about these matters
to linguists.6

Structuralism is very natural at least for some parts of mathematics: when we learn
in group theory that there is a unique identity element, we presumably don’t learn that
there is a unique object in mathematical heaven, the identity element. What we learn
is rather that any things satisfying the group axioms contain a unique thing satisfying
the conditions for the identity element.

The main problem for structuralism is the antecedent of the universal conditionals:
how can we be sure that the axioms of group theory or geometry or arithmetic are
satisfied? If not, the quantifiers in the structuralist analysis are empty, and all sentences
belonging to the relevant theory get assigned the same truth value (true on Fregean
structuralism, false on the indeterminacy interpretation, which here again looks more
natural). And even if we are sure that the axioms are actually satisfied, how can we
be sure that they are necessarily satisfied, as we should be if we want to uphold the
necessity of mathematical truths?

These worries disappear if we read the structuralist quantifiers as possibilist quanti-
fiers. It is uncertain and contingent whether any relation on actually existing things
satisfies the successor conditions expressed by the Peano Axioms – because it is uncer-
tain and contingent whether there are infinitely many things. But we may confidently
assume that there are, and necessarily are, infinitely many possible things.

When Frege asked Hilbert how he could be sure that his axioms of geometry are
satisfied, Hilbert replied:

If arbitrarily selected axioms together with all their consequences do not
contradict one another, then they are true, and the things defined by the

6 In cases like geometry, where several primitives occur in the axioms, resolutions of the indeterminacy
are simultaneous assignments of values to “point”, “line”, “between” etc.: if on some resolution, points
are A-things and lines B-things, while on another points are C-things and lines D-things, there may
be no admissible resolution on which points are A-things and lines D-things (e.g., let A = D). Such
interconnected indeterminacies are often missing in presentations of supervaluationism.
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axioms exist. For me, that is the criterion of truth and existence.7

As a principle about actual existence, this is certainly crazy (which is what Frege
thought about it). But as a principle about possible existence, it makes evident sense: if
some conditions do not contradict one another, then it is indeed possible that something
satisfies the conditions. One might say this is just what “not contradicting one another”
means.8

There is something funny about the antecedent worry anyway: mathematicians do not
and need not care whether any actual objects happen to exemplify certain mathematical
conditions (say, the conditions for a Hilbert space). It suffices if the conditions could be
satisfied. This is why consistency, rather than correspondence with actuality, is what
matters in mathematics.

From this point of view, using possibilia in the analysis of mathematical statements is
not just a technical trick to ensure that the antecedents are satisfied. On the contrary,
it reflects a very natural attitude towards mathematics.

It also explains another puzzling feature, noticed for example by Burgess and Rosen
[2005: §2]: neither mathematicians nor physicists seem to be worried about appealing
to vast realms of mathematical entities in their theories. In mathematics, the guiding
principle seems to be maximizing rather than minimizing ontology. If mathematics deals
with the space of possibility, this is only to be expected: in modal affairs, existence claims
are generally unproblematic; it’s non-existence claims that need defense and explanation.

Ignoring the minor differences between the interpretation sketched in the previous
section and the kind of Fregean structuralism just outlined, I will use “possibilist struc-
turalism” for the general idea they share.

6 Properties, relations, fusions and plurals

So far, I have taken for granted second-order logic and thereby the existence of abundant
properties and relations, assuming that for any set or set of pairs of things in our ontology
there is a corresponding property or relation, respectively. One might wonder whether
these alleged properties and relations are anything else but those sets, in which case
possibilist structuralism would presuppose the existence of sets. So it may be worthwhile
to see if we can do without them.

A nice way to achieve this at least for properties is provided by George Boolos’s [1984,
1985] plural interpretation of second-order quantification. On this interpretation, second-
order quantifiers don’t range over special entities, but rather correspond to certain plural
constructions common in natural language: Whereas on the traditional interpretation,
∃FFa is read as “there is a set such that a is a member of it”, Boolos reads it as “there
are some things such that a is one of them”. Similarly, ∃F∀x(Fx ↔ x=a ∨ x= b), can
be understood plurally as “there are some things such that for all x, x is one of them iff

7 Hilbert, letter to Frege, 29 December 1899, [Frege 1976: 66], my translation
8 I don’t want to speculate about what Hilbert meant by his remark. Note that it predates both

Hilbert’s programme and the modern distinction between formal consistency and satisfiability.
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either x is a or x is b”. This does not commit us to the existence of any set or class or
collection containing a and b. So instead of talking about properties, I could have used
plurals, as in fact I sometimes have.

