Wolfgang Schwarz

Gibbard and Jackson on the probability of conditionals

Gibbard's 1981 paper "Two recent theories of conditionals" contains a famous passage about a poker game on a riverboat.

Sly Pete and Mr. Stone are playing poker on a Mississippi riverboat. It is now up to Pete to call or fold. My henchman Zack sees Stone's hand, which is quite good, and signals its content to Pete. My henchman Jack sees both hands, and sees that Pete's hand is rather low, so that Stone's is the winning hand. At this point, the room is cleared. A few minutes later, Zack slips me a note which says "If Pete called, he won," and Jack slips me a note which says "If Pete called, he lost." I know that these notes both come from my trusted henchmen, but do not know which of them sent which note. I conclude that Pete folded.

One puzzle raised by this scenario is that it seems perfectly appropriate for Zack and Jack to assert the relevant conditionals, and neither Zack nor Jack has any false information. So it seems that the conditionals should both be true. But then we'd have to deny that 'if p then q' and 'if p then not-q' are contrary.

One-boxing and objective consequentialism

I've been reading about objective consequentialism lately. It's interesting how pervasive and natural the use of counterfactuals is in this context: what an agent ought to do, people say, is whichever available act would lead to the best outcome (if it were chosen). Nobody thinks that an agent ought to choose whichever act will lead to the best outcome (if it is chosen). The reason is clear: the indicative conditional is information-relative, but the 'ought' of objective consequentialism is not supposed to be information-relative. (That's the point of objective consequentialism.) The 'ought' of objective consequentialism is supposed to take into account all facts, known and unknown. But while it makes perfect sense to ask what would happen under condition C given the totality of facts @, even if @ does not imply C, it arguably makes no sense to ask what will happen under condition C given @, if @ does not imply C.

The probability that if A then B

It has often been pointed out that the probability of an indicative conditional 'if A then B' seems to equal the corresponding conditional probability P(B/A). Similarly, the probability of a subjunctive conditional 'if A were the case then B would be the case' seems to equal the corresponding subjunctive conditional probability P(B//A). Trying to come up with a semantics of conditionals that validates these equalities proves tricky. Nonetheless, people keep trying, buying into all sorts of crazy ideas to make the equalities come out true.

Spelling out a Dutch Book argument

Dutch Book arguments are often used to justify various epistemic norms – in particular, that credences should obey the probability axioms and that they should evolve by condionalization. Roughly speaking, the argument is that if someone were to violate these norms, then they would be prepared to accept bets which amount to a guaranteed loss, and that seems irrational.

Imaginary Foundations

My paper "Imaginary Foundations" has been accepted at Ergo (after rejections from Phil Review, Mind, Phil Studies, PPR, Nous, AJP, and Phil Imprint). The paper has been in the making since 2005, and I'm quite fond of it.

Simplicity and indifference

According to the Principle of Indifference, alternative propositions that are similar in a certain respect should be given equal prior probability. The tricky part is to explain what should count as similarity here.

Strengthening the prejacent

Sometimes, when we say that someone can (or cannot, or must, or must not) do P, we really mean that they can (cannot, must, must not) do Q, where Q is logically stronger than P. By what linguistic mechanism does this strengthening come about?

Long-run arguments for maximizing expected utility

Why maximize expected utility? One supporting consideration that is occasionally mentioned (although rarely spelled out or properly discussed) is that maximizing expected utility tends to produce desirable results in the long run. More specifically, the claim is something like this:

What i and -i could not be

According to realist structuralism, mathematics is the study of structures. Structures are understood to be special kinds of complex properties that can be instantiated by particulars together with relations between these particulars. For example, the field of complex numbers is assumed to be instantiated by any suitably large collection of particulars in combination with four operations that satisfy certain logical constraints. (The four operations correspond to addition, subtraction, multiplication, and division.)

Might counterfactuals

A might counterfactual is a statement of the form 'if so-and-so were the case then such-and-such might be the case'. I used to think that there are different kinds of might counterfactuals: that sometimes the 'might' takes scope over the entire conditional, and other times it does not.

< 662 older entries


Subscribe (RSS)