However, plural quantification can only replace monadic second-order logic. Further
devices are needed to replace talk about (two-place) relations. Such devices have been
developed by John Burgess and Allen Hazen in the appendix to [Lewis 1991], where
they show that plural quantification together with classical, extensional mereology can
go proxy for monadic third -order logic.

Mereology is the theory of parts and wholes. Usually, “part” is taken as primitive in
mereology. An atom is then defined as something that does not have proper parts; a
fusion of some things F is defined as a thing that has all the F s as parts and no part
not overlapping any of the F s. (Some things overlap if they share a part.) Classical,
extensional mereology mainly consists of the following principle, which I will call the
Fundamental Principle of Mereology :

FPM) For any things there exists exactly one fusion of those things.

The basic idea of Burgess and Hazen is now to replace quantification over relations by
plural quantification over pairs, where pairs <x, y> are not defined set-theoretically, but
mereologically (with the help of some further plural quantification). The details of this
mereological definition of pairhood are intricate, and not directly relevant here, so the
interested reader is directed to the appendix of [Lewis 1991], and [Lewis 1993: 222-224].

Using these tools, whatever I said about relations can be rephrased in terms of plurals
and mereological ersatz pairs. For instance, when I said that some relation on possibilia
satisfies the conditions expressed by the Peano Axioms, I could instead have said that
there are mereological ersatz pairs R of possibilia that jointly satisfy those conditions.
(That the Rs jointly satisfy the condition that nothing has more than one successor, for
example, means that whenever ersatz pairs <x, y> and <x, z> are among the Rs, then
y = z.) The existence of such pairs is guaranteed (given the satisfiability of the Peano
Axioms) by the unrestrictedness of plural comprehension and mereological composition.

7 Locating the sets

How does possibilist structuralism carry over to set theory?
We can proceed as before: First, follow the set theorists in defining all set theoretical

notions in terms of “membership”; then choose, say, the ZFC axioms as providing the
job description for membership ‘relations’ (that is, for mereological ersatz pairs <x, y>

such that x is a member of y9). Finally, show that the job description is satisfied by
‘relations’ on possibilia. A set theoretical sentence should be understood as true iff it is
true for all these ‘relations’. Apart from invoking possibilia and the plural-mereological
substitute for relations, this is the approach suggested by Paul Fitzgerald [1976].

9 This time, there is no set of ordered pairs corresponding to the ‘relation’. Otherwise that set,
having members, would have to be among the paired entities it contains, contradicting the axiom of
Foundation.
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In fact, as in the case of arithmetic, we better use second-order ZFC. Thereby we can
avoid an infinite number of (replacement) axioms in the antecedent of the structuralist
conditionals, and, more importantly, we can rule out countable models: it may be in-
determinate exactly what we’re talking about when we talk about sets, but it is clear
that we’re not talking about things of which there are only countably many; but the
first-order ZFC axioms are satisfied by ‘membership relations’ on a countable domain.

However, unlike second-order Peano Arithmetic, even second-order ZFC is not categor-
ical, that is, not all its models are isomorphic to one another. It is only ‘quasi-categorical’,
in that whenever there are two models of second-order ZFC, one is isomorphic to an ini-
tial segment of the other. Thus we could ensure that set theoretic statements always
have the same truth value on all choices of the membership ‘relation’ by formulating the
axioms in such a way that absolutely everything counts as a set. This ties the size of
the allowed models to the size of reality – to the number of things in our basic ontol-
ogy –, so that the remaining membership ‘relations’ can only differ by a permutation of
individuals.10

For this interpretation to work, our basic ontology must again be sufficiently large.
In the case of arithmetic, only countably many things were needed, but now we need as
many as there are sets in set theory, which is really quite a lot.

Fortunately, there are independent reasons to believe in that many possibilia. Here is
one: suppose there is a cardinality κ of all possibilia. Then it is impossible that there be
2κ objects; but why should this be impossible? After all, “there are 2κ objects” is not
contradictory. Could it be a posteriori impossible, like “Hesperus is not Phosphorus”?
Hardly. We have an explanation why “Hesperus is not Phosphorus” is impossible (based
on a certain theory of names), but this explanation does not work for “there are 2κ

objects”. More generally, that Hesperus is necessarily Phosphorus can be found out by
empirical investigations. (That’s why it’s a posteriori.) But it is quite unintelligible
how empirical investigations could show us that there are necessarily no more than κ

objects. This kind of necessity would be a strange and unusual sort of necessity, one
that is neither analytically false nor discoverable by empirical investigations. It seems
to me that there is no reason to believe in such necessities. Indeed, if possibilia are to
do their job in the interpretation of mental and linguistic content, ‘strong’ necessities
of this kind should be rejected (cf. [Chalmers 2002: 192–4]); see [Nolan 1996: §4] and
[Bricker 1991] for further reasons to believe that there are as many possibilia as sets).

8 Non-formal conditions and Lewisian sets

Up to this point, I have assumed that all we know about numbers and sets are truths of
arithmetic and set theory. But perhaps there are other conditions we should add to the
job desriptions.

10 Curiously, the assumption that everything is a ZFC set conflicts with the Fundamental Principle
of Mereology (see [Uzquiano 2005]): ZFC models have inaccessible size, but unless there is a lot of
atomless gunk, the Fundamental Principle entails that the number of things in reality is accessible.
In response, one could either claim that there is enough atomless gunk in logical space, or employ a
stronger set theory such as MK that allows for proper classes as well as sets.
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An obvious candidate would be the condition that ordinary objects like Julius Caesar
are neither numbers nor sets. This sounds intuitively right. However, I have argued above
that we should not take intuitions of this kind too seriously, lest we burden ourselves
with a needlessly complicated ontology and philosophical puzzles. Remember how bad
it would have been to require that events are not sets or mountains not networks of little
particles with empty space in between. We should be open for ontological discoveries.

The assumption that Julius Caesar is not a set might seem important for impure

set theory, whose domain is divided into sets and non-sets, or ‘individuals’. Shouldn’t
Caesar be on the ‘individuals’ side of this divide? Not necessarily. The main purpose
of impure set theory is to provide sets of ordinary objects. Certainly we should require
that Julius Caesar is a member of some sets, so that there are sets like the set of Roman
emperors. But to this end, Caesar need not be an ‘individual’. He can also be a member
if he is a set, or if it is indeterminate whether he is a set or an ‘individual’. Indeed, if,
as I suggested in the previous section, we require all things to be sets in our axioms of
pure set theory, possibilist structuralism gives us a set of Roman emperors even in pure

set theory.11

David Lewis, in his ‘megethological’ reconstruction of impure set theory ([Lewis 1991],
[Lewis 1993]), adds two non-formal conditions to the job description for sets. One is the
condition I have rejected: that ordinary things not be sets ([1993: 221]). The other is
that sets have a certain mereological structure.

According to Lewis, there are not two different ways of ‘considering several things
as one’: the mereological and the set-theoretical way, delivering, respectively the fusion
and the set of the considered things. The only fundamental kind of composition is
mereological. Sets are mereological fusions. The parts of a set, however, are not its
members but its subsets. Hence the set of primes, for example, is literally part of the
set of natural numbers.

On this conception, the atomic constituents of a set are the unit sets, or singletons, of
its members. In general, x is a member of set y iff the singleton {x} of x is part of y.
Membership is thus reducible to the special case that relates things x to their singletons
{x}.

Lewis shows how the axioms of classical set theory are then derivable from a few basic
assumptions about this singleton relation, provided only that reality contains enough
objects ([1993: 220f., 227f.]). More interesingly, he also shows that if there are enough
objects, then there are singleton ‘relations’ that satisfy those assumptions ([1993: 224–
6]). This is no longer obvious once the assumptions contain mereological, as opposed to
purely logical, vocabulary.

So it may seem that Lewis’s set theory lends itself easily to possibilist structuralism.
In fact, Lewis also advocates a structuralist interpretation. His account is not possibilist

11 This is because there are only few (actual) Roman emperors. By contrast, neither pure nor any kind
of impure set theory can give us a set of all possibilia, or all things that are not Roman emperors, if
these things exceed every cardinality.

In a set theory with proper classes (see fn.10), things get more complicated: if Julius Caesar is
a proper class on some choice of the membership ‘relation’, he will not be a member of any set (or
class).
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structuralism merely because he requires that the sets inhabit a special part of reality.
Can this requirement simply be dropped? Unfortunately not. The trouble is caused by
some oddities of Lewis’s account that I have not yet mentioned.

I said that the atomic constituents of sets are singletons. But if subsets are parts,
isn’t the empty set ∅ a proper part of any singleton {x}? And if so, what is the rest
of {x}, the mereological difference {x} − ∅? Not {x} again, otherwise {x} would be a
proper part of itself. Nor could it be the empty set, as the fusion of ∅ and ∅ is ∅, not {x}.
But {x} and ∅ are the only subsets of {x} and hence should be its only parts. Lewis
solves this problem by counting only non-empty subsets as parts of a set. So not all sets
are fusions of singletons: the empty set is not. Lewis instead defines it as the fusion of
all objects that do not have singletons as parts. Such objects Lewis calls “individuals”.
([Lewis 1993: 210–2])

It immediately follows that on this terminology, some things are neither sets nor indi-
viduals. For by the Fundamental Principle of Mereology, there are fusions of singletons
and individuals. These mixed fusions are neither individuals (they have singletons as
parts) nor sets (they are not fusions of singletons alone, nor are they the empty set).
Moreover, again by mereology, there is a fusion of all singletons. But there is no union
set of all sets in standard set theory. In Lewis’s set theory, such large fusions of singletons
are not sets, but proper classes. ([1993: 208f., 212f.])

Lewis stipulates that mixed fusions and proper classes do not have singletons. This
is not entirely arbitrary, for there are strictly more mixed fusions and proper classes
than there are singletons: by mereology, there is no one-one correspondence between
the fusions of any atoms and the atoms themselves. Hence there are more fusions of
singletons than there are singletons. Since the singleton relation is a one-one map from
the sets into the singletons, it follows that there can be no such map for the remaining
fusions of singletons, the proper classes. As for every proper class, its fusion with any
individual is a mixed fusion, the mixed fusions also outnumber the singletons.

Now consider what happens if we drop Lewis’s condition that ordinary things must not
be sets. The division between singleton atoms and individual atoms will then vary with
different choices of the singleton ‘relation’. On some choices, certain atoms in Caesar’s
brain will count as singletons and others as individuals. But then Caesar is a mixed
fusion on that choice of of the singleton ‘relation’, and thus not a member of any set!
Yet among the (non-formal) things we know about sets is that some of them have Julius
Caesar as a member.

This time we can’t simply demand that all things must count as sets (or proper classes)
on all admissible singleton ‘relations’, as we could in structuralism based on ZFC. For
we need an empty set, which, being memberless, cannot be a fusion of singletons. So
there is no way to rule out mixed fusions of sets and the empty set. (For what it’s worth,
we could stipulate that there is only one atom that is not a singleton.)

The easiest fix is probably to allow singletons for some mixed fusions. Just as Lewis
allows singletons for all ‘small’ fusions of singletons – those that are not proper classes –,
so we can allow singletons for all ‘small’ mixed fusions, more precisely, for those mixed
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fusions that do not contain as many atoms as there are sets (cf. [Lewis 1993: 221]).12

Since all Roman emperors are small in this sense, this will guarantee a set of Roman
emperors.

It may nevertheless appear odd to claim that some (‘large’) fusions of ordinary possi-
bilia are not members of any set. But this can hardly be avoided if the possibilia, and
the atoms of possibilia in particular, exceed every cardinality. For then there are at least
as many atoms of possibilia as there are singletons, and therefore strictly more fusions
of these atoms. So they cannot all have a singleton.

Incidentally, this also shows that Lewis’s original [1993] framework, in which all fusions
of objects outside the mathematical realm have a singleton, breaks down if there are
proper-class many possibilia – something Lewis only came to accept later (see e.g. [Lewis
2002: 8]).

9 Conclusion

Logicism and its modern descendants fail because the substantial ontological implications
of mathematics can’t be explained away. If our mathematical theories are true, there
must be lots of objects. But we need not assume that these objects inhabit a special
part of reality or have an otherwise special nature.

Instead, I have suggested that we interpret mathematical statements as quantifications
over possibilia (plus whatever else there is in our ontology). I have argued that this
interpretation results from applying a general ontological strategy, the Canberra Plan,
and that it also corresponds to a fairly natural attitude towards mathematics. I will
close by taking another look at the puzzles with which I began.

The ontological and ideological puzzles are solved. Like the impossible logicists, we
need neither a special mathematical ontology nor any primitive mathematical ideology.
Undefined mathematical terms are in effect replaced by universally bound variables.

As for the epistemological puzzle, no direct insight or intuition into an otherworldly
realm is required. What we need to know in order to know, say, an arithmetical truth
is only that a) it follows from the conditions for successor ‘relations’ expressed by the
arithmetical axioms, and b) that the conditions could be satisfied (and therefore are

satisfied among possibilia).
Finally, the modal status of mathematical truths is no longer a mystery: on the

possibilist interpretation, mathematical statements are unrestricted modal statements,
and unrestricted modality obeys the S5 principles: an unrestricted modal statement is

12 Lewis’s second condition on singleton relations, that their domain consists of all small fusions of
things in their range and all things not overlapping any things in their range, can then be simplified:
the domain of a singleton relation simply consists of all small things.

A different solution is offered by Daniel Nolan [2001: ch.7, 2004], who unlike Lewis counts the
empty set as a proper part of any set. {x} then consists of ∅ and {x} − ∅, the latter of which Nolan
calls the “Esingleton” of x. The problem of mixed fusions recurs in Nolan’s account as a problem
about fusions of ∅ with things that are not fusions of Esingletons: such things are denied singletons.
To spare ordinary objects this fate, Nolan [2004: §4] stipulates that only (certain) ‘large’ things are
eligible as the empty set. Thus again singletons are ensured for all small things.
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true iff it is possible iff it is necessary.
The appeal of possibilist structuralism clearly depends on the case for possibilia. If

one accepts possibilia anyway – and does not construe them in some mathematical
manner –, I think possibilist structuralism is a very attractive position. If, on the
other hand, one sees no independent reason at all to accept possibilia, then it is not
much of an improvement over traditional Platonism. But even then I believe it is an
improvement. For the problems raised by possibilia seem to me less puzzling than those
raised by mathematical Platonism. For instance, on Lewis’s [1986] conception, the nature
of possible worlds is pretty clear – they are spatiotemporal entities just like our universe
–, and no primitive ideology is required to talk about possibilia.13 The modal force of
statements about possibilia is again explained by the S5 nature of unrestricted modality.
As for the epistemological worry, I don’t think knowledge about possibilia raises any
further problems than knowledge of modality raises on any conception. Anyway, what
is needed for mathematics aren’t any substantial insights into individual essences or the
like. All we need to know is that there are sufficiently many possibilia, which, as I’ve
argued, is quite plausible.
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Tamar Szabó Gendler and John Hawthorne (Eds.) [2002]: Conceivability and Possibility . Oxford:
Oxford University Press

Bob Hale and Crispin Wright [2001]: “To Bury Caesar. . . ”. In The Reason’s Proper Study,

Oxford: Clarendon Press, 335–396

Geoffrey Hellman [1996]: “Structuralism Without Structures”. Philosophia Mathematica, 4:
100–123

Frank Jackson [1998]: From Metaphysics to Ethics: A Defence of Conceptual Analysis . Oxford:
Clarendon

Rosanna Keefe [2000]: Theories of Vagueness . Cambridge: Cambridge University Press

David Lewis [1970]: “How to Define Theoretical Terms”. Journal of Philosophy , 67: 427–446.
Reprinted in his Philosophical Papers, Vol. I

— [1986]: On the Plurality of Worlds . Malden (Mass.): Blackwell

— [1991]: Parts of Classes . Oxford: Blackwell

— [1993]: “Mathematics is Megethology”. Philosophia Mathematica, 3: 3–23. Reprinted in his
Papers in Philosophical Logic

— [2002]: “Tensing the Copula”. Mind , 111: 1–13

Daniel Nolan [1996]: “Recombination Unbound”. Philosophical Studies , 84: 239–262

— [2001]: Topics in the Philosophy of Possible Worlds . New York, London: Routledge

— [2004]: “Individuals Enough For Classes”. Manuscript

Charles Parsons [1990]: “The Structuralist View of Mathematical Objects”. Synthese, 84: 303–
346

Gideon Rosen [1990]: “Modal Fictionalism”. Mind , 99: 327–354

— [2002]: “A Study in Modal Deviance”. In [Gendler and Hawthorne 2002], 283–308

Gideon Rosen and Nicholas J. Smith [2004]: “Worldly Indeterminacy: A Rough Guide”. Aus-

tralasian Journal of Philosophy , 82: 185–198

Gabriel Uzquiano [2005]: “The Price of Universality”. Forthcoming in Philosophical Studies

17


